<table>
<thead>
<tr>
<th>Title</th>
<th>Nano hemostat solution: immediate hemostasis at the nanoscale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>EllisBehnke, RG; Liang, YX; Tay, DKC; Kau, PWF; Schneider, GE; Zhang, S; Wu, W; So, KF</td>
</tr>
<tr>
<td>Citation</td>
<td>Nanomedicine: Nanotechnology, Biology, And Medicine, 2006, v. 2 n. 4, p. 207-215</td>
</tr>
<tr>
<td>Issued Date</td>
<td>2006</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/54239</td>
</tr>
<tr>
<td>Rights</td>
<td>This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.; Nanomedicine: Nanotechnology, Biology and Medicine. Copyright © Elsevier Inc.</td>
</tr>
</tbody>
</table>
Nano hemostat solution: immediate hemostasis at the nanoscale

Rutledge G. Ellis-Behnke, PhD,a,b,c,* Yu-Xiang Liang, PhD, b,c David K.C. Tay, PhD,b,c Phillip W.F. Kau, BSc, b Gerald E. Schneider, PhD,a Shuguang Zhang, PhD,d Kwok-Fai So, PhDb,c,e

aDepartment of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
bDepartment of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
cState Key Laboratory for Brain and Cognitive Science, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
dCenter for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
eResearch Centre of Heart, Brain, Hormone and Healthy Aging, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China

Received 22 August 2006; accepted 22 August 2006

Abstract

Hemostasis is a major problem in surgical procedures and after major trauma. There are few effective methods to stop bleeding without causing secondary damage. We used a self-assembling peptide that establishes a nanofiber barrier to achieve complete hemostasis in less than 15 seconds when applied directly to a wound in the brain, spinal cord, femoral artery, liver, or skin of mammals. This novel therapy stops bleeding without the use of pressure, cauterization, vasoconstriction, coagulation, or cross-linked adhesives. The self-assembling solution is nontoxic and nonimmunogenic, and the breakdown products are amino acids, which are tissue building blocks that can be used to repair the site of injury. Here we report the first use of nanotechnology to achieve complete hemostasis in less than 15 seconds, which could fundamentally change how much blood is needed during surgery of the future.

Through the ages doctors have found ways to achieve hemostasis, beginning with the simple act of applying pressure, then cauterization, ligation, and clinically induced vasoconstriction [1-10], but nanotechnology brings new possibilities for changes in medical technology. Here we present a novel method to stop bleeding using materials that self-assemble at the nanoscale when applied to a wound. This method results in the formation of a nanofiber barrier that stops bleeding in any wet ionic environment in the body; furthermore, the material is broken down into natural l-amino acids that can be used by the surrounding tissue for repair.

Currently there are three basic categories of hemostatic agents or procedures: chemical, thermal, and mechanical [1,3,6,8,10-15]. Chemical agents are those that change the clotting activity of the blood or act as vasoconstrictors, such as thromboxane A2 [16], which causes vessels to contract thus reducing blood flow and promoting clotting [7,16,17]. Thermal devices commonly involve cauterization using electrodes, lasers [8,14], or heat. There are also agents that react exothermically upon application that may create an effect similar to a standard two probe cautery device [1,14]. Mechanical methods use pressure or ligature to slow the blood flow [3]. A combination therapy might use both chemical and mechanical means to produce a hemostat that adsorbs fluid and swells [18], producing pressure to slow the blood flow and allow clotting, or it may involve the introduction of fibrinogen, thrombin, and
calcium to produce fibrin glue, which acts as an artificial clot [1,2,5,6,8,10,14,19]. There are five major issues related to the limitations and applicability of many of these hemostatic agents. First, some of the materials are solid, such as powder formulations, and are not able to flow into the area of injury to bring about their hemostatic effects [1,10,14]; second, some liquid agents, such as cyanoacrylates, require a dry environment to be effective [8]; third, some materials can create an immune response resulting in the death of adjacent cells, placing additional stress on the body that can prolong or prevent healing [8,10,14,15,20]; fourth, some agents have a short shelf-life and very specific handling requirements [6,10,14,16,17]; and finally, many currently used hemostats are difficult to use in uncontrolled environments [1,7,8,10,14]. Moreover, if a therapy uses swelling as part of its hemostatic action, then extra care must be taken to ensure that the local blood supply is not reduced or stopped, which could cause additional tissue damage or even death. This is particularly crucial when using expanding foams [19]. Many hemostatic agents must be prepared just before use because of their short shelf-life.

Surgical instruments, such as cauteration devices, clamps and clips, must be used by a skilled individual in a controlled environment [2,5,8-10,16,20].

Our discovery, observed during a neurosurgical procedure, introduces a new way to stop bleeding using a self-assembling peptide that establishes a nanofiber barrier and incorporates it into the surrounding tissue to form an extracellular matrix (ECM). Surmising that nanotechnology might be useful in our central nervous system regeneration studies, we injected the material into wound sites in the brain of hamsters to determine whether it would facilitate neural regeneration [21]. To our surprise, it also stopped bleeding.

We then wanted to know if the rapid hemostasis that we had observed in our nerve regeneration experiments was tissue specific or would also work in other tissues. The seven experiments we designed and performed demonstrate that in less than 15 seconds complete hemostasis can be achieved after (1) a transection of a blood vessel leading to the superior sagittal sinus in both hamsters and rats, (2) a spinal cord cut, (3) a femoral artery cut, (4) a sagittal transection of the left lateral liver lobe, (5) a transverse transection of the left lateral liver lobe including a cut in a primary branch of the portal vein, (6) a 4-mm liver punch biopsy, and (7) multiple 4-mm skin punch biopsies on nude mice.

Materials and methods

Adult Syrian hamsters were anesthetized with an intraperitoneal injection of sodium pentobarbital (50 mg/kg), and adult rats were anesthetized with an intraperitoneal injection of ketamine (50 mg/kg). The experimental procedures adhered strictly to the protocol approved by the Department of Health and endorsed by the Committee on the Use of Laboratory Animals for Teaching and Research of the University of Hong Kong and the Massachusetts Institute of Technology Committee on Animal Care.

Cortical vessel cut experiment

The animals were fitted in a head holder. The left lateral part of the cortex was exposed, and each animal received a transection of a blood vessel leading to the superior sagittal sinus (Figure 1, A). With the aid of a sterile glass micropipette, 20 μL of 1% NHS-1 solution (see below under “Preparation of the self-assembling solutions”) was applied to the site of injury or iced saline in the control cases. The animals were allowed to survive for as long as 6 months.

Spinal cord injury experiment

Under an operating microscope, the second thoracic spinal cord segment (T2) was identified before performing a...
Rats were placed on their backs, and the hind limb was extended to expose the medial aspect of the thigh (Figure 1, B). The skin was removed, and the overlying muscles were cut to expose the femoral artery and sciatic nerve. The femoral artery was cut to produce a high-pressure bleeder (Figure 2, F). With a 27-gauge needle, 200 µL of 1% NHS-1 solution was applied over the site of injury. In two cases we applied the dry powder of NHS-1 to the injury site, which also was effective. (Data are not shown and were not included in the analysis.) Controls were treated with a saline treatment. The animals were allowed to survive for as long as 8 weeks as part of another experiment.

Liver wound experiments

Rats were anesthetized and placed on their back, and the abdomen was opened exposing the liver (Figure 1, C). The left lobe of the liver was cut using a scalp knife in the rostral-caudal direction, separating the two halves of the lobe (Figure 3, B) in the sagittal cut. With a 27-gauge needle, 100 µL of 1% or 2% NHS-1, NHS-2, or TM-3 solution was applied to the site of injury (Figure 3, B).

Livers of the controls were treated with saline or cauterized. Cauterization was performed using a thermal cautery device and was applied to the entire surface of the injury. In another group of 28 adult rats the same procedure was followed for the liver, which was cut transversely (Figure 3, D). With a 27-gauge needle, 400 µL of 1%, 2%, 3%, or 4% NHS-1 or TM-3 solution was applied to the site of injury (Figure 3, H).

In another group of anesthetized adult rats the liver was exposed, and a 4-mm punch biopsy done from the ventral aspect through the liver to the dorsal surface of the left liver lobe. The resulting core was removed from the liver, after which one of three treatments was applied. For the treatment group 200 µL of 3% NHS-1 solution was applied to the site of injury, whereas in the controls either saline was applied or cauterization of the exposed liver surface was carried out. The superficial material was then wiped clear of the injury site. The abdominal incision was closed, and the animals were allowed to survive for as long as 8 weeks.

Skin punch experiment

In anesthetized adult nude mice using aseptic precautions, a 4-mm punch was used to create three wounds on each side of the back of the animal. On one side of the animal the wounds were created with 1% NHS-1 solution, and the wounds on the opposite side were left untreated to provide a control. The punch biopsies were made through the full thickness of the skin. If the wound did not bleed for 10 seconds the punch would be excluded from the data analyzed. All procedures were videotaped, and the analysis consisted of reviewing the tapes. The animals were allowed to survive for as long as 2 months. If animals involved in any of the above experiments appeared to experience any discomfort they were euthanized.
Transmission electron microscopy sample preparation

In the brain and liver of anesthetized adult rats, a 1% or 2% NHS-1 solution was injected immediately after making a cut, and the treatment site was sampled. Samples were fixed in a mixture of 2% paraformaldehyde and 2.5% glutaraldehyde in 0.1 M phosphate buffer (PB) for 4 hours. The samples were washed in 0.1 M PB three times for 10 minutes each at 4°C and embedded in 2% agar; blocks were postfixed in 4°C 1% osmium tetroxide for 2 hours and then washed in buffer three times for 10 minutes each at 192°C. The sample blocks were dehydrated in ethanol, infiltrated, and embedded in pure epon with Lynx EM tissue processor. Ultrathin 70-nm sections were cut (Reichert-Jung ultra cut) and collected on no. 200 mesh grids. Sections and grids were stained with uranyl acetate and lead citrate and examined under a Philip EM208S transmission electron microscope.

Preparation of the self-assembling solutions

The NHS-1 solution was prepared using RADA16-I 200 synthetic dry powder (obtained from the Massachusetts Institute of Technology Center for Cancer Research 202 Biopolymers Laboratory, Cambridge, MA; the Zhang 203 laboratory, and 3-DMatrix, Cambridge, MA) dissolved in 204 an Eppendorf tube. The 1% NHS-1 solution was prepared by dissolving 10 mg of RADA16-I powder in 1 mL of 206 autoclaved Milli-Q water (Millipore Corp., Billerica, MA), sonicated for as long as 5 minutes, and filtered. This was repeated with 20 mg/mL, 30 mg/mL, and 40 mg/mL to 209 produce 2%, 3%, and 4% concentrations. NHS-2 and TM-3 210 dry powders (made by the Massachusetts Institute of Technology Center for Cancer Research Biopolymers Laboratory, Cambridge, MA) were prepared using the same method. The time of preparation did not affect the action of 214 the solution. We also tested some material that was prepared 215

Fig 3. Rat liver hemostasis. This series of pictures is of an adult rat wherein the skin covering the intraperitoneal cavity was excised, exposing the liver. A-D, Sagittal cut. A, The left lateral lobe received a sagittal cut completely transecting a portion of the liver lobe. B, The liver is separated (arrow). Note the profuse bleeding. C, The two halves are allowed to come back together, and the bleeding continues (arrow). D, The 1% NHS-1 solution was applied, and the extent of the incision was visible under the transparent assembled NHS-1 (arrow). Complete hemostasis was achieved in 8.6 ± 1.7 seconds, statistically significant when compared to 90.0 ± 5.0 seconds when cauterization was applied, or 301.6 ± 33.2 seconds if irrigated with saline. E-J, Transverse cut. This series of pictures is of a reverse cut to the left lateral lobe in an adult rat. E, The exposed intact liver. F, Applying a transverse cut in the lobe (arrow). G, Profuse bleeding produced when a major branch of the portal vein is cut (arrows). H, Treatment with self-assembling NHS-1. Note the complete cessation of bleeding (in 10.3 ± 0.5 seconds using 2% concentration; 10.0 ± 1.0 seconds and 11.0 ± 1.0 using 3% and 4%, respectively) seen under the clear assembled NHS-1 (arrow). I, 2 minutes after treatment and after the superficial self-assembling NHS-1 has been removed (arrows) to show the extent of cut. J, Bleeding had ceased 15 minutes after NHS-1 treatment. Scale bars represent 1 mm.
Results

220 Hemostasis in a brain injury

221 We began our experiments in the brain, removing the 222overlying skull and performing a complete transection of a 223branch of the superior sagittal sinus in the brain of rats (n = 22415) and hamsters (n = 15) (Figure 1, A). The areas were 225treated with 20 μL of a 1% solution of RADA16-I (NHS-1) 226self-assembling solution or with iced saline. In the groups 216(taken from the Zhang laboratory) and stored in solution 217at room temperature, for 3 years before use, and it 218performed as well as the newly mixed material.

222

Hemostasis in a spinal cord injury

223 Because blood has been shown to be toxic in neural tissue 224[24] we wanted to know if the spinal environment was 225different from the brain. By quickly bringing bleeding under 226control secondary damage caused by surgery can be reduced. 227After laminectomy and removal of the dura, the spinal cord was hemisected at T2, from the dorsal to ventral aspect, and treated (n = 5) with 20 μL of 1% NHS-1. Hemostasis was achieved in just over 10 seconds. In the saline controls bleeding continued for as long as 5 minutes. 228

229

Comparison of the treated group and the saline controls 230showed highly significant differences (P < .0001).

231

Subsequent treatment with NHS-1 is shown in 232Supplemental Video 2 (“Saline control and treatment with 2331% NHS-1. Hemostasis and treated” (“Saline control and treatment with 234self-assembling peptide in rat cortex.”) Student’s t-test for 235two independent samples in both hamsters and rats showed 236highly significant differences (P < .0001).
Hemostasis in a high-pressure femoral artery wound

The femoral artery of 14 adult rats was surgically exposed, transacted, and then treated with 200 μL of a 1% solution of NHS-1 or iced saline and packing (Figure 2, E-H). In the treated rats (n = 10) about 10 seconds elapsed before hemostasis occurred (Figure 4, A). The controls (n = 4) continued to bleed for more than 6 minutes. The difference in times to achieve complete hemostasis was highly significant (Student’s t-test P < .0001).

Hemostasis in highly vascularized liver wounds

Using a group of 76 rats, we performed three different liver cuts: (1) a sagittal (rostrocaudal) cut (Figure 3, A and B) to test NHS-1 in an irregular-shaped laceration wound, (2) a transverse (lateral-medial) cut involving the transection of a major branch of the hepatic portal vein to intensify bleeding (Figure 3, E-J), and (3) 4-mm punches through the liver lobe to observe the material in uniform wounds.

In the first liver experiment we made a sagittal cut on the left lobe (n = 8); upon treatment with 100 μL of 1% NHS-1 269 solution bleeding ceased in less than 10 seconds (Figure 3, C and D) after cauterization of the wound; in the saline-treated control animals (n = 3) bleeding continued for more than 5 minutes. Comparison of the cauterized and the saline-treated controls shows a significant difference using the Tukey test with a 99% confidence interval.

In the second experiment we severed a major branch of the portal vein while making a transverse cut in the left lobe to 280 test NHS-1 in an environment with a high flow rate. Four 281 concentrations of NHS-1 were tested (n = 12) along with 282 saline-treated control animals (n = 3) bleeding continued for more than 5 minutes. Comparison of the cauterized and the saline-treated controls shows a significant difference using the Tukey test with a 99% confidence interval.

In the third experiment we severed a major branch of the portal vein while making a transverse cut in the left lobe to 280 test NHS-1 in an environment with a high flow rate. Four 281 concentrations of NHS-1 were tested (n = 12) along with 282 saline-treated control animals (n = 3) bleeding continued for more than 5 minutes. Comparison of the cauterized and the saline-treated controls shows a significant difference using the Tukey test with a 99% confidence interval.

In the first liver experiment we made a sagittal cut in the 268 left lobe (n = 8); upon treatment with 100 μL of 1% NHS-1 269 solution bleeding ceased in less than 10 seconds (Figure 3, C and D) after cauterization of the wound; in the saline-treated control animals (n = 3) bleeding continued for more than 5 minutes. Comparison of the cauterized and the saline-treated controls shows a significant difference using the Tukey test with a 99% confidence interval.

In the second experiment we severed a major branch of the portal vein while making a transverse cut in the left lobe to 280 test NHS-1 in an environment with a high flow rate. Four 281 concentrations of NHS-1 were tested (n = 12) along with 282 saline-treated control animals (n = 3) bleeding continued for more than 5 minutes. Comparison of the cauterized and the saline-treated controls shows a significant difference using the Tukey test with a 99% confidence interval.

In the third experiment we severed a major branch of the portal vein while making a transverse cut in the left lobe to 280 test NHS-1 in an environment with a high flow rate. Four 281 concentrations of NHS-1 were tested (n = 12) along with 282 saline-treated control animals (n = 3) bleeding continued for more than 5 minutes. Comparison of the cauterized and the saline-treated controls shows a significant difference using the Tukey test with a 99% confidence interval.
We duplicated the test successfully with 400 μL of both 3% NHS-1 and 2% NHS-1 solution; bleeding ceased in 10 and 28910.3 seconds, respectively (Figure 4, D). When 400 μL of NHS-1 was applied, bleeding continued for more than 29160 seconds (Figure 4, D). The controls, however, bled for more than 6 minutes. The dose response shows that treatment was successful with 3% and 4% NHS-1 are nearly the same as with 294the 2% concentration. Furthermore, in the 2%, 3%, and 4% concentration treatment cases complete hemostasis was 296maintained after removing the excess assembled NHS-1 297material (Figure 3, I and J). We found that the higher blood 298pressure/flow rate transverse liver cut required a concentra- 299tion of 2% NHS-1 or higher to bring about complete 300hemostasis in less than 15 seconds. A significant difference 301was found between the NHS-1–treated and control groups 302using analysis of variance (ANOVA). When each treatment 303was compared to the control group those differences 304were also significant; a Tukey test showed a 99% confidence 305interval. There was no significant difference when the 306various NHS-1 concentrations were compared, except for 307the 1% NHS-1 solution treatment group.

In the third experiment using adult rats (n = 45) we 308punched 4-mm holes through the left lateral lobe and then 309treated the area with 3% NHS-1, saline, or heat cautery to 310bring about hemostasis (Figure 4, B). In the experimental 311group (n = 15) we applied a solution of 3% NHS-1 after 312injury and hemostasis was achieved in about 10 seconds, 313whereas the saline controls (n = 15) required 3.5 minutes to 314stop bleeding. In the heat cautery control group (n = 15) 315cessation of bleeding took more than 60 seconds, inclusive of 316applying heat to cauterize the inside surface of the punch. We 317allowed the NHS-1–treated animals to survive for as long as 318months with no detrimental effect on the tissues. Using 319ANOVA there was a significant difference between the 3% 320NHS-1 treatment and the controls (P < .0001). In addition, 322the Tukey test showed that each group was significantly 323different from the other with a 99% confidence interval.

Hemostasis in skin punch biopsies

Six 4-mm punch biopsies were made on the backs of each 325of 23 anesthetized adult nude mice for a total of 138 punches. 327Three punches were treated with 1% NHS-1 solution and the 328other three were left untreated, except for dabbing with cotton 329every 15 seconds until bleeding stopped. Punches wounded 330that bled for less than 10 seconds were excluded from the 331experiment. We applied a solution of 1% NHS-1 10 seconds 332after injury (n = 23), and hemostasis took less than 33310 seconds; the controls (n = 23) continued to bleed for more 33460 seconds (Figure 4, C). The bleeding times were averaged for each of the side of the animal, and the Student’s t-test 336for paired samples showed a significant difference between 337the treatment and control side of the animal (P < .0001).

Comparison of three different materials

To learn more about the hemostatic properties and mechanism of action of NHS-1 (RADA-16), we repeated both the sagittal and transverse liver experiments, comparing them with two additional materials that are known to self-assemble and spontaneously form nanofibers: (1) RADA-12 343(NHS-2), a sequence variation of NHS-1, and (2) EAK-16 (TM-3), a different sequence in the same family of self-345assembling peptides used to determine if the material’s length and stiffness altered its hemostatic effectiveness in 347bleeding models [25-31].

Making a sagittal liver cut in adult rats (n = 9) we applied 348100 μL of 2% NHS-2 solution to the wound, and 350bleeding stopped in less than 10 seconds. In the cautery 351controls (n = 3) bleeding continued for more than 35290 seconds (P < .0001). Upon repetition of the experiment 353in adult rats (n = 8) using 100 μL of 2% TM-3, the material 354assembled but did not achieve hemostasis; the animals 355continued to bleed until the experiment was terminated after 356more than 3 minutes.

The increased blood flow from the portal vein after 357making a transverse liver cut allowed us to perform another 359dose response experiment in which we compared various 360concentrations of NHS-1 (1% to 4%) and TM-3 (1% to 3%) 361with controls (Figure 4, D). All concentrations of NHS-1 362were effective; however, the higher blood pressure and flow 363rate after the transverse liver cut required a concentration of 3642% or higher of NHS-1 to stop bleeding in less than 36515 seconds.

TM-3 is a stiffer gel; 1% TM-3 is similar in stiffness to 3663% NHS-1. We tried three different concentration levels 368(1%, 2%, and 3%) and found that TM-3 was not effective at 369any concentration; the assembled material fractured and the 370TM-3–treated animals continued to bleed regardless of the 371concentration used. There was actually no significant 372difference between TM-3 and the controls (Figure 4, D) in 373achieving hemostasis.

Interface of NHS-1 and tissues

Still looking for mechanism clues as well as further 375understanding of the relationship of the NHS-1 blood/tissue interface in both the brain and liver, we also examined the 377treated tissues using transmission electron microscopy 379(TEM), interested in learning how the red blood cells (RBCs), 380platelets, tissue, and the ECM interact with the material. 381

We applied 1% NHS-1 to a liver wound and immediately 382harvested the tissue. In the electron micrograph the hepato- 383cyte and RBC looks to be intact with the assembled NHS-1 at 384the interface (Figure 5, A). When applied shortly after injury, 385the material appeared to stop the movement of blood from the 386vessels without detrimental effects to the liver’s RBCs; there was no evidence of lysing (Figure 5, B). Furthermore, there was no evidence of platelet aggregation [32] at the 389blood/NHS-1 interface (Figure 5, C) when samples were taken at various time points after treatment.

In the brain we found a very tight interaction between 392NHS-1 and the neural tissue (Figure 5, D). We observed no RBCs and no evidence of platelet aggregation in the 394assembled NHS-1. The RBCs that were present appeared 395
Our study demonstrates that hemostasis can be achieved in less than 15 seconds in multiple tissues as well as a variety of different wounds. This is the first time that nanotechnology has been used to stop bleeding in a surgical setting for animal models and seems to demonstrate a new class of hemostatic agent that does not rely on heat, pressure, platelet activation, adhesion, or desiccation to stop bleeding. NHS-1 and NHS-2 are synthetic, biodegradable [10,19] and do not contain any blood products, collagens, or biological contaminants that may be present in human- or animal-derived hemostatic agents such as fibrin glue [1,8,10,14,20]. They can be applied directly onto, or into, a wound without the concern that the material may expand, thus reducing the risk of secondary tissue damage as well as the problems caused by constricted blood flow. In our previous brain studies [21] we looked for evidence of the production of prion-like substances or fibril tangles in animals that had the material implanted in their brain for as long as 6 months but found none. Furthermore, the breakdown products of NHS-1 are amino acids, which can be used by the body as tissue building blocks for the repair of the injury [21]. Independent third-party testing of the material found no pyrogenicity, which has been found with some other hemostatic agents, and no systemic coagulation or other safety issues in animals [33].

The exact mechanism for the hemostasis reported here is not fully understood, but we have uncovered several clues. First, we know that the hemostasis is not explainable by clotting. Blood clots are produced after injury, but do not begin to form until 1 to 2 minutes have elapsed, depending upon the status and coagulation history of the patient [6,12,34].

Second, the electron micrographs show no evidence of platelet aggregation at the interface of the material and wound site. That arginine inhibits platelet aggregation suggests that the arginine in NHS-1 plays a role in this effect [4,35-37]; this seems to be consistent with our data. The NHS-1 and NHS-2 solutions appear to self-assemble into a barrier, stemming the flow of blood and facilitating the movement of adjacent cells to repair the injured site [21].

Third, in our experiments the NHS-1 and NHS-2 solutions easily filled in and conformed to the irregular shapes of the wounds before assembling, as shown in the electron micrographs. We believe this tight contact is crucial to the hemostatic action because of the size of the self-assembling peptide units. The micrographs also showed that the material does not cause the RBCs to lyse, apparently protecting them from normal degradation when exposed to the air.

Fourth, we do not believe that the hemostasis can be explained by gelation kinetics. One would think that a stiffer gel would be more effective for higher pressure bleeders; however, we found the opposite to be true. TM-3, which is from the same family of peptides as NHS-1 and NHS-2, and is the stiffest of the three self-assembling peptides tested, did not arrest bleeding; it fractured at the tissue interface and within the resultant gel. We surmise that TM-3 may have fractured because of (1) the pulsations of the liver and (2) the inability of the material to flex with the tissue as blood pumped through the organ. This is similar to the fracturing of an artery when grown in a laminar flow environment and then transplanted to a pulsed environment. The cells line up 460 along the direction of flow, unlike the natural helical coil [38-41] seen in a pulsed environment, which allows for gel expansion and contraction, without splitting, as blood moves through the artery. Conversely, NHS-1 and NHS-2 were able to flex with the tissue.

Finally, NHS-2, the most pliable of the three materials, seemed to perform identically to NHS-1, probably as a result of their similar structure and modulus.

With this discovery the ability to speedily achieve 469 hemostasis will reduce radically the quantity of blood needed 470 during surgery of the future. As much as 50% of surgical time 471 can be spent packing wounds to reduce or control bleeding. The NHS solutions may represent a step change in 473 technology and could revolutionize bleeding control during 474 surgery and trauma; however, they still require clinical testing 475 before they can be used in humans.

Acknowledgments

The authors wish especially to thank both Dr. Ed Tehovnik (Brain and Cognitive Sciences Department, Massachusetts Institute of Technology, Cambridge) and Dr. Chi-Sang Poon (Health Sciences and Technology Department, Massachusetts Institute of Technology, Cambridge) for their valuable editing assistance. Thanks also to W.W. for assistance in performing the surgery.

References

