<table>
<thead>
<tr>
<th>Title</th>
<th>Suppression of nickel out-diffusion from porous nickel-titanium shape memory alloy by plasma immersion ion implantation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Ho, JPY; Wu, SL; Poon, RWY; Liu, XY; Chung, CY; Chu, PK; Yeung, KWK; Lu, WW; Cheung, KMC</td>
</tr>
<tr>
<td>Issued Date</td>
<td>2005</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/54170</td>
</tr>
<tr>
<td>Rights</td>
<td>This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.; ©2005 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.; IEEE Conference Record - Abstracts. Copyright © IEEE.</td>
</tr>
</tbody>
</table>
SUPPRESSION OF NICKEL OUT-DIFFUSION FROM POROUS NICKEL-TITANIUM SHAPE MEMORY ALLOY BY PLASMA IMMERSION ION IMPLANTATION

Department of Physics & Materials Science
City University of Hong Kong
Tat Chee Avenue, Kowloon, Hong Kong

Kelvin W. K. Yeung, William W. Lu, Kenneth M. C. Cheung
Department of Orthopaedics and Traumatology
The University of Hong Kong
Pokfulam, Hong Kong

Porous Nickel Titanium is a promising material for medical application not only because of its super elasticity and shape memory effect but also the porous structure which may enhance bone growth due to the increased surface area. It is thus especially suitable for bone tissue in-growth and fixation of biomedical implants. However, like its dense counterpart, Ni leaching from the materials causes health concern. Thus, in order to suppress Ni diffusion from the materials to body fluids and tissues in humans, a diffusion barrier or similar structure must be introduced. In this work, we produced this diffusion barrier layer by oxygen or nitrogen plasma immersion ion implantation (PIII). In vitro tests were conducted by immersing the plasma-treated NiTi into simulated body fluid (SBF) at 37 ± 0.5°C for 5 weeks and the resulting SBF was analyzed for Ni and Ti using inductively-coupled plasma mass spectrometry (ICMPS). Our results show that Ni leaching is significantly mitigated by both nitrogen and oxygen PIII.

* Corresponding author: paul.chu@cityu.edu.hk

** Work supported by Hong Kong Research Grants Council (RGC) Central Allocation Scheme CityU 1/04C.

MICROWAVE PLASMA TORCH ABATEMENT OF NF₃ AND SF₆

Yong C. Hong and Han S. Uhm
Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea

Byung J. Chun
LWSmartech Co., Ltd., Kyonggido Small Business Center, Suwon 443-766, Korea

Sun K. Lee and Sang K. Hwang
M.A.T. Co., Ltd., 50-2 Mangjung-Ri, Gungdo-Eup, Ansung 436-823, Korea

Fluorinated compounds (FCs) are essential to the semiconductor manufacturing process for plasma chamber cleaning and plasma etching. Because FCs have extremely long atmospheric lifetimes and are strong infrared absorbers, efforts have been undertaken to identify methods to reduce atmospheric emissions. Many methods for FC abatement have been suggested, such as wet and burning scrubber, and low-pressure plasma device. In this work, an atmospheric pressure microwave plasma torch as a new method for PFC abatement was presented. Detailed experiments were conducted on abatement of NF₃ and SF₆ in terms of destruction and removal efficiency (DRE) using Fourier Transform Infrared (FTIR).

Swirl gas, compressed air, for stable plasma was injected with main mixture of N₂, NF₃ or SF₆, and C₂H₄ as an additive gas into the microwave plasma torch. Destruction and removal efficiencies of up to 99.1% for NF₃ were achieved without an additive gas by applying microwave powers from 0.8 to 1.2 kW. Also, DRE determined from FTIR data for SF₆ was obtained 90.1% using applied microwave power of 1.4 kW. Experimental results indicate that the microwave plasma abatement device for PFC destruction can successfully eliminate FCs in the semiconductor industry.