<table>
<thead>
<tr>
<th>Title</th>
<th>The clinical genetics of multiple endocrine neoplasia type 1 in Chinese</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Rong, R; Tso, AWK; Lo, CY; Tan, KCB; Tiu, SC; Wat, NMS; Xu, JY; Teh, BT; Lam, KSL</td>
</tr>
<tr>
<td>Citation</td>
<td>The 8th Medical Research Conference (MRC 2003), The University of Hong Kong, Queen Mary Hospital, Hong Kong, 25-26 January 2003. In Hong Kong Medical Journal, 2003, v. 9 n. 1 suppl. 1, p. 33, abstract no. EM-06</td>
</tr>
<tr>
<td>Issued Date</td>
<td>2003</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/54148</td>
</tr>
<tr>
<td>Rights</td>
<td>Hong Kong Medical Journal. Copyright © Hong Kong Medical Association.; This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.</td>
</tr>
</tbody>
</table>
EM-05 The effect of dietary caloric density on neuropeptide response in mice

AWK Tso1, G Segal-Lieberman2, E Kokkotou2, N Tritos2, E Maratos-Flier2
Department of Medicine, Queen Mary Hospital, Hong Kong1; Obesity Section, Joslin Diabetes Center and Harvard Medical School, Boston, Massachusetts 02215, U.S.A.2

Introduction: Hypothalamic neuropeptides, such as pro-opiomelanocortin (POMC), an anorectic peptide and neuropeptide Y (NPY), an orexigenic peptide, play key roles in the regulation of energy balance. The regulation of their expressions may be important in determining susceptibility to diet-induced obesity.

Methods: Three strains of mice (C57BL/6J, 129/Sv and A/J) known to have different susceptibilities to diet-induced obesity were used. They were fed a 23.6% fat, w/w, high fat diet (HF) or a 4.3% low fat control diet for two days. In the second experiment, four groups of each strain of mice were placed on diets with different fat contents and caloric densities for a period of six weeks. In both experiments, neuropeptide mRNA expression was measured using real-time quantitative reverse transcription polymerase chain reaction (RT-PCR).

Results: The weight gain of the mice over 6 weeks correlated with the caloric density rather than the fat content of the diets. A differential weight gain was observed between strains with C57BL/6J having the lowest threshold in developing obesity, suggesting an influence of susceptibility genes. On acute exposure to a high caloric density diet, C57BL/6J had a paradoxical rise in hypothalamic NPY expression (p<0.01) despite a trend to higher caloric intake. After six weeks on diets with increasing caloric density, both C57BL/6J and 129/Sv developed significant suppression in POMC expression compared to those on control diets (p<0.05) despite the presence of hyperleptinaemia. In contrast, the least obesity-prone A/J mice mounted a rise in POMC expression on acute exposure to a high caloric density diet (p<0.05) and maintained POMC expression even after prolonged exposure.

Conclusions: It is proposed that an acute rise in POMC expression in response to a high fat challenge may be a predictor of low susceptibility to adiposity. The dysregulation of POMC neurons in response to high caloric intake may be important in mediating diet-induced obesity.

Acknowledgement: This work is supported by NIH grant (NIH 1RO1DK56113-01)

EM-06 The clinical genetics of multiple endocrine neoplasia type 1 in Chinese

R. Rong1, A.W.K. Tso1, C.Y. Lo1, K.C.B. Tan1, S.C. Tsu1, N.M.S. Wat1, J.Y. Xu1, B.T. Teh4 and K.S.L. Lam1
1Department of Medicine, 2Department of Surgery, University of Hong Kong; 3Department of Medicine, Queen Elizabeth Hospital, Hong Kong; 4Laboratory of Cancer Genetics, Van Andel Research Institute, Grand Rapids, USA.

Introduction: Multiple endocrine neoplasia type 1 (MEN 1) is characterized by a triad of neoplasia affecting the parathyroid glands, enteropancreatic endocrine tissue and the anterior pituitary gland.

Methods: In order to define the prevalence of MEN 1 germ-line mutations in Southern Chinese patients with MEN 1 syndrome, we performed direct sequencing of the entire open reading frame of the MEN1 gene for twelve index patients and their first degree relatives.

Results: Six patients had familial MEN 1 syndrome and six had sporadic disease. Nine different germ-line mutations at the MEN1 gene were identified, including three novel mutations (248-249delTT in exon 2, K559X (AAG→TAG) in exon 10 and IVS 2nt+2(G→T) in intron 2). All patients with familial MEN 1 syndrome were heterozygous carriers of a germ-line mutation and MEN 1-related disorders were only evident in their first-degree relatives who also carried the mutation. All patients with enteropancreatic lesion were mutation carriers and the absence of mutation in three apparently sporadic MEN 1 patients with only hyperparathyroidism and pituitary microadenoma might represent the presence of MEN1 phenocopy.

Conclusions: The finding of MEN1 germ-line mutation in all patients with familial MEN 1 syndrome suggests that genetic screening should be useful in our population to identify affected individuals within a kindred and allow early detection of MEN1-related tumours.

Acknowledgement: This work is supported by CRGC Grant, University of Hong Kong