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Abstract— The paper presents a set of systematic matrices
operation derived from Kirchhoff’s Node Law with the base
of a simple two-coil inductor model to deduce leakage
inductances of windings seen from the schematic point of
view. This method provides a platform in calculating leakage
inductances of complex transformer structures. Its robustness
covers different kinds of concentric winding structures where
by getting accurate values of mutual inductances between all
combinations of winding elements in a pair-wise sense,
accurate leakage inductances can be deduced through the
matrices operation without any computational simulations. In
essence, such operation reduces lots of difficult magnetic
problems within a transformer into determination of mutual
and self inductances of winding elements through a simple
two-coil inductor model. The approach has been
implemented on PowerESIM [5][6], a web base server type
power converter design program, for reader to test.

L INTRODUCTION

Nowadays transformer construction in power supply is
getting more complex, especially in Switch-Mode Power
Supplies where different kinds of requirements are needed to
be tackled. The calculation of inductance has always been a
troublesome topic when engineers deal with transformer with
complex construction. Mutual inductances and more
importantly, leakage inductances in an interleaved
multi-winding transformer are often difficult to model as
there are many limitations in existing methods that hamper
the flexibility of calculations to provide accurate results. In
[1] the authors proposed a lump element equivalent circuit to
model multi-winding transformers. The results showed good
match with actual values. However the equivalent circuit
complexity is simply getting enormous as the number of
windings increases, where many measurements are required
and parasitic components of equivalent circuit are needed to
be deduced. Refer to [2], Heinemann proposed another way
of analyzing a multi-winding transformer model with an
impedance network. Similar situation arises where the
network builds up rapidly that this is unfavorable to any
kinds of simulation software.

In power supplies industries, long design period in
optimizing a transformer usually happens, as the leakage
inductance is often mistreat by engineers. However, this is

usually one of the most important factors in circuit
performance, such as

conversion efficiency and electromagnetic interference
(EMI). In order to understand better the characteristics of
transformer with different kinds of winding construction, a
simple robust method in a systematic way with accurate
estimation of leakage inductance is essential. Here we
propose a method with the general characteristic of a
transformer fully determined by a closed-form matrix
without any simulations. Experimental results are provided to
justify the accuracy of such matrices operations.

II. FUNDAMENTAL TRANSFORMER MODEL IN
FREQUENCY DOMAIN

A. Definition of a Winding Element in a transformer

A primary or secondary winding shown in the schematic
level may consist of several winding portions in a physical
transformer. An example is shown in Fig. 1 to demonstrate
one practical case. Here we have a four-layer multi-winded
transformer. Winding WA consists of two winding elements
(W; & W) connected in parallel, winding J7'C consists of two
winding elements (//, & W,) connected in series and winding
WB consists of Vs only. A winding element (W) is defined
here as a continuous winding portion on a layer in a
transformer. Winding element is employed as the base of a
two-coil concentric inductor model described below.
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Fig. 1: A Four-Layer Multi-Winded Transformer
with its schematic diagram



B.  Two-coil Concentric Inductor Model

In a complex transformer construction with many interleaved
windings in a concentric construction, we can always find a
mutual inductance between any pair of windings. For
example, there is a mutual inductance between I; & W, we
denote this as A/;,. Also note that M, is the same as M.
Thus in our example we can calculate 10 mutual inductances
(i.e. 5C,, 5 winding elements = 10 combinations) and deduce
in total 20 values of mutual inductances M, (x =1 ... 5,y = 1
.. 5, x#y). Moreover we can easily find the self inductances
of winding elements W; W, W; W, and Ws from standard
formula, we denote thisas L., z=1 ... 5).

It is known that the mutual inductance of two solenoidal
windings winded concentrically essentially comes from the
sum of a four-integrals formula, two positive and two
negative, which are functions of the four distances measured
between the ends of one coil and the ends of the other. As this
absolute formula involves elliptic integrals of all three kinds,
which is tedious and complicated to find, there exists a
simplified way from which a look up table is used instead
provided by Grover [3]. At high switching frequencies, the
mutual inductance between two winding elements requires a
modification factor as the so-called Skin Effect and Proximity
Effect take over the uniformity of the current density in a wire,
changing the effective inductance of the windings. High
frequency effects on self and mutual inductance will not be
considered in this paper for simplicity. Values A, and L., are
of great importance as in later sections, it shows that these
values formed the core matrix for the whole operation in
order to deduce the leakage inductances of a complicated
winding structure.

C. Winding Element Matrix Model

In our example shown in Fig.1, when a voltage v, is applied
to a winding element in the transformer, there is a current i,
associated with it, where the relationship in frequency
domain after Laplace Transform (where s = jw) is given by
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Where 7 is the number of winding elements

Thus we have a matrix to describe all voltage and current
relationship for all winding elements in the form
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D.  Series and Parallel Reduction Techniques

Series and Parallel Reduction Techniques originate from
Kirchhoff’s Node Law. They are employed here to reduce the
number of variables in order to simply the problem in finding
leakage inductances. Two techniques are in fact independent
of cach other, therefore it doesn’t matter which to operate
first. As we can sce from our example, W; & W, are
connected in parallel and 7, & W, are connected in series,
reduction of variables in equation (2) is certainly possible.
Let’s start with the basic Series Reduction Technique from
which we add the two voltages of the two winding elements
in series and set their currents common

VC=V2+V4 (3)
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In our example, W, & W, are connected series which is equal
to WC. Therefore two equations can describe the series
reduction operation

Y1
1000 0Y|y,
Yo 01010 (&)
= .V3
vs 00100
v
00001 4
vs
|—|LV5J
Matrix A
("1\ .
_ 1000)(i
2 0100
z3=0010-l_3 (6)
iy 0100
0001/\S
5]
Matrix B

Matrices A and B are trivial to find. By taking equation (5)
and (6), equation (2) is now reduced to

Lyp Myp Myz Mpy Mys )
10000 (

Myy Loy Mpz Mpy Mps
01010

) =S-00100-M31M32L33M34M35-0
3 0
0

00001, Mar Mgz Myz Lyy Mys

o = O = O

o o — o o
- o o o
| —
jp—
[SREh
Ne—

Msy Msy Msz Msy Lss

Reduced to a 4x4 Square Matrix F

Moreover, Matrix B is actually the Transpose of Matrix 4 (i.c.

B = A", which simplify the operation to

v = s~A~L~AT~i 3
or simply

v=sFi 9)



where

F=AL AT (10)

Now we can see that the Parallel Reduction is similar to
Series Reduction where we add the two currents of the two
winding elements in parallel and set their voltages common.
The two transformation matrices deduced here are also in
Transpose form. Refer to our example again, we have W; &
W5 in parallel, thus we have
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By taking the inverse of Matrix F we can then use equations
(13) and (14) to reduce equation (9) to
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Thus Matrix G completely describes the inductive

relationship of the transformer. Self inductances of WA, WB
and JW'C can be easily deduced from Matrix G. Let Matrix H
equals the inverse of Matrix G and rearranges equation (16),
now elements H;; H,, and H;; are in fact the self inductances
of WA, WB and WC respectively. Other elements in Matrix H
correspond to the mutual inductances of the three windings
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Leakage inductance is determined by setting equivalent
voltages for windings WA, WB, and WC. For example, to find

(18)

the leakage inductance of winding WA, we apply the
traditional short circuit method, for simplicity we set the
voltage of WBand WCvg=v.,=0and v, =1

Substitute back to equation (16) to give

s G11 G2 Y13 11
o
B |=—| 921 G2 G23 )| 0

0

a9

o Gz; Gz Gss

From equation (19) the element 1/G;; is essentially the
leakage inductance of Winding W4, similarly 1/G,; and 1/G3;
are the leakage inductances of Winding WB and WC
respectively. It is equally well to start with parallel operation
first to reduce the variables involved, same result is yielded.
Furthermore, we can also deduce for example the leakage of
winding WA with only W5 in short circuit, for this case we
simply truncate information associate with #C from equation
(18) and get
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By setting v4 = 1 and vz = 0 and taking inverse of the 2 x 2
matrix formed by H;;, H,,, H,; and H,, (denote the inverse of
this as Matrix J), then the element 1//;; is essentially the
leakage inductance of Winding /74 with only W5 in short
circuit. Thus the element 14/, is the leakage inductance of
winding B with only WA in short circuit. Similarly other
combination (i.e. WA & WC, WB & W) can be implemented
in this way.

(20)

III. EXPERIMENTAL VERIFICATION

For casy understandings we will compare the calculated
values of leakage inductance from Matrix G of our example
shown in Fig.1 with the measured leakage inductance values
performed with short-circuit test using an HP 4192A
impedance analyzer. The transformer is constructed with a
NEC-Tokin FEER28L Horizontal Bobbin with a diameter of
12mm and air core. Standard AWG 25 single coated wire
with a diameter of 0.4928mm is sclected for all tests. We set
W;=W,=Ws=40 Turns, W,= 15 Turns and 5= 25 Turns,
distributed evenly around the winding area. Self inductance
values and mutual inductance values of all combination of
two winding elements are deduced from Chapter 15 and
Chapter 16 of [3] respectively. Four layers of 0.2 mil is used
to separated each layer to ensure a more rigid layer
construction. Three sets of results are provided for
verification. Table 1 shows the calculated and measured self
inductance values of windings WA, WB and WC, where
calculated values are deduced from Matrix H as described
above. Second set values are deduced from Matrix J with
only one winding in short circuit. Lastly the leakage
inductances of WA, WB and WC are calculated from Matrix
G with all other windings shorted. High frequency factor is



not taken into account when calculating Matrix L, therefore
real measurements @ 20 kHz is chosen for verification
purpose where the impedance analyzer can give us
reasonably accurate results at this region without much
deviation to DC inductance due to high frequency effects.
Results demonstrate a good match with a percentage error of
less than 15% with most results lies within 8%.

Self
Inductance Calculated

from Value Measured
Combined deduced Value @
Winding from Matrix 20kHz Error %
Elements H (Henrys) (Henrys) (Henrys) Error

WA 9.21E-06 9.41E-06 -2.04E-07 | -2.16

wB 6.70E-06 7.25E-06 -5.50E-07 | -7.59

wc 2.04E-05 2.08E-05 -3.46E-07 | -1.66

Deduced
from Matrix
J
WA (Short 4.54E-06 4.40E-06 1.34E-07 3.03
WB ONLY)
WA (Short 1.75E-06 1.70E-06 5.09E-08 2.99
WC ONLY)
WB (Short 3.30E-06 3.27E-06 2.73E-08 0.83
WA ONLY)
WB (Short 4.78E-06 4.88E-06 -1.05E-07 | -2.15
WC ONLY)
WC (Short 3.89E-06 3.62E-06 2.72E-07 7.51
WA ONLY)
WC (Short 1.46E-05 1.42E-05 3.55E-07 250
WB ONLY)
Deduced
from Matrix
G
WA (Short 1.07E-06 1.02E-06 4.18E-08 4.08
WB & WC)
WB (Short 2.91E-06 3.34E-06 -4 30E-07 | -12.8
WA & WC)
WC (Short 3.43E-06 3.47E-06 -451E-08 | -1.30
WA & WB)
Table 1

Iv. CONCLUSION

The method presented above provides a platform in
calculating complex constructed transformer structure based
on a two-winding mutual inductance model. It greatly
simplifies the calculation as we do not need to handle
complex relationships of all transformer windings in one go,
only the mutual inductances between pairs of winding
elements are necessary. One can imagine that for any
transformer that is winded concentrically, this method can be
applied equally well and make the leakage inductance
calculations trivial. Its robustness with a systematic way of
matrix operations provides a new dimension in viewing the
problem. In essence, the matrix operation reduces many
difficult calculations into one part. That is the accurate
calculations of mutual inductances for any two winding
elements and self inductances of a winding element at a
particular frequency where interested. Future works include
the development of the model of modification factors at high
frequency case with skin effect and proximity effect taken
into account. The approach has been implemented on

PowerESIM [5][6], a web base server type power converter
design program, for reader to test.
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