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ABSTRACT

Gain bandwidth optimization in a two-pump fiber optical paramet-
ric amplifier (2P-OPA) with bounded zero-dispersion wavelength
(ZDW) uncertainty is investigated. An analytical framework is de-
vised for the design of maximum-bandwidth 2P-OPAs ensuring
positive parametric gain, tunable gain spectrum quality, and ro-
bustness against ZDW fluctuations. By exploiting the polynomial
nature of the phase mismatch, the design task is formulated as a
non-convex optimization problem, which is then solved through
convex programming techniques based on linear matrix inequal-
ity (LMI) relaxations. Compared to conventional nonlinear pro-
gramming (NLP) algorithms such as genetic algorithm (GA), the
proposed methodology exhibits superior computational efficiency,
and guarantees convergence to globally optimal design parameters.

1. INTRODUCTION

Fiber optical parametric amplifiers (OPAs) constitute a class of
practical amplifiers with high gain [1], large bandwidth [2] and
polarization-independence [3], in both one-pump and two-pump
configurations. The basic one-pump OPA (1P-OPA) is simpler to
set up but its signal gain spectrum is nonuniform; this problem can
be solved by using a two-pump OPA (2P-OPA) [3]. 2P-OPA pro-
vides an extra degree of freedom compared to 1P-OPA, such that
a flattened gain spectrum can be achieved by trading with the gain
bandwidth [4]. Besides, with complementary phase-dithering, one
can obtain a narrow-linewidth idler spectrum, as well as effective
suppression of stimulated Brillouin scattering (SBS) [5]. Two-
orthogonal-pump OPA (20P-OPA) has also been shown to achieve
polarization-independent operation [3]. Mid-span spectral inver-
sion (MSSI) using 20P-OPA in a 320-km transmission link has al-
ready been demonstrated [6]. Fiber OPA relies on the phase match-
ing conditions amongst pump(s), signal and idler, which in turn
depends on the uniformity of zero-dispersion wavelength (ZDW),
denoted by Ag, along the fiber. However, the manufacturing pro-
cess of any fiber inevitably introduces variation of the core di-
ameter which causes ZDW fluctuations. Ref. [7] has investigated
the effects of ZDW fluctuations on 2P-OPAs and showed that the
amount as well as uniformity of gain reduce considerably because
of the fluctuations. Degradation of performance is particularly sig-
nificant when the fluctuations have long correlation lengths [8].
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Conventional analyses on the effects of ZDW fluctuations and
the corresponding parameter optimization rely on stochastic mod-
els for ZDW variation [7-9].The outcomes are probabilistic indi-
cators or general design guidelines regarding bandwidth and wave-
length selections etc. No guarantee can be made about robust oper-
ation of a 2P-OPA ! under all possible ZDW variations. Moreover,
generic nonlinear programming (NLP) techniques such as genetic
algorithm (GA) [9], simulated annealing etc., are marked by in-
tensive computation, high dependence on initial condition for con-
vergence, and often require deep physical insights for parameter
tuning and function setups.

In this paper, we address the robust (namely, guaranteed pos-
itive parametric gain) design of maximum-bandwidth 2P-OPAs
wherein the ZDW uncertainty is modeled as a bounded set. This
is a more realistic assumption as experiments have shown the ac-
tual Ao fluctuations to be slow-varying (having long correlation
lengths) and within a certain tolerance [10]. By exploiting the
polynomial nature of the phase mismatch, the design task is formu-
lated as a non-convex optimization problem, which is then solved
through convex programming techniques based on linear matrix
inequality (LMI) relaxations [11, 12]. The proposed methodol-
ogy exhibits superior computational efficiency, has tunable gain
spectrum quality, and guarantees convergence to globally optimal
wavelength assignments.

2. BACKGROUND AND MOTIVATION

In 2P-OPA analysis, assuming undepleted pumps, the signal (A3)
and idler (A4) evolutions are described by [9, 13]

dA . . 0 ok

o = 2Pt P)As +2j7VPiPe AL (la)
dA; . . . 0

- = =2jy(P1+ P) AL - 2j7V PP’ 45, (1b)

with 6 = AB — 3y(P1 + P»). The notations are standard: Py
and P» are respectively the pump powers at frequencies w1 and
wa, v is the nonlinear parameter, and A3 is the linear propagation
constant mismatch approximated by [7]

4
Aﬁ = (ﬁg(wc — u.}o) s %(wc — wo)z) .
Ba
12
1By robustness we mean that the designed 2P-OPA should always ex-

hibit positive parametric gain for the whole fiber section, for all possible
ZDW variations within a bounded set.
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((ws — we)® —wi) + = ((ws —we)* —wi). (2
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Fig. 1. Fiber-to-fiber variations in 2P-OPA spectra due to

ZDW fluctuations (100 spectra in the plot). Here Ao is within
1550 &+ 2nm, with correlation lengths randomly varying from
5m to 100m. The bold curve shows the spectrum with a con-
stant A\g = 1550nm. (A1=1515nm, A>=1585nm, P1=P>=0.8W,
v=11.2W Y/km, B33=0.05ps®/km, B4=-2x10 *ps*/km, fiber
length L=300m which is discretized into 300 sections for fluctuat-
ing ZDW simulations).

Here w. = (w1 + w2)/2 is the center frequency of the two pumps
and wy = (w1 — wa)/2 is half their difference. Defining the total
phase mismatch k = v(P1 + P2) + ApS, and the phase-shifted
versions of the waves, B; = A;e 27+ r2)z 4 — 3,4, (1) can
be rewritten as

dB 5 —JRZ %

d—; = 2jyW/PiPe I B; (3a)
dBZ . / Rz

dz = —2]’)/ P1P26 Bg. (3b)

Further letting C'; = Biej("/z)z, i = 3,4, it can be shown that

4181 Lodhem (5] o
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This is simply a linear dynamical system (specifically, an auto-
nomous system) with the 2-by-2 system matrix having eigenvalues

+g, where
w2
g = 4’}/2P1P2 e Z (5)

Note that C3 Cs = A5 As. Assuming a constant Ag down the fiber,
the signal amplification or power gain at z = L is

2 2
_ & k2
=14 (1 + 492) sinh”(gL).

‘ As(L)
As(0)

A sound 2P-OPA design should have a positive parametric gain,
namely, g > 0, in the useful signal bandwidth w3 € [wa,w1]. This
is apparent by examining (4). In control-theoretic parlance, for
large gain throughout the fiber section, we would like to maintain
an unstable mode (corresponding to g > 0) so that the signal is
amplified via absorption of power from pumps. A purely imagi-
nary g corresponds to an oscillatory mode in which the signal is
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Fig. 2. (a) Notational conventions. The intervals denote the de-
sign/uncertainty ranges and the bar sign means the average value;
(b) the s curve evaluated along the ws-axis.

not amplified. Effects of a varying wo(= 2m¢/ o) can be studied
by dividing the fiber into smaller sections and applying (4) itera-
tively. In this case, it is assumed that every finer section is small
enough to have a relatively constant wg.

3. GAIN BANDWIDTH OPTIMIZATION

ZDW fluctuations result in a varying wo which appears through
AB (c.f. (2)) and therefore . It may happen that the amplitude
of x is large enough to render an imaginary g. When the fluctu-
ations have long correlation lengths (in the order of 100m), this
imaginary g may occur over a substantial portion in the z- and ws-
dimension, causing detrimental effects on the gain profile [7,8,14].
In other words, a design that solely relies on the average ZDW (\o)
can be impractical. In fact, when the pump wavelengths are not
carefully assigned, even slight fluctuations in the actual ZDW can
lead to drastic changes in the gain spectra [7,8,14]. Fig. 1 depicts
such a situation with non-optimized choices of A1 and As.

In robust 2P-OPA design, an objective is to keep the paramet-
ric gain g positive, i.e.,

2

¢ =4’PP - = >0, (©)
and as large as possible, in the signal bandwidth ws € [wa,w1].
The following deals with the selection of wq and w2 to maximize
the useful bandwidth (w1 — w2) while ensuring positiveness of g
against a bounded wg uncertainty, wo € [wor, wor] (irrespective
of any correlation length or pattern). For easy reference the nota-
tional conventions are illustrated in Fig. 2(a).

It is easy to see that the design objective translates into min-
imizing the amplitude of x in w3 € [w2,w1]. Note that A is a
function of wo, w1, w2 and ws. On the signal wavelength or ws-
axis, AJ is symmetric about w. and identically zero at w1 and
wy. This gives rise to the s curve in Fig. 2(b). Differentiating &
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with respect to w3 and setting the derivative to zero, three extreme
points are readily found, namely,

We

we £ \/— (% + 3(we — wo)) (we — wo) .

W3 =

The extreme point at ws = w. is always real. In physical settings,
the other two extreme points are either imaginary conjugate pairs,
or real pairs outside the optimized range [w2, w1] (this can easily be
incorporated as a post-optimization check, if necessary). A direct
consequence is that the spectrum of £ in w3 € [w2,w1] can be
shaped by positioning the extreme point .=, . For (6) to hold,
it dictates

deyW PPy 2 v(P1 + P2) + ABlus=w, 2 —deyW PP, (7)

where we have further introduced the bound factor € € [0,1) for
tuning the quality of the desired gain spectrum. Obviously, the
smaller the ¢, the higher the overall signal gain will be in [wa, w1].
Now we turn to the dependence of s on the variation in wg. A
key observation in (2) is that AS is only a quadratic function of
wo. Similarly, by differentiating #|.,—., With respect to wo, the
extreme point is found to be wg = w. + (B3 /B4), which is also far
outside the range wq € [wor,wor] for physical parameters. There-
fore, depending on the signs of 33 and (34, the function &|wy=w, is
either monotonically increasing/decreasing on the wg-axis of inter-
est. Subsequently, assuming a monotonically increasing & |wy—cw,
in wg € [wor,wor| (modification for the opposite case is straight-
forward), the robust 2P-OPA design can be formulated as an opti-
mization problem:

marimize wi — ws (8)
subject to

deyy/PiPs 2 v(P1 + Po) + AB (w1, w2)|wo=wor ws=we »
V(P14 P2) + AB(w1, w2 )|wo=wop ws=w, = —deyV P12,
Wi 2> W1 2> WiL,

WaU 2> W2 2 WaL.

This optimization problem is generally non-convex and normally
requires NLP techniques. Fortunately, the multivariate polynomial
nature of the objective and constraints in (8) allows it to be effi-
ciently and optimally solved by convex programming techniques
utilizing LMI relaxations. To this end, the solver GloptiPoly is em-
ployed [12]. Specifically, GloptiPoly solves the global optimiza-
tion problem of minimizing (maximizing) a multivariate polyno-
mial function subject to polynomial inequality, equality or inte-
ger constraints. Based on the theory of positive polynomials and
moments, the solver builds and solves LMI relaxations of the op-
timization problem, thereby generating a series of lower (upper)
bounds monotonically converging to the global optimum. The
reader is referred to Ref.s [11, 12] for details. However, it should
be stressed that the challenge falls more on the problem modeling
and formulation. Once the problem is properly set up, as in (8)
or (9) to follow, application of the solver is usually a routine job.

4. NUMERICAL EXAMPLES

Numerical consideration requires that optimization variables be
defined or scaled to (approximately) the same order of magnitude
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Fig. 3. Repeating the experiment in Fig. 1 with the optimized
pump wavelengths of A1=1528.87nm and A;=1567.42nm, the
bandwidth being 38.55nm (e set at 0.5). Again, the bold spectrum
corresponds to a constant Ag of 1550nm along the fiber.

for best accuracy. To achieve good numerical conditionings, let
wa = (w1 — @0)/2 and ws = (@0 — w2)/2. Then, (8) is trans-
formed into an equivalent problem

mazimize 2(wq + wp) ©)]

subject to

46\/@2 P1 +P2+ Aﬁ(“’av“’b)‘ug:uoU,ugzuc,

PPt Aﬁ(waywb)‘ug:uolﬂugzuc 5 _46\/m,

Wiy — Wo 2 2w, = WiL — Wo,

Wo — WaL > 2wy > Wo — Wap.

For completeness, expansion of AB(wa, wp)|wo=wn s w3 =we s Where
wox 18 either wor, or worr, verifies its polynomial nature

AB(Wa, wb)|wo=wo s wa=we =

784, ,4 Ba, 3 B, 2, .2 Ba 3 e
T Wa T FWals T Wy — FWalh — 3Wh

+(BaAwo — B3)(wh + wiws — wawf — W)
+(Bs — %Awo)Awo(wZ + 2wawy + wi), (10)

with Awg = wox — @o. Fig. 3 shows an optimized design with
the same settings in Fig. 1 except that the pump wavelengths are
now optimally chosen according to the solution of (9), with e=0.5.
It is immediately seen that the gain spectra are confined to a much
smaller variation, with a minimum gain above 35dB. This agrees
with the observations in [ 7] concerning better immunity for smaller
bandwidths, but differs in that the optimized wavelengths are now
systematically obtained and positive parametric gain is guaranteed
for all Ao € [Aor, Aowr], irrespective of its fluctuation pattern.

Table 1 shows the optimized pumps for different combinations
of ZDW fluctuation amplitude o and bound factor €. The trade-
off is obvious: the more stringent the constraints are (namely, a
smaller € for a higher quality gain spectrum, or wider [Aor, Aov]
for better robustness), the smaller the optimized bandwidth is.
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Table 1. Optimized 2P-OPA Design Examples.
|| 0.9 | e=0.7 | e=0.5 | =03
1498.99 | 1504.81 | 1511.51 | 1519.65
a=0.5 || 1602.51 | 1596.08 | 1588.63 | 1579.37
103.52 91.27 77.12 59.72
151338 | 1517.43 | 1522.03 | 1527.39
a=1.0 || 1586.53 | 1581.94 | 1576.54 | 1569.62
73.16 64.51 54.52 4223
1519.64 | 1522.86 | 1526.43 | 1530.38
a=1.5 || 157937 | 1575.53 | 157095 | 1564.87
59.72 52.67 44.51 34.49
1523.28 | 152596 | 1528.87 | 1531.83
a=2.0 || 1575.00 | 1571.57 | 1567.42 | 1561.70
5172 45.61 38.55 29.87

**In each cell:

Optimized A1 (top), A2 (middle), bandwidth (bottom)
[AOL, AOU]:P\O — o, Ao+ a], Ao=1550

[Ar, Au]=[1490,1545], [A2r, Aev]=[1555,1610]
All wavelengths are in nm.

Other physical parameters as in Fig. 1.

4.1. Remarks

1. On a 3GHz PC with 1G RAM, Gloptipoly always finds the
globally optimal solution to (9) within 10 seconds. This
is in contrast to generic NLP algorithms like GA (e.g., [9]),
simulated annealing etc., which typically take hours or days
for a solution to converge (if at all), and the solution ob-
tained is not necessarily the global optimum. Moreover,
convergence of the latter approach is highly dependent on
the quality of the initial guess, which often requires deep
physical insights. Convex optimization and its variants,
however, converge without the need of an initial condition.

2. Stochastic analyses generate metrics in a probabilistic sense
[7-9]. To the contrary, the bounded uncertainty modeling
here guarantees a positive parametric gain against all vari-
ations of A in [Aor, Aov], including the notorious case of
long correlation lengths in ZDW fluctuations [8].

3. Additional design constraints in the form of polynomial in-
equalities or equalities can readily be incorporated into the
multivariate polynomial optimization framework. This pro-
vides an easy means for further fine-tuning and/or higher
fidelity phase mismatch modeling.

5. CONCLUSION

This paper has presented a novel way of designing positive para-
metric gain 2P-OPAs with tunable gain spectrum quality and ro-
bustness against bounded ZDW uncertainty. The analysis takes
advantage of the polynomial nature of phase mismatch, and for-
mulates the bandwidth maximization problem as a non-convex,
multivariate polynomial optimization task. Convex programming
techniques based on LMI relaxations have been applied to arrive
at globally optimal wavelength assignments. Compared to general
nonlinear optimization, the proposed design framework is supe-
rior in terms of computational cost, systematic formulation, ease
of deployment and optimality of solution.
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