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ABSTRACT

New degrees of freedom can be optimized in mask shapes when the source is also adjustable, because required image
symmetries can be provided by the source rather than the collected wavefront. The optimized mask will often consist of novel
sets of shapes that are quite different in layout from the target IC patterns. This implies that the optimization algorithm should
have good global convergence properties, since the target patterns may not be a suitable starting solution. We have developed
an algorithm that can optimize mask and source without using a starting design. Examples are shown where the process window
obtained is between 2 and 6 times larger than that achieved with standard RET methods. The optimized masks require phase
shift, but no trim mask is used. Thus far we have only optimized 2D patterns over small fields (periodicities of ~1jum or less).
We also discuss mask optimization with fixed source, source optimization with fixed mask, and the re-targeting of designs in
different mask regions to provide a common exposure level.
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INTRODUCTION

An important synergy can be exploited in jointly optimizing mask and source to print a given shape. Often the resulting mask
and source patterns fall well outside the realm of known design forms. For this reason it is desirable that the optimization
algorithm provide good global performance, e.g. the algorithm should not be constrained to use a known starting design. Our
work suggests that standard OPC approaches may have difficulty converging on the mask solution that is globally optimal.

Previous work on optimization of the source alone has described general algorithms[1] and specific implementations[2-4] for
customizing illumination to print particular shapes. Enhancement techniques to customize masks (e.g. RET methods like assist
features, serifs, phase tiling, etc.) are usually applied as adjustments or modifications to the nominal circuit patterns. In formal
terms, one can say that the nominal patterns (or some simple extension of them) effectively serve as the starting solution when
masks are optimized.

In this respect RET technologies are linked to classical lithography, wherein axially illuminated mask shapes that reproduce the
target patterns are used to project a wavefront with all attendant symmetries into the lens. The wavefront section collected by
the lens (whose finite NA acts as a cutoff filter) is likewise symmetrical under axial illumination, and as a result the input

Figure 1 — Degrees of freedom in collected wavefront using different illumination directions. Reticle phases other than
0° or 180° are ruled out to prevent distortions through focus. a) Only 2 independent orders are collected under axial
illumination, since +1 and -1 orders must be complex conjugates when reticle transmittance is real-valued.
b) 3 independent orders can be collected from (sufficiently oblique) illumination directions, aiding optimization.
c) Stability through focus is restored by illuminating reticle from mirrored directions.
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. . . symmetry is transferred to the image. Wavefront symmetry constraints
Figure 2 — Capacitor pattern. Horizontal | jnclude Hermitian radial symmetry (if the reticle phase is restricted to 0° or
period is 260nm, vertical period 390nm. | 1g0° to avoid distortions through focus), as well as any bilateral symmetries
Rectangles (130nmXx247nm) are bright. that the target pattern may have.

Dashed boundary shows plot area for images

in later figures.
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These constraints substantially reduce the number of truly independent
orders that can be collected under axial illumination. Once a particular
positive order is determined, the corresponding negative order is also fixed
(to within an unimportant translational phase). From an optimization
— — L viewpoint, the quasi-symmetry of typical wavefronts implies that the
number of degrees of freedom in the lithographic image will be little larger
r r than that corresponding to one quadrant of the NA, or half the NA if the

mask shapes are highly non-symmetric (but still restricted to 0° or 180°

|| | phase). Figure 1 illustrates this idea in schematic form.

L

However, when we illuminate the mask obliquely it is not necessary to

impose a symmetry constraint on the decentered section of the wavefront
that is collected. In practice the illumination is limited to e.g. ¢ < 0.85; in
A D I T N O A I I e this case the number of truly independent diffraction orders that can be
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eeees . addressed from an oblique illuminating direction will typically be ~2X
— — — 1 1 | larger than can be addressed with axial illumination. In many cases the
availability of these extra degrees of freedom significantly enhances the
quality of the optimized solution, and we can restore the required
symmetries and focal insensitivity to the printed pattern by using a suitably
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symmetric source. The optimized diffraction pattern will therefore tend to
Figure 3 — Optimized source for Figure 2 be dominated by the way in which diffraction orders combine coherently
capacitor pattern.  A=248nm, NA=0.68 from illumination directions that are strongly non-axial, thereby forming the
(solid circle). Process window through | dominant image components of the incoherent sum.

focus is optimized. Hatched areas are | Tpe collected set of oblique orders usually has more structure after
bright. ~ Dashed circle is 0.85 & limit. | oyimization than would be present with e.g. the typical diffraction falloff
Figure 4 shows mask. from coarse mask rectangles. This means that if the optimized mask were to
be illuminated axially rather than obliquely, a completely different
interference pattern would usually be produced on the wafer (since the
centered collection of orders would combine some subset of the optimized
oblique orders and matching negative orders in an undesirable way). The
axial image is therefore unlikely to resemble the optimized wafer image
(which resembles the target pattern). It also follows that the optimized
reticle pattern, which can be thought of as comprising a very large number
of axially centered orders, will likewise tend not to resemble the optimized
image (or the target pattern).

This means that enhancement techniques which use the target patterns as a
starting solution may not provide fully optimized reticles when the source
shape can be freely adjusted. Note that most algorithms for nonlinear
optimization are essentially local minimizers, and so are strongly dependent
on the quality of the starting solution. Of course, lithographers face no
explicit requirement to begin the design process using any particular trial
layout; indeed, global algorithms are of interest as conceptual tools for

bringing forward new design forms.

Casual experimentation with a local optimization routine suggests that changing the magnitude of individual orders by ~0.3 can
move a trial solution into the vicinity of a new local minimum (in a test case where the average order intensity was set to about
1). This sensitivity reflects the oscillatory nature of the plane wave components that define the image. If we suppose that the
orders typically span a range from about —3 to +3, and that the minimum field size needed to adequately bound the tails of the
lens resolution (e.g. ~2A/NA) can be characterized by 7 collected diffraction orders (allowing non-axial illumination, but
counting only truly independent orders), then if we wish to find globally optimal values for these amplitudes via the simple
expedient of trying a large number of starting solutions, we would be required to run the optimizer from roughly 3.2x107
different starting points. Inclusion of the source variables entails a further combinatorial explosion.

This estimate is crude, but it demonstrates that even the most robust local convergence is insufficient for RET optimization. To
address this disadvantage we have devised global algorithms that can optimize mask and source to print a given shape without
using a starting design. The wavefront from any individual off-axis direction is allowed to have arbitrary decentration (above
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Figure 4 — a) Optimized mask patterns (chromeless) for Figure 2 capacitor pattern. Black represents 0° phase-shift, white
180°. Area shown corresponds to dashed region of Figure 2. b) Aerial image (screen capture from Prolith[5] simulation).
c) Superposition of mask and image. The "battery-shaped" mask features create dark horizontal separations in the image,
and are positioned in between the bright image rectangles. Pattern layouts on mask and wafer are quite different.
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and beyond that produced by the tilted illumination), and arbitrary lateral asymmetry. Focal tilt and bilateral asymmetries in the
final image are removed by using symmetric illumination distributions. Several simplifying approximations are adopted, but
many of these approximations can be avoided in the sub-problems of calculating the optimal mask for a given source, the
optimal source for a given mask, and the most efficient mask to produce a given set of collected orders (yielding fully global
solutions to these sub-problems under the formulations given below). An optimized wavefront generally requires 180° phase
shift in the mask, which can be provided by either attenuating chrome, chromeless shifters, or phase-reversed openings in
opaque chrome. No trim mask is used.

In the present paper we will describe a global optimization algorithm that uses exposure latitude as the merit function. However,

we have made considerable progress toward developing an algorithm that optimizes against full process window through focus,
and we will show results from this latter algorithm as developed thus far.

Consider, for example, the DRAM capacitor level shown in Figure 2. One critical dimension in this pattern is the width of the
printed rectangles (bright for positive resist), which in this example we take to be 130nm. Though difficult, it is desired that the
rectangles print with an aspect ratio of at least 1.9:1. At low k-factor this elongated aspect ratio poses considerable difficulty for
conventional RET methods. The DRAM cell uses a 2F X 3F layout[6], and the pitch ratio is only 1.5:1. Contrast in the dark

Figure 6 — Process window obtained with the solution
of Figures 3 and 4a. An aberration-free lens is
assumed. CD tolerances are £15nm on width, £30nm
on length. Curve is calculating from thresholded aerial
images. Horizontal axis is single-side defocus, equal

Figure 5 — Successively defocused image slices from
Figure 3,4a solution, taken through centerlines of bright
rectangles. Dashed are vertical slices, solid horizontal.
Images are normalized against peak intensity of 89%.
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Figure 7 — Solution for Figure 2
pattern in attenuating phase-shift
chrome. The area shown corresponds
to Figure 4a,b, and to dashed region of
Figure 2. Mask openings are shown
white. Chrome transmission is 6.5%,
phase-shifted 180° (black shaded).

gaps that separate the rectangle tips is poor, and the rectangles tend to print with
considerable shortening. When shortening is compensated by narrowing the
gaps, contrast degrades further. For example, at A=248nm and NA=0.68, even an
ideal thresholded aerial image model predicts that we will only be able to print
the array using an attenuated phase-shift mask (T=6.5%) and annular illumination
if we allow fairly relaxed CD tolerances, and accept poor contrast in the dark
separations between the tips of the rectangles. If we impose a requirement that
the intensity at the center of the focused rectangle be at least 3 times larger than
that midway between the tips (i.e. if we allow the feature to be biased to the point
that max-to-min contrast in a vertical slice across the tips drops as low as 3:1),
then the ED window achieves a DOF of 0.56um when tolerances of +30nm and
+15nm are applied to the length and width, respectively. The process window is
7%-um (using integrated area under the two-sided ED curve as the process
window metric[7]). If we remove all constraints on contrast, biasing can increase
theoretical process window to 16%-pum, but contrast drops to 2.3:1.
Experimentally, such low contrasts prove unusable, and printed resist images
show zero common process window for length and width using conventional
enhancement methods, unless separate exposures are used to print alternate rows
of the array[6].

Figures 3 and 4a show the
result of optimizing mask
and source to print the Figure
2 pattern (at A=248nm,
NA=0.68), wusing process
window through focus as the

Figure 9 — Approximate realization of the
Figure 3 source. a) Simplified aperture
pattern, designed to ease fabrication of
stencil illumination stop in model shop.
b) Pupil-gram (highly defocused image

Figure 8 — SEM image of chromeless
mask that implements Figure 4a
solution.

merit function. Image slices
are shown in Figure 5. A
chromeless mask technology
is used, though the same

through mask pinhole) showing the
illumination pattern actually realized in the
exposure tool. Discretization from the light
tunnel homogenizer is apparent.

Figure 3,4a solution from starting shapes that matched Figure 2; moreover,
even if such a path could be defined, a local algorithm would not follow it
unless process window increased monotonically at every point.

Figure 6 plots the ED window obtained with the optimized source and b.

underlying solution can be
realized in essentially any
mask  technology  that
provides 180° phase shift.
Note that the bright
rectangular features in the
image actually fall in
between the vaguely brick-
like openings in the reticle,
i.e. the direct resemblance of
these reticle shapes to the

image patterns 18
coincidental.  Indeed, the
reticle shapes in Figure 4 that a.

are optimized for off-axis
illumination have a distinctly
different "topology" from the
image shapes, i.e. their basic
layout has a different internal
connectedness. It would
have been quite difficult for a
conventional optimizer to
have devised a path of
smooth and continuous
adjustments that reached the
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. . . o reticle, using the same +30nm and +15nm tolerances on length and
Figure 10 — Idealized model of source discretization | idth considered above. Integrated process window is 45%-jm
by homogenizer. a) Source pattern. The input | ypder a thresholded aerial image model (assuming no aberrations).
=0.85 disk is sparsely filled, simulating the effect | Thjs is between 3X and 6X better than the calculated performance
of homogenizing optics in a slot-field exposure tool. | of standard enhancement methods (see above). Max-to-min
Plot shows source pattern after truncation by ideal | contrast across the rectangle tips is 8.2:1, also much improved over
Figure 3 aperture. b) Difference between image | he conventional result. The solution in Figures 3,4a was obtained
with discretized Figure 10a source, and ideal image | by optimizing against process window; however a similar solution
(continuous Figure 3 source). with quite good process window (37.6%-um) is obtained by
-teoo-0s w0 0s e optimizing against exposure latitude in focus (algorithm P below).
' The optimized solutions can also be realized in attenuating phase-
shift masks. The attenuating phase-shift solution in Figure 7
achieves the same large process window as the Figure 4a
chromeless solution; however, overall intensity is quite low because
the optimizer has realized the solution by printing through the
chrome as if it were a "hard" phase shifter.

Our global optimization approach provides novel design forms with
high theoretical performance. Of course, in practice lithography
cannot really be reduced to a purely formal optimization. After
describing our method in more detail we will comment briefly on
some issues of practical implementation. We will also discuss the
prospect for extending our methods to optimize multiple patterns
simultaneously. Global methods show promise for increasing the
common process window of a suite of patterns. Indeed, in principle
the common process window for a globally optimized set of
patterns cannot be lower than that provided by conventional
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b. 0.0087 optimization methods. However, as with conventional methods, the
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— Horizontal single pattern when optimized individually. Pattern diversity is
0.004 --- Vertical limited within the field sizes that can be optimized at present
Al 0.0021 (~1um), and source solutions for such small fields tend to be fairly
’ specialized. Source directions at large-G along the 45° azimuths
0 ™ T tend to maximize the number of collected degrees of freedom,

-0.001 0.05 0.1 ™, Q.~ 15 providing an advantage in optimizing a diverse set of patterns.
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EXPERIMENTAL TEST

Though the treatment in this paper is primarily theoretical, we felt it important to include an experimental demonstration of the
theory. Figure 8 shows our implementation of the Figure 4a chromeless mask. To obtain results within deadline for the present
proceedings, we implemented the source of Figure 3 in the form of a simple illumination stop (located in a plane conjugate with
the entrance pupil), and adopted the simplified hole pattern shown in Figure 9a for ease of fabrication. Figure 9b shows a
measurement of the illumination pattern as realized in the exposure tool. The source apertures are sparsely filled because the
input 6=0.85 disk is realized by discrete multiple foldings within a homogenizing rod. The exposure tool uses a scanning slot
field, so the input source appears striped under the limited resolution provided by the pupil-gram. This coarse discretization
would not be present if the custom source were defined by diffractive elements[8]; moreover, the impact of this discretization
need not in principle be severe, as shown in Figure 10. However, considerable source distortion was incurred in the present
experiment (compare Figure 3 with Figure 9b).

Nonetheless, we achieved reasonable wafer images with this compromise source, as may be seen in Figure 11a. Figure 12
shows focus/exposure data from the experiment (top-surface SEMs). Measured exposure latitude is about 14%, DOF
approximately 0.7um, and process window roughly 7%-um. This is quite a respectable result (though well below the ideal
performance of the Figure 6 simulation), considering that in practice the pattern proves impossible to print within tolerance using
conventional enhancement methods[6]. The investigations reported in ref.[6] show that capacitor aspect ratio for 130nm
trenches is limited to about 1.4:1 when annular illumination and phase-shift chrome are employed, even if the pitch is relaxed
slightly to permit increased mask bias. Figure 11b shows the approximate limit of what can be achieved (same NA and A as
Figure 11a, but different exposure tool). Because of the narrow separation between adjacent capacitors, it is impossible to
introduce a bias sufficient to meet tolerance unless every other row in the array is removed from the mask to free up more real
estate; the array must then be printed in two separate exposures (see Figure 6 in ref.[6]).
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Figure 11 — Images of Figure 2 pattern in 53004 of UV82 resist, exposed at A=248nm, NA=0.68. a) Exposures using the
Figure 8 mask and Figure 9b source. Pitch is 260nm horiz., 390nm vert., per Figure 2. b) Attempt to print elongated
capacitors of 130nm width using conventional enhancement methods (annular illumination, phase-shift chrome, mask
bias), and expanded pitch (relaxed to 300nm horiz., 405nm vert.). Figure 11b image was scaled to same magnification as
Figure 11a using graphics software.
o : N

a. o | b.

Figure 12 — Focus-exposure measurements using the Figure 9b source and Figure 8 mask. Each point represents the
maximum CD error found in an adjacent pair of measurements. Errors are normalized, so that 1.0 represents the
tolerance limit (£15nm horiz., +30nm vert.). Gray triangles are width errors, black rectangles are length errors. Solid
lines are nominal dose; dashed and dotted lines show the effect of increasing or decreasing dose by 4%.
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ALGORITHM TO OPTIMIZE EXPOSURE LATITUDE

We now describe an algorithm for global optimization of mask and source against exposure latitude in focus. First, we note that
highly efficient algorithms have been developed for local optimization[9]; these are available, for example, in packages like
MATLAB[10], Mathematica[11], and IMSL[12]. Such algorithms can converge to local maxima in the merit function within
polynomial time, even when the merit function is nonlinear. If one can model the system in the “forward direction”, and if one
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Figure 13 — Pupil diagram for array with staggered
pitch. X pitch is 1120nm, y pitch is 560nm, and one
basis vector is diagonal. Lens pupil radius (NA) is
0.68 (heavy circle). Dashed circle indicates

OMax = 0.85. Diffraction orders (under axial
illumination) are plotted as gray points. Circles of
radius NA are erected about each order. Numbered

overlap regions (53 in all) are source variables.

can devise a merit function to quantify the suitability of a given
solution, then a nonlinear optimizer will efficiently refine a given
starting design so that it converges to the nearest local maximum
of the merit function.

In the case of global optimization, it has been proven that for a
general merit function no global algorithm can be guaranteed to
perform better than simple exhaustive grid search of the
parameter space [Nemirovsky and Yudin, as cited in ref.13].
However, by exploiting the particular structure of the lithographic

problem we can find solutions on a far more rapid basis.
Knowledge of this special structure provides a very strong
advantage. For example, our tests of two general-purpose global
optimization programs found them unable to solve even limited
sub-problems (e.g. source held fixed) of joint source/mask
optimization problems that our specialized algorithms can handle.

The difficulty in lithographic problems is that the merit functions
are usually not convex; indeed, the plane-wave orders that
comprise the image are intrinsically oscillatory, giving rise to a
great many local maxima. To achieve efficient global
performance we adopt the following two-part strategy:

1) Seek the global solution to a simplified version of the
problem.

2) Use a local optimizer to refine the step 1 solution against
a more complete model.

The robustness of widely available local optimization routines
allows us to divert many detailed optimality criteria to step 2.
Step 1 is solved under a scalar aerial image model.

-0.6

-0.4 -0.2 0 0. 0.4 0.6

The imaging solution determined in steps 1 and 2 is defined in the pupil plane (as a set of illumination and diffraction
amplitudes), so to complete the solution we add a third step:

3) Calculate a reticle pattern that provides the optimized wavefront determined in step 2.

We describe below a simple approach to step 3 which exploits the linearity of the diffraction Fourier transform. Step 2 can be
handled by standard routines, as we have seen. For the more difficult step 1 global optimization we simplify the problem by
considering only an aberration-free image (aberrations can be deferred to step 2). Further, the algorithm described in this section
optimizes only the focused image during step 1, i.e. defocus aberration is also zero. Of course, the step 2 local refinement need
not be restricted to optimization of exposure latitude.

With target patterns that are periodic (or to which we apply periodic boundary conditions), optimization of a focused image
allows us to partition the continuous space of possible illumination directions into a fairly small number of distinct regions, since
two illumination directions are equivalent (when aberrations including defocus are zero) if they direct the same set of diffraction
orders into the collection pupil. This is illustrated in the k-space diagram of Figure 13. The entrance pupil (centered on the
origin) has radius NA=0.68 in this example.
OMax—0.85 is assumed as the illumination limit
imposed by the stepper (shown as a dashed
circle). The optimization program next divides
the entrance pupil into independent source
regions whose boundaries are formed by circles
of radius NA centered on each diffraction order.
The diffraction orders plotted in Figure 13
assume A=248nm, and a staggered array with
1120nm horizontal pitch and 560nm vertical
pitch.

Figure 14 shows a DRAM isolation pattern laid
out on such an array. The rectangles (dark for
positive resist) have width F equal to 140nm.
The vertical spacing of the rectangles is also F,
and their length 6.5F. The desired horizontal
separation between the rectangles is 1.5F.

Figure 14 — Isolation pattern with periodicity matching Figure 13.
Width of dark rectangles is 140nm; separation between tips is 210nm.
Later figures plot optimized images over the region shown dashed.

| L | [

| [ | |
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The diffraction pattern shown in Figure 13 is produced by illumination on axis. The orders shift as the illumination is tilted, but
the associated array of pupil-sized circles should be considered fixed in the lens aperture. Each circle then represents the range
of illumination directions for which a given order can be collected, and each overlap region represents a range of illumination
directions that provides the same set of collected orders. We can without loss of generality represent the fourfold symmetric
source which optimizes any focused image (laid out on the Figure 13 pitch) using 53 distinct variables, with each variable
representing the illuminating intensity from one of the different pupil regions identified in the Figure 13 construction. We will
denote these unknowns as a vector variable § (of length 53 in this example). Note that each element of § represents a set of 1,
2, or 4 equally intense illuminating directions that impinge on the mask from mirrored directions. Usually the illuminator will
fill all open illumination directions with a fixed power per unit solid angle; in this case the variables must be constrained
according to

0 < 8j < Sy s [1]

where Spayx j is the area of the jth illumination region in the pupil. If the source distribution is defined by diffractive elements it
is more appropriate to constrain the summed intensity.

The m,nth diffraction order would ordinarily be defined as the amplitude ap, 5, that (under axial illumination) diffracts from the
reticle in a direction k = k,(m\A /p, ,n\/ p,), with py and py the unit cell periodicities. However, for our problem it is desirable
that the unknown amplitude variables represent independently adjustable components of the wavefront, and individual collected
orders as conventionally defined are not all independent. For bilaterally symmetric patterns we adopt a notation in which m and
n are non-negative; an, , then represents a single non-redundant unknown. Thus, in the Figure 13 example, three independent
orders (ag 0, aj,1, az,0) are collected with axial illumination [source region 40], whereas seven are collected under illumination
from off-axis region 8 (ag o, a1 1, 32,0, 33,1, 32,2, 30,2, 34,0)-

For a given source direction j, the normalized wafer-plane amplitude by j that is produced by an unknown amplitude ap , may
then include the result of interference between superimposed waves from the +m+n directions. In other words, by, 5 ; may be
given by

bm,n,j -
21|:i(m_x + n_yj i X ny iy mx mx , 2]
e Px Py , or 2¢ Px cos|—=| or 2e¢ Py cos(—), or 4cos( )cos ny
Py Px Px Py

depending on whether or not particular negative orders in the x,y mirror directions are collected simultaneously. It is convenient
to write the ap , and by,  j quantities as vectors; a for the unknown order amplitudes (including all orders that can be captured
from at least one feasible illumination direction), and ¢, and ¢, for the real and imaginary parts respectively of b. To provide
proper symmetry in the image we illuminate the reticle symmetrically from mirrored directions, which we distinguish with an
index q. Using an index h to separate real and imaginary parts, we have for the image intensity

4 JMax

) = 3 3 si(Eqin-d) - [3]

q=1 j=1 h=1

To optimize exposure latitude we now seek the global solution to the generalized fractional programming problem:

Maximize ¥(5,2) = Min|

q=1 j=1 h=l
subject to:
JMax
z Sj 2 SMin . [4]
=1
z 2 Sj (Eq’ ihr 5) = non-preset constant Q, independent of r (Vr |11 Sty )
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Here the index r refers to sample points (X;,y;) along the edges of the target patterns. V| ¢ represents the derivative of ¢ in a
direction normal to the feature edge. Maximization of ¥ ensures that the shallowest log-slope among feature edges is as steep as
possible. If desired a weighting factor can be applied to the log-slope at each position. The indices u and v run over sample
points that must be bright and dark, respectively. Constraints are imposed to i) require achievement of minimum acceptable
pupil fill, ii) enforce geometric restrictions on the size of the s; source regions, iii) prevent line shortening and other CD errors
in the printed pattern, iv) require adequate exposure in bright areas, and v) prevent excessive exposure in dark areas.
Techniques are reported in the literature for solving fractional optimization problems like eq.[4], often reducing them to a
parametric problem in the difference between numerator and denominator[14]. Eq.[4] can also be approximated as a cubic
polynomial optimization; a global optimum is then guaranteed in principal if a homotopy algorithm is used to solve the
Lagrangian. However, we have found that problems of the size considered here pose considerable difficulty for the homotopy
algorithms reported in the literature[15].

Our solution scheme for eq.[4] exploits global solutions we have found for two simplified sub-problems in the equation. This
decomposition method constitutes step 1 of our overall algorithm to optimize exposure latitude (denoted P), which is outlined in
the following table:

0) Preliminary:
a. Problem definition; input of image sample points.
b. Identify the Jya sSource variables via Figure 13 construction.
1) Global Optimum:
a. Considering each source variable one at a time, calculate a solution for &; that is globally optimum under
simplified criteria.
b. Initialize amplitude variables a to the best value obtained in previous step. Initialize SMin to 0.
c. Calculate the globally optimum source distribution S for the current values of a and Spyp.
d. Use a local algorithm to optimize § and a together (per eq.[4]).
e. Increase Sysi, by small increment and return to step c, until stopping criteria are met.

2) Fix Spin at desired final level and choose corresponding solution from step 1, then refine using local optimizer
against more complex criteria.

3) Calculate the optimum reticle pattern that provides the wavefront a obtained in step 2:
a. Find global solution that produces wavefront with maximum intensity.

b. Refine step 3.a solution using local optimizer to e.g. satisfy mask CD tolerances, reduce shapes to
Manbhattan geometries, etc. _J

Let us now consider these steps in more detail. In calculating the step 1.a amplitude sets a j» we defer constraints on equal
feature bias and minimum pupil fill to step 1.c. As a further simplification, we optimize in step 1.a against the finite difference
between adjacent dark and bright points across feature edges. Moreover, the overall intensity scaling of the amplitudes a is
arbitrary until the step 3 mask calculation. This allows us to set the intensity at active bright point constraints to 1 (the other
bright points then being above 1), eliminating the need to optimize against log-slope per se until step 1.c (since slope and
log-slope are equalized at unit intensity).

The step 1.a optimization problem for the jth source direction is then to minimize intensity in dark points under these constraints,
and we can write this problem in matrix form as:

®)

Minimize ®;(d) = a' Aa
subject to: [5]
aTAE 21 (Vu|1<u S upgyy).

The symmetric Ag, A, matrices (obtained from eq.[3]) take into account any orders that may be collected from negative
directions, as well as the effect of mirroring the illumination. The aTA, 3 quadratic forms in the constraints of eq.[5] represent
the intensity at bright sample points, while the aTA,3 term in the demerit function provides the average intensity within dark
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Figure 15 — Joint mean-intensity eigenvectors for bright and dark regions of Figure 14 isolation pattern, with illumination
incident from source region 8 (see Figure 13; illumination is fourfold mirrored). As in Figure 13, the imaging conditions are
A=248nm, NA=0.68. 00) Perspective view of target pattern (central region of Figure 14). 0) Magnified view of target pattern
(the dashed upper right quadrant of previous view). 1-7) The 7 eigenvectors, plotted as images over upper right quadrant.
Sorted in decreasing order of bright region intensity. All eigenvectors provide unit average intensity at dark sample points.
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Figure 16 — Schematic of search space
decomposition, for a pattern having 2
sample points in bright region. Example
in text yields 3 significant eigenvectors,
but for ease of drawing this figure
assumes 2 (yielding a 2D subspace). In
2D the "spherical triangles” become arcs
(bounded by dashed lines) whose
midpoints are shown solid. Note that by

areas of the image. This average is typically a very small quantity since we
are optimizing exposure latitude in focus. Proper polarity in all dark points is
thus ensured, since conversion of even a single dark point to bright would
drastically raise the average, i.e. @ could not be minimal in such a case. (Note
that we are free to suppose that only a limited number of dark points
participate in this average, since points are not mutually constraining if their
separation greatly exceeds the lens resolution.) On the other hand, it is
necessary that each bright point be entered as a separate constraint, since it is
sometimes possible to make an invalid improvement in the average
bright-to-dark contrast by switching a few critical bright points to dark.

symmetry only half the triangles need be

analyzed. Though the matrices in the eq.[5] quadratic forms (ellipsoids) can be made

positive definite, the problem is nonconvex because the inequality constraints
are lower bounds. However, two aspects of the eq.[5] structure allow the
multiple local minima to be fully mapped in a very efficient way. First, the
eq.[5] ellipsoids share a common center, and second, their principal axes
(whose lengths are the reciprocal square-roots of the matrix eigenvalues) must
range between very small and very large amplitudes (since for feasible values
of A/NA it must be possible to print a wide range of intensities on at least a
subset of the sample points).

To exploit these properties we first calculate the eigenvectors and eigenvalues
of the black region matrix Ag. (It may be necessary to shift the sample points
in x,y,z by e.g. 0.001A to make the matrix positive definite.) We then scale
the eigenvectors by the square root of the reciprocal of the eigenvalues,
thereby effectively scaling the diagonalized black region matrix to the identity
matrix. The eigenvector basis can now be rotated into alignment with the
eigenvectors of the matrix for mean intensity at bright points (average of the Ay, denoted Ag). If we use the symbol E to
denote eigenvector column matrices (i.e. the eigenvectors of a matrix Aq are denoted Eq) then the transformation W from the
new basis to the old is given by:

W = Eong%EB, where Ap = DEZEEAUEODEZ, (6]

with the reciprocal square root of Dy denoting a diagonal matrix formed from the reciprocal square roots of the eigenvalues of
Ay. Inbasis W the summed squared amplitudes give the mean black intensity, and also the mean bright intensity when weighted
by the eigenvalues of Ag.

It is only possible to simultaneously diagonalize two matrices in this way (see treatment in ref.[16]), and no single eigenvector
for the mean bright and dark region intensities is likely to provide high brightness at all bright sample points. Since the
eigenvectors are only common to the mean dark and bright intensities, we cannot immediately calculate the relative eigenvector
weightings that are required to provide an optimum image from the fixed source (e.g. region j, four-fold mirrored). However,

Figure 17 — Mask and source solution for Figure 14 isolation pattern using algorithm P (with step 2 omitted). [Results
from a more sophisticated algorithm than P are shown in Figure 21.] a) Chromeless [non-alternating] mask (T, = -1
[shown black], Tyax =+1 [shown white]). Plotted region matches Figure 14. The mask features have a very different
shape from the target patterns. b) Binary source. Circle represents 0.68 NA. Illumination directions are shown dark.
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Figure 18 — a) Focused aerial image from the Figure 17 solution (same perspective as Figure 15.0). Thick curve shows
contour slice at nominal threshold. (Only the contour for the front rectangle of Figure 15.0 is visible.) b) Horizontal
(dashed) and vertical (solid) centerline slices through rectangle image. The vertical slice is shifted by the difference
between the nominal length and width to show that the aerial image contour prints without line shortening. c¢) Process
window (thresholded aerial image model, assuming no aberrations). Exposure latitude is 55%, but DOF is small (less
than +0.4pum), reducing process window to 24.7%-Um (compare with Figure 23).
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the solution vector must lie approximately within a subspace spanned by a limited number of these eigenvectors, namely the
minimal set of eigenvectors such that for each of the bright sample points, at least one eigenvector in the set provides intensity
above 1.

Consider, for example, the eigenvectors shown in Figure 15, which correspond to illumination from region 8 in Figure 13
(four-fold mirrored). The first 2 eigenvectors provide very high contrast, but do not allow the horizontal separations between the
rectangles to be printed bright. Eigenvector 3 must also be employed in order to provide high intensity at all bright sample
points, indicating that black region contrast is significantly impacted by the need to achieve high intensity between the rectangle
tips. (Printing the isolation rectangles is thus more difficult than printing non-terminating lines and spaces.) Eigenvectors 4
through 7 degrade contrast in the image, and so can only contribute to the solution in small amounts.

To solve eq.[5] we now need to find the point in basis W which is closest to the origin while remaining outside each of the
individual ellipsoids representing unit intensity at particular bright points. We can consider the search to take place within the
subspace spanned by the dominant eigenvectors for mean intensity (e.g. in the Figure 14 example, the 3D subspace spanned by
eigenvectors 1,2,3 of Figure 15). In order to fully probe the "nooks and crannies" of the intersecting ellipsoids in an efficient
way, we organize the search space by erecting spherical triangles on the “celestial sphere” (i.e. a sphere where the intensities at
all bright points are much higher than unity). The first set of vertex nodes for these bounding spherical triangles is defined by
projecting the eigenvectors for individual bright points to the celestial sphere, i.e. by projecting vectors outward along the
principal axes of the ellipsoids. (Of course, the algorithm must in general handle problems of arbitrary dimensionality. The
number of vertices in each "triangle" is equal to the dimensionality of the subspace, and the "sphere" is a surface of
dimensionality one less.) The other half of the node set is then generated by splitting the triangles through the addition of a new
vertex at the central coordinate of each. We then proceed from each node by decreasing all amplitudes in a common proportion
until we reach the outermost ellipsoid intersecting the ray. A local optimizer then settles into the nearest local minimum in the
solution space (the innermost pocket of the intersecting ellipsoids in that region). Our local optimizer uses the augmented
Lagrangian algorithm in Bertsekas' textbook[9]. To exactly solve eq.[5] during step 1.a, the local optimization should take place
in the full vector space W. This decomposition is illustrated in Figure 16.

We should note that the method of eqs. 5 and 6 allows the globally optimum mask to be determined for arbitrary fixed source
under the simplified constraints of eq.[5].

Once the step 1.a sub-problem is solved, algorithm P uses the solution to initialize a, and proceeds to the source optimization
loop in step 1.c. Step 1.c requires that we solve eq.[4] for S, with 2 given. Even when 2 is fixed, eq.[4] is nonlinear, since the
merit function involves log-slope. However, we can transform eq.[4] to the linear program:

Minimize z,
subject to:
4 2
Zy + Z'ZZ(Eq,j,h,r'5)(Vleq,j,h,l"a) 20 (V1 |11 <y )s [7]
q=1h=1
JMax
0 < SminZj < Swaxj 2, Z (V3 ]15 5 Tvao),
k=1
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4 2
- - \2
Z'ZZ(cq,j,h,r'a) =1 (VrllSrSrMax),
gq=1h=1
4 2 2
z 2 2 (cq,j,h,u ’ a) 2 Iprignt (Vu | 1< u<upy), [7 cont.]
g=1h=l
4 2 5
Z'ZZ(Cq,j,h,v'a) < Ipak (VV|1SvSvMax)
q=1h=1
Eq.[7] is linear in the transformed set of 1+J)\ay variables z,,z,z,,z,,---=z,,Z, and so can be solved globally using standard
linear programming algorithms. After eq.[7] is solved, the step 1.c source intensities are given by:
§ = M 5]
Max
Zg
k=1

In general, eqs. 7 and 8 provide the global solution to the problem of optimizing the source for a given mask, under the criteria
ofeq.[4].

To complete our discussion of algorithm P we now describe the step 3 reticle calculation. (As noted above, it is straightforward
to carry out the various local optimization steps in P using standard routines.) To begin with, we calculate the set of reticle
patterns that provide the brightest possible image consistent with the step 2 solution for a. This initial layout must be then
refined using standard criteria; for example, the optimized patterns must be rendered on the mask as polygons, preferably as a set
of rectangles. The rectangles can be fairly coarse, e.g. of dimension only moderately smaller than the lens resolution. We use a
local optimizer to do this refinement.

For the basic reticle calculation we approximate the Fourier diffraction integral as a summation over discrete sample points. The
mask transmission function T(x,y) is sampled on a 2D grid, and then unraveled into a 1D vector of unknowns T indexed by g:
+

Py Py/z 21t1(p . ) K L zm(%i.,.%] KL KL
dxdy T(x,y)e 7 /= Y ¥ T(xg,y,)e P 2 Y Tebgmn = 2 Tebpw. (9]
_p% _P% k=1¢=1 g=1 g=1

The symbol b’ has been introduced in eq.[9] as shorthand for the exponential, and an unraveled index w is introduced to
represent the m,n indices of the wth captured amplitude in a .

Step 3 now becomes a linear programming problem:

- Whtax KLWMax
Maximize Q(T) = Sign[ Y, aw:| Y Y Tebg

mx ny

w=l1 g=1 w=1
subject to:
KL Whtax Wiax [10]
> T, [aw, D bé,w] - [bé,wf Y aw] =0 (VW [1S W' < Wy ) s
g=1 w=l w=1

Tyin < Tg < Totax-

Eq.[10] forces the mask Fourier orders to be in the same ratio as the elements of the optimized diffraction order list 2 obtained
in step 2. Tygip and Tivax are determined by the mask technology. Tyax Would generally be +1, while Ty, would be e.g. —1 for
a chromeless mask, —+/0.065 for an attenuating phase-shift mask with 6.5% chrome transmission, etc. In general we must set
Twmin < 0 for eq.[10] to provide a solution.

Eq.[10] can be modified to adjust the exposure threshold of the printed pattern (e.g. to match its intensity with that provided by
some other set of mask patterns) by adding the constraint:

WMax I(I-«V\]Matx
Sign| > a,| Y, > Tgbgrw = Qatch - [11]
w=1 g=1 w=1

This adjusts the intensity of the aerial image without changing its shape. Qpfarch must of course be smaller than the unmodified
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eq.[10] maximum. To prevent excessively fine features in the retuned solution, one can introduce a spatially smoothed version
of the unmodified solution as a new objective vector. This gives preference to pixel adjustments near the edges of features,
where the absolute value of the smoothed pattern is less (so that correlation with the new objective vector is maximized when
adjustments are made at the edges of existing features, rather than in newly introduced features.) Alternatively such criteria can
be enforced in the step 3.b local optimization.

In the limit of an arbitrarily fine grid, the solution provided by eqs.[10] and [11] will be "two-tone", in that all pixels will be
driven to either Ty or Tpmax. To design a Levenson-type mask (i.e. a mask with 0° and 180° apertures opened in opaque
chrome), we modify eq.[10] with a change of variables and added constraints:

+ —_
Tg —>Tg —Tg,

TH>0, T, 20, [12]

KL

(5 +T;) < 1-G)KL

g=1
If parameter G were allowed to float, the change of variables in eq.[12] would not revise the solution of eq.[10] (assuming
Tumin = =1, Tmax = 1), since the first two lines of eq.[12] permit a transmission of +1 to be realized whenever the third line is
not binding. This latter constraint is activated by setting G to a positive value; a fraction G of the reticle area is then driven to
opaque chrome (i.e. T; =T, =0).
Figure 17 shows the solution provided by algorithm P for the isolation pattern of Figure 14, in the simple case where the step 2
local optimization is omitted. Log-slope across the narrow width of the rectangles is given a 1.5X higher weighting than
log-slope at the tips of the rectangles, corresponding to a tighter CD on the width than the length (tighter in absolute terms;
relative tolerances are the same). Figure 18 shows the aerial image in focus. The intensity along the centerline of the dark
rectangles is roughly 1/30th that at peak. When spacewidth tolerances of +20% are applied to the bright horizontal and vertical
separations between the rectangles, the exposure latitude is 55%. This is about a 1.4X improvement over the 40% exposure
latitude achieved by a more conventional approach (described below).

Figure 19 — Solution provided by conventional RET approach (using local optimizer with nominal Figure 14 patterns as
starting solution). Annular illumination parameters are optimized simultaneously, yielding ¢ = 0.50, 0.78. a) Mask
(phase shift chrome, T=6.5%), over same region as Figure 14. b)Process window (thresholded aerial image model,
assuming no aberrations).

o
.
-

(=)
.
w

o
.
[y

Fractional
Exposure Lat.
o
Y

0.2 0.4 0.6 0.8
Az = 0.5 * DOF (um)

a. b.

Figure 20 — Images from Figure 19 conventional RET solution. Plotted region matches dashed area of Figure 17. White
insert shows nominal perimeter of the central dark rectangle. a) Image in focus. b) Defocused 1um. Image no longer
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OPTIMIZATION OF PROCESS WINDOW VS EXPOSURE LATITUDE

Unfortunately, the depth of focus provided by the Figure 17 solution is not very large (£0.38um under the above £20% CD
tolerance), leading to an integrated process window of only 24.7%-pum (using a thresholded aerial image model), despite the
large exposure latitude in focus. This process window is considerably better than can be achieved with a simple opaque chrome
mask incorporating the nominal patterns without bias. However, standard OPC methods can do appreciably better. Figure 19
shows the result of using a local optimizer to adjust the shapes of mask openings in phase-shift chrome, with the nominal
Figure 14 pattern serving as a starting solution. The inner and outer radii of annular illumination were adjusted simultaneously.
Depth of focus is +0.75um, substantially exceeding that of the Figure 17 solution, and a better process window overall is
achieved (33.3%-um). Figure 20 shows plots of the aerial image.

We should emphasize that this decoupling of process window and exposure latitude does not always arise. For example, in
optimizing mask and source to print the Figure 2 pattern, though the Figures 3,4a solution was obtained using an algorithm that
optimizes against full process window, a very similar solution is provided by algorithm P. (Process window with algorithm P is
37.6%-um, versus 45%-um for the solution of Figures 3 and 4a.) Indeed, the Figure 3,4a solution can probably be recovered
exactly from algorithm P if process window is used as the merit function in the step 2 local optimization.

The Figure 14 problem can be attacked in a similar way; i.e. by refining the step 1 solution (Figure 17) against process window
using a local optimizer (step 2 of algorithm P). The solution found in this way yields a process window of 36.2%-jum, slightly
exceeding that of the more conventional Figure 19 approach. The step 2 refinement is found to improve depth of focus by 50%
while decreasing exposure latitude by only 2%-um, demonstrating again that process window and exposure latitude are not
always strongly coupled. Clearly, it is preferable to have a global algorithm that can directly optimize the solution for maximum
process window.

We have made considerable progress toward development of such an algorithm. Integrated area under the ED window is
maximized (under a thresholded aerial image model). Figure 21 shows the solution obtained by this method for the Figure 14
isolation pattern; Figures 22 and 23 show the resulting image and process window. (The solution of Figures 3 and 4a was also
obtained with this algorithm.) Integrated process window is 67%-um (see Figure 23), about double that obtained with the more
conventional RET optimization of Figure 19 (and also about double that obtained by optimizing for process window in step 2 of
algorithm P). The improvement in depth of focus may be seen by comparing Figures 20 and 22. Figure 24 emphasizes the
dramatic difference between the optimized mask shapes of Figure 21 and the printed pattern.

Figure 21 — Globally optimized solution to maximize process window for Figure 14 pattern. (See also Figure 17
solution, which only optimizes exposure latitude.) a) Chromeless mask (non-alternating). Black represents 0° phase-
shift, white 180°. Plotted region matches that in Figs. 14, 17, and 25. b) Jointly optimized gray-scale source.

Figure 22 — Aecrial images for the Figure 21 solution (screen captures from Prolith[5] simulations). Plotted region
matches dashed area of Figure 21 (also matches Figure 20). White insert shows nominal perimeter of the central dark
rectangle. a) Image in focus. ‘t())) Defocused 1pm. DOF is considerably larger than with conventional enhancement
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Figure 23 — Process window plot for Figure 21 solution, with £20% CD tolerances on the bright horizontal and vertical
separations between rectangles. A thresholded aerial image model is used, and an aberration-free lens assumed. The
integrated window (two-sided) is 67%-um.
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Figure 25 shows an implementation in opaque chrome (i.e. a Levenson mask where features have unit transmittance and 0° or
180° phase shift). In general, eq.[10] and related methods provide highest efficiency in chromeless technology, and Figures 5
and 22 demonstrate that reasonably high intensities can be achieved. We have found these methods to be quite successful in
compensating the greater difficulty in maximizing intensity when a decentered wavefront slice is optimized. Of course,
exposure time will be significantly degraded if the optimized source is provided by an attenuating aperture rather than diffractive
elements (as in exposure tools that provide software-selectable source distributions via a library of pre-loaded diffractive
elements[17]; see also ref.[8]).

CONCLUSIONS AND FUTURE DIRECTIONS

To maximize process window it is necessary that the reticle shapes
not be constrained to follow the inherent "topology" of an initial
design form. By considering the implications of off-axis
illumination in a detailed way, we have devised a design algorithm
that is not encumbered by such restrictions. The theoretical
improvement in performance from this global approach can be
substantial.

However, many practical issues remain to be considered. The
present paper focuses on development of the basic algorithm, but it
is important that the solutions be compatible at a detailed level with
practical constraints imposed by the illuminator and the
mask-making process. For example, it is possible that the
illumination will need to satisfy tighter requirements on directional
uniformity when pattern symmetry is provided by the source rather
than the collected wavefront.

Global optimization must also be integrated into an overall strategy
to print a given IC level. The field sizes considered above are

Figure 24 — Superposition of Figures 21a and 22a.
The dark image rectangles are centered on the
"bow-tie" shapes. The centers of the rectangular
mask features print bright. Plotted area corresponds
to dashed regions of Figures 14, 17, 21, and 25.

Figure 25 — Implementation of Figure 21 solution as
Levenson mask. Opaque chrome is shown black;
white and gray represent openings of 0° and 180°
phase shift. (Mask is not alternating.) Plotted region is
the same as Figure 14. Chrome coverage (low in this
example) can be adjusted up or down (see eq.[12]).

sufficient for e.g. separate exposure of the array region of a DRAM
level, but for general purposes this is not adequate. Several
approaches are available to accommodate larger sets of patterns.
While globally optimized designs are often somewhat novel and
unexpected, one can generally understand them "after the fact" in an
intuitive way that is more compatible with a lithographer's "bag of
tricks" than is possible for a purely mathematical result. Our
discussion of global algorithms has been couched in terms of
optimizing mask and source together; however, once the source has
been optimized for critical patterns, it is possible to globally
optimize less critical mask patterns with the source distribution held
fixed (e.g., see egs. 5, 6). The source can also be "softened" to
improve compatibility with a wider range of shapes[18].

Though the algorithm can be extended by such techniques,
computational limitations make it necessary to interface the globally
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optimized solutions with neighboring patterns that are derived by other means. Periodic boundary conditions entail additional
computational burden when target patterns are non-periodic, e.g. to feather overlapping solutions across redundant buffer
regions. Eq.[11] allows the exposure threshold in a given aerial image to be adjusted up or down to maximize the common
window with other patterns.

Though computational requirements make these hybrid approaches inevitable over full IC levels, it is interesting to speculate on
how the benefits from fully global optimization might scale if no compromises were made, i.e. to assess the potential advantages
of global optimization as the dimensional scale and pattern diversity of the simultaneously optimized feature set is increased.
Off-axis illumination continues to provide access to more degrees of freedom when a pattern is optimized as a member of a
group rather than individually, and in principle these degrees of freedom are best optimized with a global algorithm. With
conventional enhancement methods the common process window for a group of features is generally less than that of the
features considered individually. Global optimization may prove a useful tool to bring to bear on this problem. On the other
hand, the relative advantage of global optimization over conventional methods might decrease when a suite of patterns is
optimized, since conventional methods already employ broader and more symmetric sources than are required for individual
patterns. The Figure 13 construction implies that large-c illumination directions along the 45° azimuths provide the largest
number of independent collected orders when patterns are highly symmetric, potentially improving the prospects for optimizing
a broad set of patterns. Global optimization can theoretically allow the less critical patterns to be printed with a narrower and
more discrete source than usual (i.e. a source optimized for critical patterns), but this may entail optimization of a great many
shapes. While a fully global algorithm cannot in principle do worse than local optimization, it imposes a distinctly greater
computational burden, which may force significant compromises. It remains to be established how these factors will trade-off
when optimizing the pattern content of different IC levels.
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