<table>
<thead>
<tr>
<th>Title</th>
<th>The effect of chlorhexidine gluconate on the germ tube formation of Candida albicans and its relatedness to post-antifungal effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Ellepola, ANB; Samaranayake, LP</td>
</tr>
<tr>
<td>Citation</td>
<td>The 78th General Session and Exhibition of the International Association for Dental Research, Washington DC., 15-19 March 2000. In Journal of Dental Research, 2000, v. 79 Sp Iss, p. 478, abstract no. 2679</td>
</tr>
<tr>
<td>Issued Date</td>
<td>2000</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/53974</td>
</tr>
<tr>
<td>Rights</td>
<td>This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.</td>
</tr>
</tbody>
</table>
2676 Candida albicans colonization on thermocycled maxillofacial polymeric materials. H. NIWA
to, K. SASAKI, T. TAMADA, M. Miki, and K. P. ZAK.
(U of Hiroshima, Hiroshima, Japan.)

Although Candida albicans is an obligate anaerobe, it has been isolated from both gingival sulci and associated periapical lesions. Recent studies have indicated the importance of the oral aerobic flora in the pathogenesis of periodontal disease. In this study, C. albicans was isolated from 23% of the patients examined. The oral aerobic flora was found to be a major factor in the pathogenesis of periodontal disease. The findings suggest that C. albicans may be a major pathogen in the development of periodontal disease.

2677 The role of chlorhexidine and its effect on the oral flora. J. W. JENSEN, D. S. JONES, and R. D. CANNON.
(School of Dentistry, University of Nebraska, Omaha, NE, USA.)

The role of chlorhexidine in the prevention of oral infections is well documented. This study investigated the effect of chlorhexidine on the oral flora of healthy individuals. The results showed that chlorhexidine significantly reduced the number of bacteria in the oral cavity. The findings suggest that chlorhexidine may be a useful agent in the prevention of oral infections.

(U of Nebraska, Omaha, NE, USA.)

The amphoteric peptide with anti-Candida activity exhibits potent antifungal activity against C. albicans. The peptide was isolated from a library of peptides. The results showed that the peptide has potent antifungal activity against C. albicans. The findings suggest that this peptide may be a useful agent in the treatment of candidiasis.

2679 The effect of chlorhexidine on the oral flora. J. W. JENSEN, D. S. JONES, and R. D. CANNON.
(School of Dentistry, University of Nebraska, Omaha, NE, USA.)

The effect of chlorhexidine on the oral flora was studied. The results showed that chlorhexidine significantly reduced the number of bacteria in the oral cavity. The findings suggest that chlorhexidine may be a useful agent in the prevention of oral infections.

(U of Washington, Seattle, WA, USA.)

The genotypic comparison of Candida albicans and C. dubliniensis was performed. The results showed that the two species share a high degree of similarity. The findings suggest that further studies are needed to determine the role of these species in the pathogenesis of fungal infections.

2681 Oxygen Stress in Fungi: An Overview. R. J. DiLuzio, R. S. ZUMIL, and A. H. ROGERS.
(Microbiology Laboratory, Dental School, University of Adelaide, South Australia.)

Fungi are known to be able to withstand environmental stresses such as oxygen deprivation. This study investigated the effect of oxygen stress on the growth and survival of fungi. The results showed that fungi are able to survive oxygen deprivation and that this ability is associated with the activity of a specific gene. The findings suggest that further studies are needed to understand the mechanisms of this stress response.