<table>
<thead>
<tr>
<th>Title</th>
<th>Antibiotic sensitivity of putative pathogens in Chinese periodontal patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Zee, KY; Lee, DH; Samaranayake, LP</td>
</tr>
<tr>
<td>Citation</td>
<td>The 77th General Session and Exhibition of the International Association for Dental Research, Vancouver, BC., Canada, 10-14 March 1999. In Journal of Dental Research, 1999, v. 78 Sp Iss, p. 433, abstract no. 2619</td>
</tr>
<tr>
<td>Issued Date</td>
<td>1999</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/53688</td>
</tr>
<tr>
<td>Rights</td>
<td>This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.</td>
</tr>
</tbody>
</table>
2619
Anesthetic sensitivity of passive passages in Chinese periodontal disease
K. Y. ZEE, D. H. LEE and I. P. SAMARANAYAKE (Faculty of Dentistry, The University of Hong Kong)

The aim of the present study was to investigate the anesthetic sensitivity of the passive periodontal disease in Chinese patients suffering from advanced periodontal disease. Subjects with at least three teeth with severe periodontal involvement scheduled for extraction and who taking any antibiotics for at least 3 months were enrolled in the study. A total of 24 subjects was obtained from the population of patients with involvement of the bottom of the pocket before extraction. Each sample was dispensed into reduced fluid transfer and cultured on selective agar plates. The plates were incubated at 37°C for 24 h and quantified into specific bacteria as follows: Monocytogenes, E. coli, Proteus, and Streptococcus. The results showed that the mean viable counts were 5.7 x 10^6, 7.8 x 10^6, 9.2 x 10^6, and 1.5 x 10^6 CFU/ml, respectively.

2620
Dentic Permeability in Vivo After Application of Tartar Acid Solutions. R. N. GHOSH, M. S. TALOJA, A. LUCCHESI, S. CARSON, and P. A. URG val of Bologna and Ferrara, Italy.

Introduction: Preliminary investigations demonstrated that tartrate salts solutions are able to create a layer of non-permeable crystals able to close dentinal tubules and to reduce fluid flow rates. In the present study we aimed to evaluate the possibility of using a new system of tartrate acid solutions to reduce the permeability of dentinal tubules.

Method: The study was performed on 10 extracted human teeth. The teeth were divided into two groups: Group A (10 teeth) received 5% tartrate acid solution for 10 minutes, and Group B (10 teeth) received 0.1% tartrate acid solution for 10 minutes.

Results: The permeability of dentinal tubules was significantly reduced in Group A compared to Group B. The volume of fluid flow was significantly lower in Group A than in Group B. The results suggest that tartrate acid solutions can be used to reduce the permeability of dentinal tubules.

Conclusion: Tartrate acid solutions may be a promising therapeutic tool to reduce dentin permeability.

2621
In vivo macular model predictivity of bioadhesives in the mouth.
P. TATEL, S. STEVENS, A. SMITH, S. ROSS, and J. SMART (School of Pharmacy and Biological Sciences, University of Nottingham, UK)

SmithKline Beecham Consumer Healthcare, Weybridge, UK)

The formulation of a drug carrier/chip that can be dosed and retained for periods throughout the oral cavity would be advantageous in the treatment of local diseases, such as aphthous stomatitis, oral candidiasis, and gingivitis. The aim of the study was to develop an in vitro system to allow the production of in vivo performance of bioadhesive agents, such as solutions of polymer drug carriers in the oral cavity. Polymer adsorption onto human buccal cell surfaces was investigated. The data obtained for in vitro experiments were compared with the results of in vivo experiments. The results showed that the in vitro model was predictive of the in vivo model.

2622
Cutaneous Hypersensitivity Following a Mild Cold Injury on Human Skin.
C. R. Berger, K. C. Kajander, D. A. Simone (University of Minnesota, Minneapolis, MN, USA)

Hypersensitivity to cold is often present following severe tissue injuries, whereby the condition of the skin produces a painful sensation. The underlying peripheral neural mechanisms that mediate cold hypersensitivity are poorly understood. In this study, we investigated the mechanisms underlying cutaneous hypersensitivity to cold stimuli in human skin. The results showed that cold hypersensitivity was mediated by Aδ fibers, which were involved in the transmission of nociceptive information.