487 Fractographic analysis of denudation with a moist or dry technique after microabrasion treatment using SEM. This study investigated the role of moisture application in the formation of a smear layer after microabrasion treatment. The specimens were divided into two groups: (1) moist technique and (2) dry technique. The surface topography was analyzed using SEM. The results showed that the moist technique resulted in a more uniform and thinner smear layer compared to the dry technique. The dry technique led to a more irregular and thicker smear layer, which may affect the bond strength of restorative materials.

488 Shear Bond Strength of Ceramic Resin Composites. This study evaluated the shear bond strength of various types of ceramic resin composites. The samples were bonded to a porcelain substrate and subjected to a shear force. The results showed that the bond strength varied significantly among the different composites, with some exhibiting high bond strength and others showing poor bonding. The study concluded that the surface roughness of the porcelain substrate and the bonding agent played a crucial role in determining the bond strength.

489 Tensile Properties of Demineralized Dentin Matrix. This study investigated the tensile properties of demineralized dentin matrix. The samples were evaluated using a universal testing machine. The results showed that the demineralized matrix had lower tensile strength compared to intact dentin. The study highlighted the importance of maintaining the integrity of the dentin matrix for optimal clinical outcomes.

490 Microabrasion Bond Strength of Glass Ionomer Cement. This study evaluated the microabrasion bond strength of glass ionomer cement. The samples were subjected to a microabrasion treatment and then bonded to a metal substrate. The bond strength was measured using a universal testing machine. The results showed that the bond strength decreased significantly with increasing microabrasion time. The study emphasized the importance of optimizing the microabrasion parameters for optimal bond strength.

491 Aesthetics of ceramic crowns. This study investigated the aesthetic properties of ceramic crowns. The samples were evaluated using a visual assessment method. The results showed that the ceramic crowns exhibited excellent aesthetic properties, with high color stability and shading. The study highlighted the importance of selecting the appropriate ceramic material and optimization of the milling and finishing processes to achieve optimal aesthetics.

492 Porcelain Esthetics of Ceramic Crowns. This study examined the esthetic characteristics of ceramic crowns. The samples were evaluated using a visual assessment method. The results showed that ceramic crowns provided excellent esthetic outcomes, with high translucency and color matching. The study emphasized the importance of selecting the appropriate porcelain and optimizing the firing methods to achieve optimal esthetics.

493 Bonding of Composite To Enamel Using Three Adhesive Condensers. This study evaluated the bonding of composite resins to enamel using different adhesive condensers. The samples were prepared and bonded using different adhesive systems. The results showed that the bond strength varied significantly among the different condensers. The study highlighted the importance of selecting the appropriate adhesive system for optimal bonding efficiency.