Apgar Score and Postnatal Outcomes

Doris SY Chong, BScSci(Stat), MPhil(Stat); Paul SF Yip, PhD; Johan Karlberg, MD, PhD

Controversy exists about the continued usefulness of the Apgar scoring system to predict early infant mortality and morbidity. This review examines published evidence of its clinical reliability, together with the validity of postnatal outcomes that were ‘predictable’ by the score. No one can deny that an encouraging Apgar score value in the first few minutes of life is desirable for a newborn. This review focuses on the risk factors associated with low Apgar scores.

The Apgar score is named after the American anaesthesiologist Virginia Apgar (1909-1974) who in 1952¹ invented the practical method of evaluating the general physical condition of a newborn infant shortly after delivery. It is a composite of a number of objective parameters to assess the general condition of the baby at birth. By scoring the heart rate, respiratory effort, muscle tone, skin colour and reflex irritability 0, 1 or 2 points, a score of 7 to 10 is considered normal, 4 to 6 might require some resuscitative measures, and 3 or less requires immediate resuscitation.² Values for each indicator are listed in the Table. The Apgar score is measured routinely 1 minute after birth and commonly repeated 5 minutes after birth. Additional assessments at 5-minute intervals may be warranted depending on the newborn’s status. It is noteworthy that a Hong Kong study (unpublished) showed no clear cut-off point for the scoring system in terms of the absolute or relative risk of neonatal mortality. The scoring system is, in terms of mortality risk estimation, more or less a continuous scale.

Poor 10-minute or 15-minute Apgar scores together with poor

Table. The Original 1953 Apgar Scoring System

<table>
<thead>
<tr>
<th>Component</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Heart Rate</td>
<td>Absent</td>
</tr>
<tr>
<td>Respiratory Effort</td>
<td>Absent</td>
</tr>
<tr>
<td>Reflex Irritability</td>
<td>No response</td>
</tr>
<tr>
<td>Muscle Tone</td>
<td>Flaccid</td>
</tr>
<tr>
<td>Colour</td>
<td>Blue or pale</td>
</tr>
</tbody>
</table>

Adapted from reference 1.
1-minute and 5-minute Apgar scores reflect an ineffective resuscitative measure or a worsening status of the newborn. Moreover, the negative correlation of Apgar score with postnatal outcome reflects the impact of the baby's condition at birth on subsequent outcome. Intuitively, 10-minute Apgar score or 15-minute Apgar score should have a better predictive power for later morbidity or mortality. A cursory inspection of the Swedish Birth Medical Registry, which covers virtually all births (99%) in Sweden, showed that not more than 50% of newborns have a valid record of the 10-minute Apgar score. Moreover, only a few publications can be found in the literature that studied the association of the 10-minute Apgar score with infant mortality or morbidity. For these reasons, research usually focuses on either the 1-minute or 5-minute Apgar score, or both.

The 5-minute score is considered to be the most accurate and widely accepted predictor of morbidity and mortality. However, controversy continues over its ability to predict neonatal (≤ 4 weeks) or infant (≤ 1 year) morbidity and mortality, or the neurological development of the infant. It was never intended for the latter. Nonetheless, some clinicians have speculated that improvements in perinatal and neonatal care over the past few decades might have diminished the predictive power of the Apgar score.

A critical appraisal of the Apgar system concluded that it is not especially sensitive, but fairly specific for predicting later death or handicap. It also stressed that it is important to consider changes in the Apgar score from the first minute to 5-minutes and/or 10-minutes. Recent studies have, however, demonstrated that the Apgar system remains as relevant for the prediction of neonatal survival today as it was almost 50 years ago, although other researchers report its limited helpfulness in pre-term infants.

POSTNATAL OUTCOMES

Mortality

Using either the 1- and/or 5-minute Apgar score to predict infant survival is probably the easiest way to validate the predictive power of the scoring system. Most studies over the last 45 years that tested the significance of the mortality predictive power of the Apgar score divided newborns into subgroups for analysis. They were classified as either term or preterm, low birth weight or normal birth weight, small for gestational age or normal for gestational age, twin or singleton, born naturally or by Caesarean section. Early neonatal mortality, neonatal mortality or infant mortality were considered as outcomes.

Since the inception of the Apgar system, there has been a general consensus that it is a useful predictor of neonatal/infant mortality for newborns who are full-term with normal birth weight, or normal birth weight for gestational age. Any criticism centred on the possibility of miscalculating the Apgar score, or that new technology that dramatically reduces neonatal mortality may have outdated the usefulness of the system. However, numerous studies have shown that the scoring system remains as relevant for prediction of infant survival today as it did almost 50 years ago.

A recent study of about 0.13 million US live-born full-term singleton infants without malformation showed that the relative risks of neonatal mortality were 1460 (95% CI: 835-2555) and 53 (95% CI: 20-140) for those with a 5-minute Apgar score 0 to 3 and 4 to 7, respectively, with reference to a 5-minute Apgar score of 7 to 10. Another study in Norway of about 0.24 million live-births without congenital malformation, except congenital dislocation of the hips, and with birth weights of at least 2500 g showed the corresponding relative risks were 386 (95% CI: 270-552) and 45 (95% CI: 30-68). The results of these studies were reinforced by an unpublished study of the Swedish Medical Birth Registry that analysed almost two million live-born full-term single-
ton infants without malformations. The relative risks of neonatal mortality for those with 5-minute Apgar score 0 to 3 and 4 to 7 were 464 (95% CI: 409-529) and 33 (95% CI: 29-38), respectively.

Most neonatal deaths occur in the first week of life. It is thus to be expected that the risk of mortality with a low Apgar score will drastically diminish thereafter. The 5-minute Apgar score is regarded as a better predictor of mortality than its 1-minute counterpart.6,16 This more powerful prognostic value is not only observed in term or normal birth weight infants, but also in premature or low birth weight infants.15,19

The final conclusion in another critical appraisal7 noted that a change in the Apgar score from 1 to 5 to 8 in the first few minutes of life substantially reduced the probability of neonatal death. This demonstrated the importance of considering both the 1- and 5-minute Apgar scores together. The Norwegian study meanwhile demonstrated that the accuracy of the Apgar score was even stronger when scores at 1 and 5 minutes were combined.12 If both scores were 3 or lower, the risk of neonatal death was 642-times higher than if they were 7 to 10.

Using the Apgar score to predict mortality in premature, small for gestational age or low birth weight infants is still controversial. In very low or low birth weight infants, a low Apgar score partly correlates with mortality, although the weak correlation emphasizes the limitations of the score in predicting mortality.7-8 When 1-minute and 5-minute Apgar scores were assessed in 748 low weight infants, a significant relationship was found with survival in the univariate analysis; however, neither of them accounted for more than 32% variance in the outcome.16 In a cohort of 852 preterm newborns, low Apgar scores were associated with increased neonatal mortality.17

Neurodevelopment
It is generally accepted that the Apgar score is not a useful predictor of neurodevelopment in term or preterm, or even normal birth weight or low birth weight infants.19-24 Some researchers have reported a significant correlation between the Apgar score and developmental outcome later in life.19,20,23 However, when important confounding variables, such as birth weight and gestational age were controlled for in the statistical analyses, Apgar scores provided only a very limited prognostic indicator of developmental outcome.20,23,24 In an investigation of 256 infants weighing less than 1800 g at birth, it was demonstrated that after controlling for birth weight and gestational age, the Apgar scores did not predict developmental outcome (ie. using the Bayley Mental and Psychomotor Developmental Indices as proxy), while a significant bivariate correlation existed between the Apgar scores and the indices.20

In the analysis of collaborative perinatal project data, 80% of infants who had an Apgar score between 0 and 3 at 10 minutes or later and survived were free of major handicap at early school age.21 In addition, the predictive value of a low Apgar score for neonatal neurological morbidity was confirmed to be poor in 805 appropriate-for-date term infants who were delivered vaginally.22

A prospective study of 111 term infants with a 5-minute Apgar score of less than 7 showed that a low Apgar score warranted developmental surveillance during the early years of life.23 However, in order to predict subtle developmental dysfunction evident at school entry age, it concluded that neonatal seizures must be considered.

Another follow-up study was carried out in 1942 subjects.24 After controlling for possible confounding influences such as perinatal factors and demographic characteristics, the sensitivity of a low 1-minute and a low 5-minute Apgar score for predicting a low intelligence test score at age 17 was 8% and 1.5%, respectively. In other words, low Apgar scores correlate very poorly with long-term intellectual outcome.

However, contradicting the
studies quoted above, a recent Swedish study showed that the odds ratio was 9.5 (95% CI: 7.2-12.5) for mental retardation for term babies with an Apgar score below 7, even after controlling for birth year, maternal age, parity and smoking.19

Cerebral Palsy
Using Apgar score to predict or to determine which infants are at high risk for cerebral palsy is still a matter for debate. A low Apgar score at 1 minute has been reported to be significantly associated with cerebral palsy in preterm infants.20 However, when delivery mode (Caesarean section or not) and parity were included in the statistical analysis, the Apgar score at 1 minute was no longer significant. The predictive value of the Apgar score was very limited in preterm infants.

For term infants, although a low Apgar score was a risk factor for the development of cerebral palsy, 55% of children who later developed cerebral palsy had Apgar scores of 7 to 10 at one minute, and 73% of them scored 7 to 10 at five minutes.21 A full-term infant with an initial Apgar score of 0 to 3 whose 10-minute score improved to 4 or higher had a 99% chance of not having cerebral palsy at the age of 7.

In Norway, a study of babies with a birth weight of at least 2500 g showed that the Apgar score remained important for the early identification of infants facing an increased risk for the development of cerebral palsy at the age of 8 to 12.13 Compared with children with a 5-minute Apgar score of 7 to 10, those who scored 0 to 3 had an 81-fold (95% CI: 48-138) higher risk for cerebral palsy. The study found the risk increased further to 642-fold (95% CI: 442-934) if both 1- and 5-minute Apgar scores were 0 to 3.

A recent Swedish study of over one million term births revealed that after controlling for birth year, maternal age, parity and smoking, infants with a 5-minute Apgar score under 7 had a 31-fold (95% CI: 27-36) increased risk for developing cerebral palsy.19

Asphyxia
A low Apgar score has often been misinterpreted as proof of birth asphyxia. This prompted the American Academy of Pediatrics (AAP) to express concern about 'abuse' of the score in 1986,24 with a revised statement published in 1996.25 They reiterated that Apgar scores alone should not be used as evidence that neurological damage was caused by hypoxia, a more appropriate term than asphyxia. According to the AAP, four criteria should be met to substantiate the diagnosis of birth asphyxia:

- profound metabolic or mixed acidemia (pH <7.00) on an umbilical arterial blood sample, if obtained;
- an Apgar score of 0 to 3 for longer than 5 minutes;
- neurological manifestations, eg. seizure, coma or hypotonia;
- evidence of multiorgan dysfunction.

It is now quite clear that a low Apgar score is not synonymous with birth asphyxia, and few people still make this mistake.

OTHER OUTCOMES

Apgar scores have also been tested for their ability to predict immediate neonatal morbidity. Data from a prospective Scandinavian study suggested that both the 1- and 5-minute scores of infants born after 23 weeks' gestation and delivered vaginally were powerful risk indicators for respiratory distress.28 Analysis of 270 intrapartum patients revealed that, when assessed independently, a 5-minute score of less than 7 was associated with both the need for admission to a neonatal intensive care unit and neonatal sepsis.29 The significance of the score did not alter, even after controlling for cord pH or the presence of meconium.

Apgar scores of 0 to 4 at 1 minute and 0 to 6 at 5 minutes were also investigated for risk criteria in the Utah High Risk Hearing Screening Program.30 Even when moderately depressed (5-minute Apgar score of value 4 to 6), scores were sensitive risk factors for sensorineural hearing loss.
There was also a significant influence of combined low 1-minute Apgar score and maternal cigarette smoking in predicting offending behaviour in 832 African-American youths, whereas the independent effects of the independent measures had no such effect.31

RISK FACTORS

Birth Weight
It is generally recognized that birth weight is significantly associated with the Apgar score, irrespective of whether the baby is born at term or preterm.

Low birth weight or an unusually large birth weight at term has been strongly associated with an increased risk of low Apgar score.19 Stratified by year of birth, maternal age, parity and smoking, the odds ratio for having a low Apgar score compared with babies of average birth weight was 5.3 (95% CI: 3.8-7.3) for birth weight less than 1500 g and 7.4 (95% CI: 1.4-40.5) for birth weight greater than 5500 g. A corresponding pattern was observed over the entire range of birth weight values, i.e. the risk of low Apgar score increased with increasing deviation from the mean birth weight, in either direction.

Babies weighing under 2500 g at birth, whether growth restricted, preterm or from a low-income population, also showed a significant correlation of low Apgar score with birth weight.8,22,34

Maternal Smoking
Maternal smoking is known to be related to a number of negative postnatal outcomes. Whether maternal smoking has a direct influence on Apgar score remains unclear. In a 1982 study, neither a univariate statistical analysis nor a stepwise multiple regression analysis identified a significant negative association between cigarette smoking and 1- or 5-minute Apgar scores.31 Maternal smoking, however, was a risk factor for babies with a moderately depressed Apgar score (4 to 6), particularly in older multiparas.19 Similar findings were obtained in a previous study.36 However, neither study considered confounding factors such as social class or alcohol intake in the statistical analysis.

Gestational Age
The premature newborn looks completely different from the full-term newborn, simply because of the different stages of maturity. A 28-week, 1100 g newborn is usually a bluish-red, not pink, colour at birth, with markedly reduced muscle tone and sluggish reflex irritability.37 A maximum of 1 point is assigned for each of these vital indicators when using the Apgar scoring system. Even if the newborn scores very well for respiratory effort and heart rate, the maximum score possible is 7. The 1- and 5-minute scores are thus not independent of gestational age.

A study of 73 pregnant women with normal newborn babies with a gestational age from 22 to 42 weeks revealed that the scoring of the skin colour of newborns was statistically indifferent to the varying gestational ages.38 Among the other vital indicators of the Apgar system, heart rate appeared to be the indicator least affected by immaturity, while respiratory effort, muscle tone and reflex irritability increased with gestational age.

Studies have therefore shown that for both preterm and term newborn groups, the Apgar score is significantly associated with the length of gestation.8,49 The minimum risk of a low Apgar score was observed at 38 to 40 gestational weeks. The risk became more obvious for babies born in week 41, and even more pronounced for babies born in week 43.19

Fetus Presentation and Mode of Delivery
Caesarean section, compared with vaginal delivery, increases the health risk for the mother and for the baby, while breech presentation at birth introduces complications during delivery and increases the risk of perinatal mortality.39,40 Many researchers have observed that breech births mean a higher
risk of low Apgar score.19,23,41,42 It is uncertain whether Caesarean section increases the risk of a low Apgar score.

One study found term singleton babies with breech presentation had an odds ratio of 2.6 (95% CI: 2.2-3.0) for a low Apgar score (<7) at 5 minutes, compared with babies in vertex presentation.19 Similar results were found in babies weighing less than 1000 g42 (except for term babies): the risk further increased if the baby was delivered vaginally (OR 6.67, 95% CI 5.9-7.6). In addition, a Danish study showed a 15-fold increased risk of low Apgar score in vaginal breech delivery babies.41

In another study of growth-restricted infants born by vaginal breech delivery and Caesarean delivery, the odds ratios of low 5-minute Apgar scores39 were 7.0 (95% CI: 1.8-28.3) and 0.2 (95% CI: 0.1-0.7), respectively. Breech delivery was therefore a risk factor for a low Apgar score, whilst Caesarean delivery was protective.

In contrast, the risk of having a low Apgar score for live born babies weighing less than 2.500 g was independent of the mode of delivery as well as the presentation of the fetus at birth.22 Another case-control study revealed that after controlling for birth weight, gestational age, maternal age and income, the relative risk was 1.29 (95% CI: 0.97-1.72).43

Meconium

The presence of meconium has been shown to be a significant predicting factor for a low 5-minute Apgar score among growth-restricted neonates.12 Early passage of thick meconium correlated with a low 1- and 5-minute Apgar score, while thick meconium and no meconium at all appeared to have no association with the Apgar score.44

Anaesthesia

Maternal sedation and analgesia may decrease tone and responsiveness of the newborn, resulting in a lower Apgar score.45 In vaginally delivered singleton infants born at term with a vertex presentation, epidural analgesia was associated with an increased risk of low Apgar score, giving an odds ratio of 2.1 (95% CI: 1.9-2.3).45 Some anaesthetic methods may be more beneficial to the newborn than others. Among growth-restricted neonates, those exposed to general anaesthesia had a lower 1- and 5-minute Apgar score than those in all other anaesthetic groups.33

In a study of elective Caesarean section deliveries, epidural block was used in 139 mothers while 471 underwent general anaesthesia. No baby in the epidural group was severely affected (Apgar score less than 4), compared with 6.2% in the general anaesthesia group. Only 4.3% in the epidural group, against 15.4% in the general anaesthesia group, were moderately affected.46

In another study of 837 newborns weighing less than 1000 g, corticosteroid use was a strong predictor of a high Apgar score, aside from gestational age and birth weight.42 This finding indicates that antenatal corticosteroids may benefit low birth weight newborns by preventing respiratory distress syndrome.

Other Risk Factors

In a Swedish study, the odds ratio for an Apgar score below 7 at 5 minutes increased moderately with maternal age and in neonates of primiparous mothers for term babies or for babies with birth weight over 2.500 g.14 The authors speculated that this risk increment was probably caused by multiple factors, since several complications of pregnancy increase with maternal age. A similar result was observed in another study.11

A larger proportion of low-Apgar-score-babies are also delivered during 'non-office hours' (5.00 pm to 6.59 am), as well as during holiday periods (June to August, December).14 This may suggest that personnel resources are an important factor. Similar observations were noted in a recent study of the relationship between early neonatal mortality and birth hour – infants born during the night and around 9 am were at higher risk of early neonatal mortality.47

Male newborns are more frequently found to have an Apgar
APGAR SCORE AND POSTNATAL OUTCOMES

The risk of a low Apgar score has also been found to be higher in twins, and even more pronounced for the second twin; 17 a delay in the delivery of the second twin may introduce influences already in utero. For a similar reason, a prolonged second stage of labour for singletons was significantly associated with a low Apgar score. 12

Maternal stress during pregnancy was also found to be an activator of physical illness processes in the mother which, when combined with other maternal risk factors such as past pregnancy complications, pregnancy symptoms during the first and third trimesters, and illness-proneness, relate to neonatal outcome measured by Apgar score at 5 minutes. 49 In another recent study however, maternal illness did not correlate with subsequent Apgar score. 47

CONCLUSION

The Apgar score is as valid in clinical practice and medical research today as it was 50 years ago. Numerous studies have analysed its usefulness and limitations. More consideration of previous studies, together with future studies, will provide further insight into when and how the Apgar score should be used in clinical practice. But a clinical scoring system that has survived 50 years under the scrutiny of evidence-based medicine should, and must, be taken very seriously.

REFERENCES

ACKNOWLEDGMENTS

This study was supported by the Department of Paediatrics and the Clinical Trials Centre, Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China. We are indebted to the reviewer, Dr Barbara CC Lam, for her constructive comments on previous versions of the manuscript.

About the Authors

Ms Chong is a PhD candidate in the Clinical Trials Centre and the Department of Paediatrics, Faculty of Medicine, The University of Hong Kong. Dr Yap is a Senior Lecturer in the Department of Statistics and Actuarial Science, Faculty of Social Sciences, The University of Hong Kong. Professor Karlberg is Director of the Clinical Trials Centre, Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.

Competing interests: none declared.

References to “Postmenopausal Osteoporosis”.

24. Evans SF, Dave MW. Low and conventional dose transdermal estradiol are equally effective at preventing bone loss in spine and femur at all postmenopausal ages. Clin Endocrinol 1996;44:79-84.

References continued on page 48.