<table>
<thead>
<tr>
<th>Title</th>
<th>On a class of double cosets in reductive algebraic groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Lu, JH; Yakimov, M</td>
</tr>
<tr>
<td>Citation</td>
<td>International Mathematics Research Notices, 2005 n. 13, p. 761-797</td>
</tr>
<tr>
<td>Issued Date</td>
<td>2005</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/53389</td>
</tr>
<tr>
<td>Rights</td>
<td></td>
</tr>
</tbody>
</table>
ON A CLASS OF DOUBLE COSETS IN REDUCTIVE ALGEBRAIC GROUPS

JIANG-HUA LU AND MILEN YAKIMOV

Abstract. We study a class of double coset spaces $R_A \backslash G_1 \times G_2 / R_C$, where G_1 and G_2 are connected reductive algebraic groups, and R_A and R_C are certain spherical subgroups of $G_1 \times G_2$ obtained by “identifying” Levi factors of parabolic subgroups in G_1 and G_2. Such double cosets naturally appear in the symplectic leaf decompositions of Poisson homogeneous spaces of complex reductive groups with the Belavin–Drinfeld Poisson structures. They also appear in orbit decompositions of the De Concini–Procesi compactifications of semi-simple groups of adjoint type. We find explicit parametrizations of the double coset spaces and describe the double cosets as homogeneous spaces of $R_A \times R_C$. We further show that all such double cosets give rise to set-theoretical solutions to the quantum Yang–Baxter equation on unipotent algebraic groups.

1. The setup

1.1. The setup. Let G_1 and G_2 be two connected reductive algebraic groups over an algebraically closed base field k. For $i = 1, 2$, we will fix a maximal torus H_i in G_i and a choice Δ_i^+ of positive roots in the set Δ_i of all roots for G_i with respect to H_i. For each $\alpha \in \Delta_i$, we will use U_i^α to denote the one-parameter unipotent subgroup of G_i determined by α. Let Γ_i be the set of simple roots in Δ_i^+. For a subset A_i of Γ_i, let P_{A_i} be the standard parabolic subgroup of G_i containing the Borel subgroup $B_i = H_i U_i$, where $U_i = \prod_{\alpha \in \Delta_i^+} U_i^\alpha$. Let M_{A_i} and U_{A_i} be respectively the Levi factor of P_{A_i} containing H_i and the unipotent radical of P_{A_i}. Then $P_{A_i} = M_{A_i} U_{A_i}$, and M_{A_i} and U_{A_i} intersect trivially. Denote by M_{A_i}' the derived subgroups of the Levi factors M_{A_i}. We will also use Δ_{A_i} to denote the set of roots in Δ_i that are in the linear span of A_i. Set $\Delta_{A_i}' = \Delta_{A_i} \cap \Delta_{i}^+$.

Definition 1.1. Identify Γ_1 and Γ_2 with the Dynkin diagrams of G_1 and G_2 respectively. By a partial isometry from Γ_1 to Γ_2 we mean an isometry from a subdiagram of Γ_1 to a subdiagram of Γ_2. We will denote by $P(\Gamma_1, \Gamma_2)$ the set of all partial isometries from Γ_1 to Γ_2. If $\alpha \in P(\Gamma_1, \Gamma_2)$, and if A_1 and A_2 are the domain and the range of α respectively, we define a generalized a-graph to be an abstract (not necessarily algebraic) subgroup K of $M_{A_1} \times M_{A_2}$ such that $K \cap (U_{1}^\alpha \times U_{2}^{a(\alpha)}) \subset U_{1}^\alpha \times U_{2}^{a(\alpha)}$ is the graph of a group isomorphism from U_{1}^α to $U_{2}^{a(\alpha)}$ for every $\alpha \in \Delta_{A_1}$.

By an admissible pair for $G_1 \times G_2$ we mean a pair (a, K), where $a \in P(\Gamma_1, \Gamma_2)$ and K is a generalized a-graph. If $A = (a, K)$ is an admissible pair, we define the subgroup R_A of $P_{A_1} \times P_{A_2}$ by

$$R_A = K(U_{A_1} \times U_{A_2}).$$

1.2. An Example. Assume that G_1 and G_2 are connected and simply-connected. Fix a partial isometry $a \in P(\Gamma_1, \Gamma_2)$ with domain A_1 and range A_2. Then the derived subgroups M_{A_i}' of the Levi factors M_{A_i} are connected and simply-connected [24, Corollary 5.4], and a can be lifted to a group isomorphism $\theta_a : M_{A_1}' \rightarrow M_{A_2}'$. Let

$$\text{Graph}(\theta_a) = \{(m_1, \theta_a(m_1)) \mid m_1 \in M_{A_1}'\} \subseteq M_{A_1}' \times M_{A_2}'$$

2000 Mathematics Subject Classification. Primary 20G15; Secondary 14M17, 53D17.
be the graph of θ_a, and let Z_{A_i} be the center of M_{A_i} for $i = 1, 2$. Then, any abstract subgroup X of $Z_{A_1} \times Z_{A_2}$ gives rise to the group $K = X \text{Graph}(\theta_a)$ which can be easily seen to be a generalized α-graph for $G_1 \times G_2$, and for the corresponding admissible pair $A = (a, K)$, we have

$$R_A = X\text{Graph}(\theta_a) (U_{A_1} \times U_{A_2}).$$

As a direct consequence of Lemma 3.2 in §3, one sees that, in the case when G_1 and G_2 are connected and simply-connected, all admissible pairs A and groups R_A are of the above type.

1.3. Main problem. Fix two admissible pairs $A = (a, K)$ and $C = (c, L)$. In this paper, we obtain the solutions to the following problems:

1.) Find an explicit parametrization of all (R_A, R_C) double cosets in $G_1 \times G_2$.
2.) Describe explicitly each (R_A, R_C) double coset as a homogeneous space of $R_A \times R_C$.
3.) Find a closed formula for the dimension of each (R_A, R_C) double coset.

Remark 1.2. For an admissible pair $A = (a, K)$, we will set

$$(1.2) \quad R_A^- = K(U_{A_1} \times U_{A_2}^-),$$

where $U_{A_2}^-$ is the subgroup of G_2 generated by the one-parameter subgroups U_2^α for $\alpha \in -\Delta_{A_2}^\pm$. It is easy to see that solutions to the problems in §1.3 lead to solutions to the corresponding problems for the (R_A^-, R_C^\pm) double cosets in $G_1 \times G_2$.

1.4. Motivation. Let G be a complex semi-simple Lie group of adjoint type. The wonderful compactification \overline{G} of G, constructed by De Concini and Procesi in [4], is a smooth projective $(G \times G)$-variety with finitely many $G \times G$ orbits. It was proved in [4] that every $G \times G$ orbit on \overline{G} is isomorphic to $(G \times G)/R_C^\pm$ for an admissible pair $C = (c, L)$ for $G \times G$, where c is the restriction of the identity automorphism of the Dynkin diagram of G to some subdiagram. Let G be the Lie algebra of G. De Concini and Procesi further defined an embedding of the wonderful compactification \overline{G} of G in the projective variety of all Lie subalgebras of $g \oplus g$. Its image is the closure of the $G \times G$ orbit of the diagonal subalgebra of $g \oplus g$ which clearly lies in the variety L_g of all Lagrangian subalgebras of $g \oplus g$. Here, a subalgebra l of $g \oplus g$ is said to be Lagrangian if $\dim l = \dim g$ and if l is isotropic with respect to the symmetric bilinear form on $g \oplus g$ given by

$$\langle x_1 + y_1, x_2 + y_2 \rangle = \langle x_1, x_2 \rangle - \langle y_1, y_2 \rangle, \quad x_1, y_1, x_2, y_2 \in g,$$

where $\langle \cdot, \cdot \rangle$ denotes the Killing form of g. The variety L_g was recently studied in [12] in connection with Drinfeld’s classification [7] of Poisson homogeneous spaces of Poisson Lie groups. It was further shown in [12] that all $G \times G$ orbits in L_g (under the adjoint action) are again of the type $(G \times G)/R_C^\pm$ for some admissible pairs $C = (c, L)$ for $G \times G$, but this time the partial isometries c can be arbitrary. Thus, solutions to the double coset problems in §1.3 can be used to classify R_A^\pm orbits in L_g for any admissible pair A.

Our motivation for studying R_A^\pm orbits in L_g comes from the theory of Poisson Lie groups. In [1], Belavin and Drinfeld classified all quasi-triangular Poisson structures on G. Denote such a Poisson structure on G by π_{BD}. The Poisson Lie groups (G, π_{BD}) have received a lot of attention since the appearance of [1]. They were explicitly quantized by Etingof–Schedler–Schiffmann in [10] and their symplectic leaves were studied by the second author in [25]. One important problem regarding the Poisson Lie groups (G, π_{BD}) is the study of their Poisson homogeneous spaces [7]. The variety L_g of Lagrangian subalgebras of $g \oplus g$ serves as a “master” variety of Poisson homogeneous spaces of (G, π_{BD}). Indeed, identify G with the diagonal subgroup G_Δ of $G \times G$. It is shown in [11] that L_g carries a natural Poisson structure Π_{BD}, such that every G_Δ orbit in L_g, when equipped with Π_{BD}, is a Poisson homogeneous space of (G, π_{BD}). To identify these homogeneous spaces of G, one needs to classify G_Δ orbits in L_g, and to study their symplectic leaf decompositions with respect to
It was used by He [15] to study the closure of the unipotent variety in G. We also point out that intersections of B of Drinfeld triple defined in [1]. In the forthcoming paper [19], we will show that intersections and N of g are more general class of Poisson structures on L. The latter were classified by Delorme in [5].

For the so-called standard Poisson structure on G, we have $N(G^*_{BD}) = B \times B^-$, where (B, B^-) is a pair of opposite Borel subgroups of G. In [23], Springer classified the $B \times B^-$ orbits in the wonderful compactification G of G and studied the intersection cohomology of the $B \times B^-$ orbit closures. A classification of G_Δ orbits in G was given by Lusztig in [21]. It was used by He [15] to study the closure of the unipotent variety in G. Our Theorem 2.2 generalizes both Springer's and Lusztig's results. We also point out that intersections of G_Δ and $B \times B^-$ orbits in the closed $G \times G$ orbits in L_g are closely related to the double Bruhat cells in G and intersections of dual Schubert cells on the flag variety of G (see [2, 12, 13]).

It would be very interesting to understand intersections of arbitrary G_Δ and $N(G^*_{BD})$ orbits in L_g in the framework of the theory of cluster algebras of Fomin and Zelevinsky [14], and to find toric charts on the symplectic leaves of (L_g, Π_{BD}) using the methods of Kogan and Zelevinsky [18].

Our approach to the double coset space $R_A \backslash G_1 \times G_2 / R_C$ relies on an inductive argument that relates an (R_A, R_C) double coset in $G_1 \times G_2$ to cosets of similar type in the product $M_1 \times M_2$ of Levi subgroups $M_1 \subset G_1$ and $M_2 \subset G_2$. Such an argument first appeared in the work of the second author [25] on the symplectic leaf decomposition of the Poisson Lie group (G, π_{BD}). It dealt with the case $G_1 = G_2 = G$ and $A = C$. Recently the first author and Evens [12] extended the methods of [25] to the case $G_1 = G_2 = G$ and $R_A = G_\Delta$. The advantage of the approach in this paper to the one in [25] is that in this paper we find an explicit relation between the double cosets in $G_1 \times G_2$ and the double cosets in $M_1 \times M_2$, while [25] deals with various complicated Zariski open subsets of the double cosets in $G_1 \times G_2$. In particular, the iteration of the inductive procedure in [25] is only helpful for studying Zariski open subsets of the symplectic leaves of π_{BD}, while we expect that the results of this paper will be useful in understanding globally all the symplectic leaves of (L_g, Π_{BD}).

The roots of the methods used in this paper can be traced back to the inductive procedure of Duflo [8] and Moeglin–Rentschler [22] for describing the primitive spectrum of the universal enveloping algebra of a Lie algebra which is in general neither solvable nor semi-simple. The reason for this relation is that the Poisson structures Π_{BD} on L_g vanish at many points and the corresponding linearizations give rise to Lie algebras that are rarely semi-simple or solvable. Due to the Kirillov–Kostant orbit method, one expects a close relation between the primitive spectrum of the quantized algebras of coordinate rings of various affine subvarieties of L_g (which are in fact deformations of the universal enveloping algebras of the linearizations) and the symplectic leaves of such affine Poisson subvarieties of L_g. From this point of view, our method can be considered as a nonlinear quasiclassical analog of [8, 22].

1.5. Organization of paper. The statements of the main results in this paper are given in §2. The two sections, §3 and §4, serve as preparations for the proofs of the main results which are given in §5 and §6. In §7, we describe some solutions to the set-theoretical Yang–Baxter equation that arise in our solution to 2) of the main problems in §1.3. In §8, we classify (R_A, P) double cosets in $G_1 \times G_2$ for any admissible pair A and any standard parabolic subgroup P of $G_1 \times G_2$, and we show in particular that R_A is a spherical subgroup of $G_1 \times G_2$.

\[\Pi_{BD}, \text{ one needs to classify } N(G^*_{BD}) \text{ orbits in } L_g, \text{ where } G^*_{BD} \text{ is the dual Poisson Lie group of } (G, \pi_{BD}) \text{ inside } G \times G, \text{ and } N(G^*_{BD}) \text{ is the normalizer subgroup of } G^*_{BD} \text{ in } G \times G. \text{ Both } G^*_{BD} \text{ and } N(G^*_{BD}) \text{ are of the type } R_A^-, \text{ where the partial isometry } a \text{ in } A = (a, K) \text{ is the Belavin–Drinfeld triple defined in [1]. In the forthcoming paper [19], we will show that intersections of } G_\Delta \text{ and } N(G^*_{BD}) \text{ orbits in } L_g \text{ are all regular Poisson subvarieties of } (L_g, \Pi_{BD}). \text{ Solutions to the problems in } \S 1.3 \text{ will be used in [19] to classify such orbits and to compute the ranks of the Poisson structures } \Pi_{BD}. \text{ Based on the results of this paper, in [19] we will also treat the more general class of Poisson structures on } L_g, \text{ obtained from arbitrary lagrangian splittings of } g \oplus g. \text{ The latter were classified by Delorme in [5].} \]
1.6. Notation. Throughout this paper, the letter e always denotes the identity element of any group. We will denote by Ad the conjugation action of a group G on itself, given by $\text{Ad}_g(h) = ghg^{-1}$ for $g, h \in G$. If M_1 and M_2 are two sets and if $K \subset M_1 \times M_2$, we can think of K as a correspondence between M_1 and M_2. If M_3 is another set and if $L \subset M_2 \times M_3$, then one defines the composition of L and K to be

$$L \circ K = \{(m_1, m_3) \in M_1 \times M_3 \mid \exists m_2 \in M_2 \text{ such that } (m_1, m_2) \in K, (m_2, m_3) \in L\}.$$

1.7. Acknowledgements. This work was started while the authors were visiting the Erwin Schrödinger institute for Mathematical Physics, Vienna in August 2003. We would like to thank the organizers A. Alekseev and T. Ratiu of the program on Moment Maps for the invitation to participate. During the course of the work, the first author enjoyed the hospitality of IHES and UCSB and the second author of the University of Hong Kong. We are grateful to these institutions for the warm hospitality. We would also like to thank S. Evens, K. Goodearl, G. Karaali and A. Moy for helpful discussions. We are indebted to the referee for carefully reading the paper, pointing out many typos, and suggesting several improvements in the exposition. The research of the first author was partially supported by (USA)NSF grant DMS-0105195 and HKRGC grant 701603. The research of the second author was partially supported by NSF grant DMS-0406057 and a UCSB junior faculty research incentive grant.

2. Statements of the main results

The main parameters that come into our classification of (R_A, R_C) double cosets in $G_1 \times G_2$ are certain elements in the Weyl groups of G_1 and G_2 and certain “twisted conjugacy classes” in Levi subgroups of G_1.

2.1. Minimal length representatives. For $i = 1, 2$, let W_i be the Weyl group of Γ_i. For a subset D_i of Γ_i, we will use W_{D_i} to denote the subgroup of W_i generated by D_i. Let $W_i^{D_i} \subset W_i$ and $D_iW_i \subset W_i$ be respectively the set of minimal length representatives of the cosets from W_i/W_{D_i} and $W_{D_i}\backslash W_i$. It is well-known that

$$w_i \in W_i^{D_i} \quad \text{if and only if} \quad w_i(D_i) \subset \Delta_i^+$$

and

$$w_i \in D_iW_i \quad \text{if and only if} \quad w_i^{-1}(D_i) \subset \Delta_i^+.$$
2.3. Classification of double cosets. Let \(A = (a, K) \) and \(C = (c, L) \) be two admissible pairs, and let \(A_1 \) and \(A_2 \) be the domain and the range of \(a \) and \(C_1 \) and \(C_2 \) the domain and the range of \(c \) respectively. We now state our classification of \((R_A, R_C) \) double cosets in \(G_1 \times G_2 \). In doing so, we will need to refer to several lemmas that will be proved in §3–§6.

For \(v_1 \in W_1^{A_1} \) and \(v_2 \in A_2W_2 \), consider the sets

\[
(2.1) \quad A_1(v_1, v_2) = \{ \alpha \in A_1 \, | \, (v_1^{-1} v_2^{-1} a)^n \alpha \text{ is defined and is in } A_1 \text{ for } n = 0, 1, \ldots \}
\]

\[
(2.2) \quad C_2(v_1, v_2) = \{ \beta \in C_2 \, | \, (v_2^{-1} a v_1 c^{-1})^n \beta \text{ is defined and is in } C_2 \text{ for } n = 0, 1, \ldots \}
\]

Then \(A_1(v_1, v_2) \) is the largest subset of \(A_1 \) that is invariant under \(v_1^{-1} v_2^{-1} a \), and \(C_2(v_1, v_2) \) is the largest subset of \(C_2 \) that is invariant under \(v_2^{-1} a v_1 c^{-1} \). Note that

\[
(2.3) \quad v_2^{-1} a \text{ and } c v_1^{-1}: A_1(v_1, v_2) \to C_2(v_1, v_2)
\]

are both partial isometries from \(\Gamma_1 \) to \(\Gamma_2 \). Fix a representative \(\hat{v}_i \) in the normalizer of \(H_i \) in \(G_i \), and define

\[
(2.4) \quad K(v_1, v_2) = (M_{A_1(v_1, v_2)} \times M_{C_2(v_1, v_2)}) \cap \text{Ad}^{-1}_{(\hat{c}, \hat{v}_2)} K
\]

\[
(2.5) \quad L(v_1, v_2) = (M_{A_1(v_1, v_2)} \times M_{C_2(v_1, v_2)}) \cap \text{Ad}^{-1}_{(\hat{v}_1, \hat{c})} L.
\]

It is easy to see that \(K(v_1, v_2) \) is a generalized \((v_2^{-1} a)\)-graph, while \(L(v_1, v_2) \) is a generalized \((c v_1^{-1})\)-graph for the partial isometries in \((2.3) \). Define

\[
(2.6) \quad J(v_1, v_2) = \{(m, m') \in M_{A_1(v_1, v_2)} \times M_{A_1(v_1, v_2)} \, | \, \exists n \in M_{C_2(v_1, v_2)} \text{ such that } (m, n) \in K(v_1, v_2) \text{ and } (m', n) \in L(v_1, v_2) \}.
\]

Then \(J(v_1, v_2) \) is a generalized \((v_1^{-1} v_2^{-1} a)\)-graph for the partial isometry

\[
v_1^{-1} v_2^{-1} a: A_1(v_1, v_2) \to A_1(v_1, v_2).
\]

This follows from Lemma 3.5 in §3 and the facts that if \(\sigma \) is the map

\[
\sigma: M_{A_1(v_1, v_2)} \times M_{C_2(v_1, v_2)} \to M_{C_2(v_1, v_2)} \times M_{A_1(v_1, v_2)}: (m, n) \mapsto (n, m),
\]

then \(\sigma(L(v_1, v_2)) \) is a generalized \((v_1^{-1} a)\)-graph, and \(J(v_1, v_2) \) is the composition

\[
J(v_1, v_2) = \sigma(L(v_1, v_2)) \circ K(v_1, v_2)
\]

(of group correspondences, see §1.6). Let \(J(v_1, v_2) \) act on \(M_{A_1(v_1, v_2)} \) from the left by

\[
(2.7) \quad (l_1, n_1) \cdot m_1 := l_1 m_1 n_1^{-1}, \quad (l_1, n_1) \in J(v_1, v_2), \quad m_1 \in M_{A_1(v_1, v_2)},
\]

By Definition 2.1, \(J(v_1, v_2) \) orbits in \(M_{A_1(v_1, v_2)} \) are \((v_1^{-1} v_2^{-1} a)\)-twisted conjugacy classes in \(M_{A_1(v_1, v_2)} \). Let \(Z_{C_2(v_1, v_2)} \) be the center of \(M_{C_2(v_1, v_2)} \); let \(\eta_2: G_1 \times G_2 \to G_2 \) be the projection, and let

\[
Z(v_1, v_2) = Z_{C_2(v_1, v_2)}/(Z_{C_2(v_1, v_2)} \cap \eta_2^{-1}(\eta_2(K))) \cdot (Z_{C_2(v_1, v_2)} \cap \eta_2(L)).
\]

For each \(s \in Z(v_1, v_2) \), fix a representative \(\hat{s} \) of \(s \) in \(Z_{C_2(v_1, v_2)} \). For \((g_1, g_2) \in G_1 \times G_2 \), we will use \([g_1, g_2]\) to denote the double coset \(R_A(g_1, g_2) R_C \) in \(G_1 \times G_2 \). We can now state our main theorem on the classification of \((R_A, R_C)\) double cosets in \(G_1 \times G_2 \).

Theorem 2.2. Let \(A = (a, K) \) and \(C = (c, L) \) be any two admissible pairs for \(G_1 \times G_2 \). Then every \((R_A, R_C)\) double coset of \(G_1 \times G_2 \) is of the form

\[
[m_1 \cdot \hat{v}_1 \cdot \hat{s}, v_2] \text{ for some } v_1 \in W_1^{A_1}, v_2 \in A_2W_2, \quad m_1 \in M_{A_1(v_1, v_2)}, \quad s \in Z(v_1, v_2).
\]

Two such double cosets \([m_1 \cdot \hat{v}_1 \cdot \hat{s}, v_2] \text{ and } [m'_1 \cdot \hat{v}'_1 \cdot \hat{s}', v_2]\) coincide if and only if \(v'_i = v_i \) for \(i = 1, 2 \), \(s = s' \), and \(m_1 \) and \(m'_1 \) are in the same \(J(v_1, v_2) \) orbit in \(M_{A_1(v_1, v_2)} \).
Example 2.3. If \(\eta_2(K) = M_{A_2} \) or \(\eta_2(L) = M_{C_2} \), then \(Z(v_1, v_2) = \{ e \} \) for all choices of \((v_1, v_2)\). In particular, every \((R_A, R_C)\) double coset of \(G_1 \times G_2 \) is of the form

\[
[m_1 \hat{v}_1, \hat{v}_2] \text{ for some } v_1 \in W^{C_1}, v_2 \in A^2 W_2, m_1 \in M_{A_1(v_1, v_2)}.
\]

Two cosets of this type \([m_1 \hat{v}_1, \hat{v}_2] \) and \([m'_1 v'_1, v'_2] \) coincide if and only if \(v'_i = v_i \) for \(i = 1, 2 \), and \(m_1 \) and \(m'_1 \) are in the same \(J(v_1, v_2) \) orbit in \(M_{A_1(v_1, v_2)} \).

Example 2.4. If \(K \) and \(L \) are respectively the graphs of group isomorphisms

\[
\theta_a: M_{A_1} \to M_{A_2} \quad \text{and} \quad \theta_c: M_{C_1} \to M_{C_2},
\]

the group \(J(v_1, v_2) \) is the graph of the group automorphism

\[
j(v_1, v_2) := \text{Ad}_{v_1} \theta_c^{-1} \text{Ad}_{v_2} \theta_a: M_{A_1(v_1, v_2)} \to M_{A_1(v_1, v_2)}.
\]

Then every \((R_A, R_C)\) orbit in \(G_1 \times G_2 \) is of the form \([m_1 \hat{v}_1, \hat{v}_2]\) for a unique pair \((v_1, v_2) \in W^{C_1} \times A^2 W_2 \) and some \(m_1 \in M_{A_1(v_1, v_2)} \). Two such cosets \([m_1 \hat{v}_1, \hat{v}_2]\) and \([m'_1 \hat{v}_1, \hat{v}_2]\) coincide if and only if \(m_1 \) and \(m'_1 \) are in the same \(j(v_1, v_2) \)-twisted conjugacy class (see §2.2).

2.4. Structure of double cosets. Let \(A = (a, K) \) and \(C = (c, L) \) be two admissible pairs for \(G_1 \times G_2 \). For \(q = (g_1, g_2) \in G_1 \times G_2 \), set

\[
\text{Stab}(q) = \text{Ad}_{(g_1, g_2)}^{-1}(R_A) \cap \text{Ad}_{(g_1, g_2)}(R_C).
\]

Then the double coset \(R_A q R_C \) in \(G_1 \times G_2 \), considered as an \(R_A \times R_C \)-space under the action

\[
(r_A, r_C) \cdot q' = r_A q r_C^{-1},
\]

is given by

\[
R_A q R_C = (R_A \times R_C)/\{(\text{Ad}_{(g_1, g_2)}(r_A), \text{Ad}_{(g_1, g_2)}^{-1}(r_C)) \mid r \in \text{Stab}(q)\}.
\]

For \(q = (m_1 \hat{v}_1, \hat{v}_2 s_2) \) as in Theorem 2.2, where \(m_1 \in M_{A_1(v_1, v_2)} \), \(v_1 \in W^{C_1} \), \(v_2 \in A^2 W_2 \), and \(s_2 \in Z_{C_2(v_1, v_2)} \), we will now give an explicit description of \(\text{Stab}(q) \). Let \(\pi_{A_1}: P_{A_1} \to M_{A_1} \) and \(\pi_{C_2}: P_{C_2} \to M_{C_2} \) be, respectively, the projections with respect to the decompositions \(P_{A_1} = M_{A_1} N_{A_1} \) and \(P_{C_2} = M_{C_2} N_{C_2} \). By 2) of Lemma 3.4 in §3 (by taking \(D_1 = 0 \) therein), the group \(K \) gives rise to a group isomorphism \(\theta_a: U_1 \cap M_{A_1} \to U_2 \cap M_{A_2} \) such that \(\theta_a(U_1^\sigma) = U_2^{\sigma_1} \) for every \(\sigma \in \Delta_{A_1} \). Similarly, we have the group isomorphism \(\theta_c: U_1 \cap M_{C_1} \to U_2 \cap M_{C_2} \) induced from the group \(L \). We will prove that

\[
\text{Stab}(q) \subset \left(P_{A_1(v_1, v_2)} \cap v_1(P_{C_1}) \right) \times \left(P_{C_2(v_1, v_2)} \cap v_2^{-1}(P_{A_2}) \right),
\]

and we will use the maps \(\pi_{A_1}, \pi_{C_2}, \theta_a, \) and \(\theta_c \) to describe \(\text{Stab}(q) \).

Note that \(v_1 \in A_1(v_1, v_2) W_{C_1} \) and \(v_2 \in A^2 W_{C_2(v_1, v_2)} \) because

\[
v_1^{-1}(A_1(v_1, v_2)) = c^{-1}(C_2(v_1, v_2)) \subset C_1 \quad \text{and} \quad v_2(C_2(v_1, v_2)) = a(A_1(v_1, v_2)) \subset A_2.
\]

By Lemma 4.2 in §4, we have

\[
P_{A_1(v_1, v_2)} \cap v_1(P_{C_1}) = M_{A_1(v_1, v_2)} \left(U_{A_1(v_1, v_2)} \cap v_1(U_1) \right),
\]

\[
P_{C_2(v_1, v_2)} \cap v_2^{-1}(P_{A_2}) = M_{C_2(v_1, v_2)} \left(U_{C_2(v_1, v_2)} \cap v_2^{-1}(U_2) \right).
\]

Consider the group homomorphisms

\[
\phi_1 = \text{Ad}_{m_1 v_1} \theta_c^{-1} \pi_{C_2}: U_2 \to \text{Ad}_{m_1}(U_1),
\]

\[
\phi_2 = \text{Ad}_{v_2 s_2} \theta_a \pi_{A_1}: U_1 \to U_2.
\]

In §6 we will show that

\[
\sigma_1 = \phi_1 \phi_2 \in \text{End}(U_{A_1(v_1, v_2)} \cap v_1(U_1)),
\]

\[
\sigma_2 = \phi_2 \phi_1 \in \text{End}(U_{C_2(v_1, v_2)} \cap v_2^{-1}(U_2)).
\]
are well-defined and that $\sigma^{k+1}_1 \equiv e$ and $\sigma^{k+1}_2 \equiv e$ for some integer $k \geq 1$, where e stands for the trivial endomorphism. Consider the subgroups

\begin{align*}
(2.17) & \quad U_1 \cap v_1(U_G) = U_{A_1(v_1, v_2)} \cap v_1(U_G) \subset U_{A_1(v_1, v_2)} \cap v_1(U_1), \\
(2.18) & \quad U_2 \cap v_2^{-1}(U_G) = U_{C_2(v_1, v_2)} \cap v_2^{-1}(U_G) \subset U_{C_2(v_1, v_2)} \cap v_2^{-1}(U_2),
\end{align*}

and define

\begin{align*}
\psi_1 : (U_1 \cap v_1(U_G)) \times (U_2 \cap v_2^{-1}(U_G)) & \to U_{A_1(v_1, v_2)} \cap v_1(U_1), \\
\psi_2 : (U_1 \cap v_1(U_G)) \times (U_2 \cap v_2^{-1}(U_G)) & \to U_{C_2(v_1, v_2)} \cap v_2^{-1}(U_2),
\end{align*}

respectively by

\begin{align*}
(2.19) & \quad \psi_1(n_1, n_2) = \phi_1(n_2) \sigma_1(n_1 \phi_1(n_2)) \sigma_1^2(n_1 \phi_1(n_2)) \cdots \sigma_1^k(n_1 \phi_1(n_2)), \\
(2.20) & \quad \psi_2(n_1, n_2) = \phi_2(n_1) \sigma_2(n_2 \phi_2(n_1)) \sigma_2^2(n_2 \phi_2(n_1)) \cdots \sigma_2^k(n_2 \phi_2(n_1)).
\end{align*}

Theorem 2.5. Let the notation be as in Theorem 2.2. For $q = (m_1 v_1, v_2 s_2)$, where $m_1 \in M_{A_1(v_1, v_2)}$, $v_1 \in W_1^C$, $v_2 \in A^2 W_2$, and $s_2 \in Z_{C_2(v_1, v_2)}$, we have the semi-direct product decomposition

$$
\text{Stab}(q) = \text{Stab}_M(q) \text{Stab}_U(q),
$$

where

$$
\text{Stab}_M(q) = K(v_1, v_2) \cap \text{Ad}(m_1, e) L(v_1, v_2)
$$

$$
= (M_{A_1(v_1, v_2)} \times M_{C_2(v_1, v_2)}) \cap \text{Ad}(m_1, e) \text{Ad}(v_1, v_2) K \cap \text{Ad}(m_1, e) L,
$$

$$
\text{Stab}_U(q) = \{ (n_1 \psi_1(n_1, n_2), n_2 \psi_2(n_1, n_2)) \mid (n_1, n_2) \in (U_1 \cap v_1(U_G)) \times (U_2 \cap v_2^{-1}(U_G)) \}
$$

$$
\subset (U_{A_1(v_1, v_2)} \cap v_1(U_1)) \times (U_{C_2(v_1, v_2)} \cap v_2^{-1}(U_2)).
$$

In particular \(\text{Stab}(q)\) is the semi-direct product of

$$
\text{Stab}_M(q) \cap (M_{A_1(v_1, v_2)} \times M_{C_2(v_1, v_2)})
$$

and

$$
\text{Stab}_U(q) \cap ((U_{A_1(v_1, v_2)} \cap v_1(U_1)) \times (U_{C_2(v_1, v_2)} \cap v_2^{-1}(U_2))),
$$

which are defined in (2.9) and (2.11)-(2.12).

Remark 2.6. For $m_1 \in M_{A_1(v_1, v_2)}$, let $J_{m_1}(v_1, v_2)$ be the stabilizer subgroup of $J(v_1, v_2)$ at m_1 for the action of $J(v_1, v_2)$ on $M_{A_1(v_1, v_2)}$ given by (2.8), cf. Definition 2.1. We will show in Lemma 6.2 in §6 that $\text{Stab}_M(q)$ is a central extension of $J_{m_1}(v_1, v_2)$ by

$$
(\ker \eta_1 | L) \cap (\text{Id} \times v_2^{-1})(\ker \eta_1 | K) \subset \{ e \} \times Z_{C_2(v_1, v_2)},
$$

where, for $i = 1, 2, \eta_1 : G_1 \times G_2 \to G_1$ is the projection.

2.5. A dimension formula.

Theorem 2.7. In the notation of Theorem 2.5, if K and L are algebraic subgroups of $G_1 \times G_2$, or if the base field is \mathbb{C} and K and L are Lie subgroups of $G_1 \times G_2$, then the double coset $[m_1 v_1, v_2 s_2]$ (which is clearly smooth subvariety or submanifold, respectively) has dimension equal to

$$
l(v_1) + l(v_2) + \dim P_{A_1} - \dim M_{A_1(v_1, v_2)} + \dim P_{C_2} - \dim Z_{C_2(v_1, v_2)}
$$

$$
+ \dim \eta_2 (KL \cap v_1^{-1} Z_{A_1(v_1, v_2)} \times v_2 Z_{C_2(v_1, v_2)}) + \dim (J(v_1, v_2) \cdot m_1).
$$

Here $l(\cdot)$ denotes the length function on the Weyl groups W_1 and W_2, and $J(v_1, v_2) \cdot m_1$ is the $J(v_1, v_2)$ orbit through m_1 for the $J(v_1, v_2)$ action on $M_{A_1(v_1, v_2)}$ given in (2.8).
Let us note that in the two cases in Theorem 2.7, the double coset \([m_1 \hat v_1, \hat v_2 s]\) is a locally closed algebraic subset of \(G_1 \times G_2\) (as an orbit of an algebraic group) or a submanifold of \(G_1 \times G_2\). It will be shown in §6 that in these two cases \(J(v_1, v_2)\) is respectively an algebraic group or a Lie group. Note that \(\eta_k (KL \cap (v_1^{-1}Z_{A_1} \times v_2 Z_{C2})/(v_1, v_2))\) is also an algebraic group or a Lie group because it is a quotient of \(KL \cap (v_1^{-1}Z_{A_1} \times v_2 Z_{C2})/(v_1, v_2)\).

3. Properties of the groups \(R_A\)

Let \(a \in P(\Gamma_1, \Gamma_2)\) be a partial isometry from \(\Gamma_1\) to \(\Gamma_2\), and let \(A_1\) and \(A_2\) be respectively the domain and the range of \(a\). In this section, we first give a characterization of those subgroups \(K\) of \(M_{A_1} \times M_{A_2}\) that are generalized \(a\)-graphs. We will then prove some properties of the groups \(R_A\) associated to an admissible pairs \((a, K)\). These properties are crucial in the proofs of the main results in this paper.

Recall that for \(i = 1, 2\), \(\eta_i : G_1 \times G_2 \to G_i\) denote the projections to the \(i\)th factor. For a subset \(D_i\) of \(\Gamma_1\), \(M_{D_i}\) denotes the derived subgroup of \(M_{D_i}\). We will denote by \(Z_{D_i}\) the center of \(M_{D_i}\).

Definition 3.1. By an \(a\)-quintuple we mean a quintuple \((K_1, X_1, K_2, X_2, \theta)\), where, for \(i = 1, 2\), \(K_i\) is an abstract subgroup of \(M_{A_i}\), containing \(M'_{A_i}\), \(X_i\) is an abstract subgroup of \(K_i \cap Z_{A_i}\), and \(\theta : K_1/X_1 \to K_2/X_2\) is a group isomorphism that maps \(U_1^\alpha\) to \(U_2^\alpha\) for each \(\alpha \in \Delta_{A_i}\), where \(U_1^\alpha\) is identified with its image in \(K_1/X_1\) and similarly for \(U_2^\alpha\).

Lemma 3.2. Let \(K \subset M_{A_1} \times M_{A_2}\) be a generalized \(a\)-graph. Define

\[
K_1 = \eta_1(K) \subset M_{A_1}, \quad X_1 = \eta_1(\ker(\eta_2|K)) = \{x_1 \in M_{A_1} \mid (x_1, e) \in K\} \subset K_1
\]

\[
K_2 = \eta_2(K) \subset M_{A_2}, \quad X_2 = \eta_2(\ker(\eta_1|K)) = \{x_2 \in M_{A_2} \mid (e, x_2) \in K\} \subset K_2,
\]

and let

\[
\theta : K_1/X_1 \to K_2/X_2 \text{ where } \theta(k_1X_1) = k_2X_2 \text{ if } (k_1, k_2) \in K.
\]

Then \(\theta\) is well-defined, and \(\Theta(K) := (K_1, X_1, K_2, X_2, \theta)\) is an \(a\)-quintuple. Moreover, \(K\) can be expressed in terms of \(\Theta(K)\) as

\[
K = \{(k_1, k_2) \in K_1 \times K_2 \mid \theta(k_1X_1) = k_2X_2\}.
\]

The assignment \(K \mapsto \Theta(K)\) is a one to one correspondence between the set of generalized \(a\)-graphs and the set of \(a\)-quintuples.

Proof. Let \(i = 1, 2\). Since \(K_i\) contains all one-parameter unipotent subgroups \(U_1^\alpha\) of \(M_{A_i}\) and the latter generate \(M'_{A_i}\) as an abstract group, we have that \(K_i \subset M'_{A_i}\). Moreover \(X_i\) is an abstract normal subgroup of \(K_i\), which does not intersect any one-parameter unipotent subgroup \(U_1^\alpha\) of \(M_{A_i}\), because of the main condition for an \(a\)-graph, cf. Definition 1.1.

First we show that \(X_i \subset Z_{A_i}\). We will make use of the following fact which can be found e.g. in [16, Corollary 29.9].

\((*)\) Any simple algebraic group of adjoint type (over an algebraically closed field) is simple as an abstract group.

Assume that \(X_i\) is not a subgroup of \(Z_{A_i}\). Because of \(K_i \supset M'_{A_i}\), we have that \(M_{A_i} = K_iZ_{A_i}\). Since \(X_i\) is normal in \(K_i\), \(X_iZ_{A_i}/Z_{A_i}\) is a nontrivial abstract normal subgroup of \(M_{A_i}/Z_{A_i}\). The group \(M_{A_i}/Z_{A_i}\) is semi-simple and has trivial center, so it is a direct product of simple algebraic groups of adjoint types. We can now apply \((*)\) to get that \(X_i Z_{A_i}/Z_{A_i}\) contains a simple factor of \(M_{A_i}/Z_{A_i}\). Therefore \((X_iZ_{A_i})'\) contains \(M'_{D_i}\) for some nontrivial subset \(D_i\) of \(A_i\). (Here \((\cdot)'\) refers to the derived subgroup of an abstract group.) As a consequence \(X_i \supset X_i' = (X_iZ_{A_i})' \supset M'_{D_i}\) which contradicts with the fact that \(X_i\) does not intersect any one-parameter unipotent subgroup of \(M_{A_i}\). This shows that \(X_i \subset Z_{A_i}\).

It is easy to see that \(\theta\) is a well-defined group isomorphism and that (3.2) holds. The definition of \(K\) implies that \(\theta\) induces a group isomorphism from \(U_1^\alpha\) to \(U_2^{\alpha(\alpha)}\) for each
\(\alpha \in \Delta_{A_1} \). Thus \(\Theta(K) \) is an \(\alpha \)-quintuple. It is straightforward to check that the map \(K \mapsto \Theta(K) \) is bijective. \(\square \)

Notation 3.3. For \(i = 1, 2 \) and for a subset \(D_i \subset A_i \), let

\[P_{D_i}^{A_i} = P_{D_i} \cap M_{A_i}, \quad U_{D_i}^{A_i} = U_{D_i} \cap M_{A_i}. \]

For subsets \(S_i \subset M_{A_i} \), we will set

\begin{align*}
(3.3) \quad K(S_1) &= \{ m_2 \in M_{A_2} \mid \exists m_1 \in S_1 \text{ such that } (m_1, m_2) \in K \} \\
(3.4) \quad K(S_2) &= \{ m_1 \in M_{A_1} \mid \exists m_2 \in S_2 \text{ such that } (m_1, m_2) \in K \}.
\end{align*}

Lemma 3.4. For any subset \(D_1 \) of \(A_1 \),

1) \(K(M_{D_1}) \subset M_{a(D_1)}, \quad K(M_{a(D_1)}) \subset M_{D_1} \), and the intersection \((M_{D_1} \times M_{a(D_1)}) \cap K \) is generalized \(a_{D_1} \)-graph;

2) the intersection \((U_{D_1}^{A_1} \times U_{a(D_1)}^{A_2}) \cap K \) is the graph of a group isomorphism \(\theta: U_{D_1}^{A_1} \to U_{a(D_1)}^{A_2} \);

3) we have the decompositions

\begin{align*}
(3.5) \quad (P_{D_1} \times M_{A_2}) \cap K &= (M_{A_1} \times P_{a(D_1)}) \cap K = (P_{D_1} \times P_{a(D_1)}) \cap K \\
(3.6) \quad (M_{D_1} \times M_{a(D_1)}) \cap K &= (U_{D_1}^{A_1} \times U_{a(D_1)}^{A_2}) \cap K \\
(3.7) \quad (P_{D_1} \times P_{A_2}) \cap R_A &= (P_{A_1} \times P_{a(D_1)}) \cap R_A = (P_{D_1} \times P_{a(D_1)}) \cap R_A \\
(3.8) \quad (M_{D_1} \times M_{a(D_1)}) \cap R_A &= (U_{D_1} \times U_{a(D_1)}) \cap R_A \\
(3.9) \quad (P_{D_1} \times P_{a(D_1)}) \cap K &= (P_{D_1} \times M_{A_2}) \cap K.
\end{align*}

Proof. We first prove that \(K(H_1) \subset H_2 \) (corresponding to the special case when \(D_1 = \emptyset \)). Assume that \((h_1, m_2) \in (H_1 \times M_{A_2}) \cap K \). For \(\beta \in \Delta_{A_2} \), let \(\alpha = a^{-1}(\beta) \), and let \(\theta_{\alpha}: U_{D_1}^\alpha \to U_2^\beta \) be the group isomorphism whose graph is \((U_{D_1}^\alpha \times U_2^\beta) \cap K \). For every \(u_1, u_2 \in (U_{D_1}^\alpha \times U_2^\beta) \cap K \), we have

\[(h_1 u_1 h_1^{-1}, m_2 u_2 m_2^{-1}) \in K, \quad (h_1 u_1 h_1^{-1}, \theta_{\alpha}(h_1 u_1 h_1^{-1})) \in K. \]

Thus \(m_2 u_2 m_2^{-1} \theta_{\alpha}(h_1 u_1 h_1^{-1})^{-1} \in X_2 \subset Z_{A_2} \), so \(m_2 u_2 m_2^{-1} \in H_2 U_2^\beta \). Thus \(m_2 \) normalizes both Borel subgroups of \(M_{A_2} \) defined by \(\Delta_{A_2} \) and by \(-\Delta_{A_2} \). This implies \(m_2 \in H_2 \) which shows that \(K(H_1) \subset H_2 \). Similarly, one shows that \(K(H_2) \subset H_1 \).

Let now \(D_1 \) be any subset of \(A_1 \). Assume that \((m_1, m_2) \in (M_{D_1} \times M_{A_2}) \cap K \). Write \(m_1 = h_1 m_1' \), where \(h_1 \in H_1 \) and \(m_1' \in M_{D_1} \). Since \(M_{D_1} \) is generated by the \(U_{D_1}^\alpha \)'s for \(\alpha \in \Delta_{D_1} \), there exists \(m_2' \in M_{a(D_1)} \) such that \((m_1', m_2') \in K \). Thus \((h_1, m_2(m_2')^{-1}) \in K \).

It follows from \(K(H_1) \subset H_2 \) that \(m_2(m_2')^{-1} \in H_2 \). Thus \(m_2 \in H_2 M_{a(D_1)} = M_{a(D_1)} \). This shows that \(K(M_{D_1}) \subset M_{a(D_1)} \). One proves similarly that \(K(M_{a(D_1)}) \subset M_{D_1} \). It is clear from the definition that \((M_{D_1} \times M_{a(D_1)}) \cap K \) is a generalized \(a_{D_1} \)-graph (This proves 1).

Let \(\theta: K_1 / X_1 \to K_2 / X_2 \) be given as in (3.1). Since \(X_1 \cap U_{D_1}^{A_1} = \{ e \} \) and \(X_2 \cap U_{a(D_1)}^{A_2} = \{ e \} \), we can embed \(U_{D_1}^{A_1} \) into \(K_1 / X_1 \) and \(U_{a(D_1)}^{A_2} \) into \(K_2 / X_2 \). Then \(\theta \) induces a group isomorphism from \(U_{D_1}^{A_1} \) to \(U_{a(D_1)}^{A_2} \) whose graph is the intersection \((U_{D_1}^{A_1} \times U_{a(D_1)}^{A_2}) \cap K \). This proves 2.

To prove (3.5) and (3.6), assume that \((p_1, m_2) \in (P_{D_1} \times M_{A_2}) \cap K \). Write \(p_1 = m_1 u_1 \), where \(m_1 \in M_{D_1} \) and \(u_1 \in U_{D_1} \). Note that \(u_1 \in U_{D_1}^{A_1} \) because \(p_1, m_1 \in M_{A_1} \). By 2), there exists \(u_2 \in U_{a(D_1)}^{A_2} \) such that \((u_1, u_2) \in K \). Thus \((m_1, m_2 u_2^{-1}) \in K \). By 1), \(m_2 u_2^{-1} \in M_{a(D_1)} \). Thus \(m_2 \in M_{a(D_1)} U_{a(D_1)}^{A_2} \subset P_{a(D_1)} \), and

\[(p_1, m_2) = (m_1, m_2 u_2^{-1})(u_1, u_2) \in ((M_{D_1} \times M_{a(D_1)}) \cap K) \left((U_{D_1}^{A_1} \times U_{a(D_1)}^{A_2}) \cap K \right). \]

This shows that

\[(P_{D_1} \times M_{A_2}) \cap K = (P_{D_1} \times P_{a(D_1)}) \cap K = ((M_{D_1} \times M_{a(D_1)}) \cap K) \left((U_{D_1}^{A_1} \times U_{a(D_1)}^{A_2}) \cap K \right). \]
Similarly, one proves that \((M_{A_1} \times P_{a(D_1)}) \cap K\) is also equal to any one of the above three groups. This proves (3.5) and (3.6).

The identities in (3.7) follow directly from those in (3.5). To prove (3.8) and (3.9), assume now that \((p_1, p_2) \in (P_{D_1} \times P_{a(D_1)}) \cap R_A\). Write \(p_1 = m_1u_1\) and \(p_2 = m_2u_2\), where \(m_1 \in M_{D_1}, u_1 \in U_{D_1}, m_2 \in M_{a(D_1)}\) and \(u_2 \in U_{a(D_1)}\). Further write

\[
 u_1 = u_{A_1}^1 u_{A_1}, \quad u_2 = u_{a(D_1)}^2 u_{A_2},
\]

where

\[
 u_{A_1}^1 \in U_{A_1}^A, \quad u_{A_1} \in U_{A_1}, \quad u_{a(D_1)}^2 \in u_{a(D_1)}, \quad u_{A_2} \in U_{A_2}.
\]

Since \((u_{A_1}, u_{A_2}) \in R_A\), we have

\[
 \left(m_1 u_{A_1}^1, m_2 u_{a(D_1)}^2 \right) \in \left(P_{A_1}^A \times P_{a(D_1)}^A \right) \cap R_A = \left(P_{D_1}^A \times P_{a(D_1)}^A \right) \cap K.
\]

By (3.6), we see that \((m_1, m_2) \in R_A\). This shows (3.8). Note that \((M_{D_1} \times M_{a(D_1)}) \cap R_A = (M_{D_1} \times M_{a(D_1)}) \cap K\). It is also easy to show that

\[
 (U_{D_1} \times U_{a(D_1)}) \cap R_A = \left((U_{D_1}^A \times U_{a(D_1)}^A) \cap K \right) (U_{A_1} \times U_{A_2}).
\]

Now (3.9) follows from (3.6). \(\square\)

Finally we use Lemma 3.2 to treat compositions of generalized graphs.

Lemma 3.5. Let \(G_1, G_2, G_3\) be connected reductive algebraic groups (with fixed choices of maximal tori and Borel subgroups). Assume that \((a, K)\) and \((c, L)\) are two admissible pairs for \(G_1 \times G_2\) and \(G_2 \times G_3\), respectively, such that the domain of \(c\) coincides with the range of \(a\). Then the composition \((ca, L \circ K)\) is an admissible pair for \(G_1 \times G_3\).

Proof. Lemma 3.2 implies that for any root \(\alpha\) of \(G_1\) in the span of the domain of \(a\), there exist group isomorphisms \(\theta: U_1^a \to U_2^{a(a)}\) and \(\varphi: U_2^{a(a)} \to U_3^{ca(a)}\) such that

\[
 K \cap (U_1^a \times G_2) = (\{e\} \times X_2) (\text{Id} \times \theta)(U_1^a)
\]

and

\[
 L \cap (G_2 \times U_3^{ca(a)}) = (Y_2 \times \{e\})(\text{Id} \times \varphi)(U_3^{ca(a)})
\]

for some subgroups \(X_2\) and \(Y_2\) of the fixed maximal torus of \(G_2\). Then

\[
 (L \circ K) \cap (U_1^a \times U_3^{ca(a)}) = (\text{Id} \times \varphi \theta)(U_1^a).
\]

Therefore \(L \circ K\) is a generalized ca-graph and \((ca, L \circ K)\) is an admissible pair for \(G_1 \times G_3\). Let us note that it is not hard to determine the ca-quintuple corresponding to the composition \(L \circ K\), cf. Lemma 3.2, but it will not be needed and will omit it. \(\square\)

4. Some facts on Weyl groups and intersections of parabolic subgroups

4.1. **The Bruhat Lemma.** Fix a connected reductive algebraic group \(G\) over \(k\) with a maximal torus \(H\) and a set \(\Delta^+\) of positive roots for \((G, H)\). Let \(\Gamma\) be the set of simple roots in \(\Delta^+\). We will denote by \(W\) the Weyl group of \((G, H)\) and by \(l(\cdot)\) the standard length function on \(W\). For \(w \in W\), \(\tilde{w}\) will denote a representative of \(w\) in the normalizer of \(H\) in \(G\).

Given \(A \subset \Gamma\), we will denote by \(W_A\) the subgroup of the Weyl group \(W\) generated by elements in \(A\). For \(A \subset \Gamma\), let \(P_A\) be the corresponding parabolic subgroup of \(G\) containing the Borel subgroup of \(G\) determined by \(\Delta^+\), and let \(M_A\) and \(U_A\) be respectively its Levi factor containing \(H\) and its unipotent radical. For \(A, C \subset \Gamma\), the standard Bruhat decomposition for \((P_A, P_C)\) double cosets of \(G\) states that

\[
 G = \coprod_{[w] \in W_A \setminus W/W_C} P_A w P_C.
\]

(4.1)
We note that if \tilde{P}_A is a subgroup of P_A such that $P_A = \tilde{P}_AH$, then we also have

$$G = \prod_{[w] \in W_A \setminus W/W_C} \tilde{P}_A \hat{w}P_C,$$

which is a fact that will be used later in the paper.

4.2. Minimal length representatives of double cosets. Let $A, C \subseteq \Gamma$. Each (W_A, W_C) double coset of W contains a unique element of minimal length, see e.g. [3, Proposition 2.7.3]. The set of minimal length representatives for (W_A, W_C) double cosets will be denoted by $\tilde{A}W^C$. The latter set consists of exactly those elements $w \in W$ with the properties

$$w^{-1}(A) \subseteq \Delta^+ \text{ and } w(C) \subseteq \Delta^+,$$

see e.g. [3, §2.7]. When A is empty, we set $\tilde{A}W^C = W^C$. If D and E are two subsets of $A \subseteq \Gamma$, the set of minimal length representatives in W_A for the double cosets from $W_D \setminus W_A/W_E$ will be denoted by $\tilde{P}_A^{D}E$. Elements in $\tilde{P}_A^{D}E$ will be thought of as elements of W via the inclusion of W_A in W.

Proposition 4.1. Fix three subsets A, D, and C of Γ with $D \subseteq A$. Then every element $v \in \tilde{A}W^C$ is represented in a unique way as a product

$$v = uvw \text{ for some } u \in \tilde{A}W_A^{\Delta \cap w(C)},$$

and all such products belong to $\tilde{A}W^C$. Moreover, $l(v) = l(u) + l(w)$ for u, v, and w in (4.4).

Note that the defining set for u in (4.4) depends on the first element w. A proof of this result can be found in [3, Proposition 2.7.5], see also [25, Lemma 4.3].

By taking inverses in (4.4), one sees that for three subsets A, E, and C of Γ with $E \subseteq C$, every element $v \in \tilde{A}W^C$ is represented in a unique way as a product

$$v = wu \text{ for some } w \in \tilde{A}W^C, \ u \in w^{-1}(A) \cap C\tilde{W}_C^E,$$

and all such products belong to $\tilde{A}W^D$. We also note that if $w \in \tilde{A}W^C$, the minimality conditions on w imply that

$$\Delta_A^+ \cap w(\Delta_C^+) = \Delta_{A \cap w(C)}^+ \quad \text{and} \quad A \cap w(\Delta_C^+) = A \cap w(C).$$

As in §1.1, we set $\Delta_D^+ = \Delta^+ \cap \mathbb{Z}[D]$ for $D \subseteq \Gamma$.

4.3. Intersections of parabolic subgroups. For $A \subseteq \Gamma$ and $w \in W$, we set

$$w(P_A) = \text{Ad}_w(P_A), \ w(M_A) = \text{Ad}_w(M_A), \ w(U_A) = \text{Ad}_w(U_A)$$

all of which are independent of the choice of the representative \hat{w}. We will use π_A to denote the projection $P_A \rightarrow M_A$ with respect to the decomposition $P_A = M_AU_A$. For a subset D of A, we will set $P_D^A = P_D \cap M_A$ and $U_D^A = U_D \cap M_A$.

Lemma 4.2. Assume that $A, C \subseteq \Gamma$ and $w \in \tilde{A}W^C$. Then

1) we have the direct product decompositions

$$P_A \cap w(P_C) = (M_A \cap w(M_C)) (M_A \cap w(U_C)) (U_A \cap w(M_C)) (U_A \cap w(U_C))$$

$$M_A \cap w(C) U_{A \cap w(C)}^A \left(w(U_{w^{-1}(A) \cap C}) \right) (U_A \cap w(U_C))$$

$$M_A \cap w(C) \left(U_{A \cap w(C)} \cap w(U) \right)$$

$$M_A \cap w(C) \left(U_{A \cap w(C)} \cap w(U_{w^{-1}(A) \cap C}) \right)$$

where $M_A \cap w(M_C) = M_{A \cap w(C)}$ normalizes all terms. In particular, $P_A \cap w(P_C) \subset P_{A \cap w(C)}$ and $\pi_A(P_A \cap w(P_C)) = P_{A \cap w(C)}$.

To this end, note that
\begin{align*}
\dim U^A_{\alpha \cap w(C)} + \dim (U_A \cap w(U_C)) &= \dim U_A - l(w), \\
\dim w(U^C_{\alpha \cap w(C)}) + \dim (U_A \cap w(U_C)) &= \dim U_A - l(w).
\end{align*}

Proof. The first part of Lemma 4.2 is Theorem 2.8.7 from [3]. It only uses (4.3) and (4.6).

For Part 2, we only prove the second formula since the proof of the first one is similar. To this end, note that \(w(U^C_{\alpha \cap w(C)})(U_A \cap w(U_C)) \subset U_A \) and that it is the product of the one parameter unipotent subgroups of \(G \), corresponding to roots \(\alpha \in \Delta^+ - \Delta^+_A \) such that \(w^{-1}(\alpha) \in \Delta^+ \).

Since \(w \in \mathcal{A} \), one has \(w^{-1}(\alpha) \in \Delta^+ \) for any \(\alpha \in \Delta^+_A \). Thus the codimension in \(U_A \) of \(w(U^C_{\alpha \cap w(C)})(U_A \cap w(U_C)) \) is equal to the cardinality of the set \(\Delta^+ \cap w(-\Delta^+) \) which is equal to the length of \(w \), and hence the second formula in 2). \(\square \)

4.4. **A lemma on orbits of subgroups.** The following lemma, which will be used later in the paper in conjunction with the Bruhat lemma, describes the orbit space of a group on a set in terms of that of a bigger group. We omit the proof since it is straightforward.

Lemma 4.3. Let \(P \) be a group acting (on the left) on a set \(M \) and let \(R \) be a subgroup of \(P \). Suppose that \(S \) is a subset of \(M \) parametrizing the \(P \) orbits on \(M \). For each \(m \in S \), let \(\text{Stab}_m \) be the stabilizer subgroup of \(P \) at \(m \). Then every \(R \) orbit in \(M \) contains a point of the form \(p \cdot m \) for a unique \(m \in S \) and some \(p \in P \). Two points \(p_1 \cdot m \) and \(p_2 \cdot m \), where \(m \in S \) and \(p_1, p_2 \in P \), are in the same \(R \) orbit if and only if \(p_1 \) and \(p_2 \) are in the same \((R, \text{Stab}_m) \) double coset in \(P \).

5. **Proof of Theorem 2.2**

5.1. **A special case.** For two arbitrary admissible quadruples \(\mathcal{A} \) and \(\mathcal{C} \), we will obtain a description of \((R_A, R_C) \) double cosets in \(G_1 \times G_2 \) by an induction procedure to be presented in §5.2. In this section, we look at the last step in the induction as a special case.

Assume that both \(a \) and \(c \) have domains \(\Gamma_1 \) and ranges \(\Gamma_2 \). Then \(R_A = K \) and \(R_C = L \).

Modulo problems with the centers, we can think of both \(K \) and \(L \) as graphs of isomorphisms from \(G_1 \) to \(G_2 \).

Denote the centers and the derived subgroups of \(G_1 \) and \(G_2 \) respectively by \(Z_1, Z_2, G'_1 \) and \(G'_2 \). Recall that \(\eta_2 : G_1 \times G_2 \to G_2 \) is the projection to the second factor and that \(K_2 = \eta_2(K), L_2 = \eta_2(L) \). Let \(Z(K_2) \) and \(Z(L_2) \) be the centers of \(K_2 \) and \(L_2 \) respectively. It follows from \(K_2, L_2 \supset G_2' \) that \(Z(K_2) = Z_2 \cap K_2 \) and \(Z(L_2) = Z_2 \cap L_2 \). Set \(Z_2 = Z(K_2)Z(L_2) \subset Z_2 \).

For each \(s \in Z_2/Z_2 \), fix a representative \(\check{s} \) of \(s \) in \(Z_2 \). We will also introduce the group

\begin{equation}
J = \{(k_1, l_1) \in G_1 \times G_1 \mid \exists g_2 \in G_2 \text{ such that } (k_1, g_2) \in K, (l_1, g_2) \in L\}.
\end{equation}

In terms of compositions of group correspondences in §1.6, \(J = \sigma(L) \circ K \), where \(\sigma : G_1 \times G_2 \to G_2 \times G_1 ; (g_1, g_2) \mapsto (g_2, g_1) \). By Lemma 3.5, \(J \) is a generalized \(c^{-1}a \)-graph. Let \(J \) act on \(G_1 \) from the left by

\begin{equation}
(k_1, l_1) \cdot g_1 = k_1 g_1 l_1^{-1}, \quad (k_1, l_1) \in J, \ g_1 \in G_1.
\end{equation}

Lemma 5.1. When both \(a \) and \(c \) have domains \(\Gamma_1 \) and ranges \(\Gamma_2 \), every \((R_A, R_C) \) double coset of \(G_1 \times G_2 \) is of the form \([g_1, \check{s}] \) for some \(g_1 \in G_1 \), \(s \in Z_2/Z_2 \).

Two such cosets \([g_1, \check{s}] \) and \([h_1, \check{t}] \) are the same if and only if \(s = t \) and \(g_1 \) and \(h_1 \) are in the same orbit for the \(J \) action on \(G_1 \) given by (5.2), cf. also (5.1).
Proof. Using the fact that $G_2 = Z_2 L_2$, we see that every (R_A, R_C) double coset of $G_1 \times G_2$ is of the form $[g_1, z]$ for some $g_1 \in G_1$ and $z \in Z_2$. By writing $z = s z_K z_L$ for some $s \in Z_2/Z_2$, $z_K \in Z(K_2)$, and $z_L \in Z(L_2)$, and by changing g_1 to another element in G_1 if necessary, we see that every (R_A, R_C) double coset of $G_1 \times G_2$ is of the form $[g_1, s]$ for some $g_1 \in G_1$ and $s \in Z_2/Z_2$. It is clear that if $g_1, h_1 \in G_1$ are in the same J orbit in G_1, then $[g_1, s] = [h_1, s]$ for any $s \in Z_2/Z_2$. Assume now that $[g_1, s] = [h_1, t]$ for some $g_1, h_1 \in G_1$ and $s, t \in Z_2/Z_2$. Then there exist $(k_1, k_2) \in K, (l_1, l_2) \in L$ such that

$$(h_1, t) = (k_1, k_2)(g_1, s)(l_1, l_2)^{-1} = (k_1 g_1 l_1^{-1}, s k_2 l_2^{-1}).$$

We claim that $k_2 l_2^{-1} \in Z_2$. Indeed, write $k_2 = k_2' z_{K_2}$, where $k_2' \in G_2'$ and $z_{K_2} \in Z_2$. Since $G_2' \subset K_2$, $z_{K_2} \in K_2 \cap Z_2 = Z(K_2)$. Similarly, we can write $l_2^{-1} = l_2' z_{L_2}$, where $l_2' \in G_2'$ and $z_{L_2} \in Z(L_2)$. Thus $k_2 l_2^{-1} = (k_2' l_2') z_{K_2} z_{L_2}$. On the other hand, $k_2 l_2^{-1} = ts^{-1} \in Z_2$, so $k_2 l_2^{-1} (k_2' l_2') z_{K_2} z_{L_2} \in Z_2$. It now follows that $l \in s Z_2$, so $s = t$, and $s = t$. Thus $k_2 = l_2$, and $(k_1, l_1) \in J$. Hence g_1 and h_1 are in the same J orbit in G_1.

5.2. The main induction step in the proof of Theorem 2.2. In this section, we will reduce the classification of (R_A, R_C) double cosets in $G_1 \times G_2$ to that of similar double cosets in $M_{A_1} \times M_{C_2}$. More precisely, for each pair $(w_1, w_2) \in A_1 W_{C_1} \times A_2 W_{C_2}$, we will define two new admissible pairs

$${A^1\text{new}}(w_1, w_2) \quad \text{and} \quad {C^1\text{new}}(w_1, w_2)$$

for $M_{A_1} \times M_{C_2}$. Denoting by $R^\text{new}_A(w_1, w_2)$ and $R^\text{new}_C(w_1, w_2)$ the subgroups of $M_{A_1} \times M_{C_2}$ defined according to (1.1), corresponding respectively to the admissible pairs $A^\text{new}(w_1, w_2)$ and $C^\text{new}(w_1, w_2)$, we will show that the double coset space $R_A \backslash G_1 \times G_2 / R_C$ can be identified with the union over $A^\text{new}_1 \times A^\text{new}_2$ of the double coset spaces

$${R^\text{new}_A(w_1, w_2)} \cap M_{A_1} \times M_{C_2} / R^\text{new}_C(w_1, w_2).$$

Let $(w_1, w_2) \in A^\text{new}_1 \times A^\text{new}_2$. Set

(5.3) $${A^1\text{new}}(w_1, w_2) = a^{-1}(A_2 \cap w_2(C_2)),$$

(5.4) $${C^1\text{new}}(w_1, w_2) = A_1 \cap w_1(C_1), \quad {C^2\text{new}}(w_1, w_2) = c(C_1 \cap w_1^{-1}(A_1)).$$

We will regard

$$w_2^{-1} a : A^\text{new}_1(w_1, w_2) \rightarrow A^\text{new}_2(w_1, w_2) \quad \text{and} \quad c w_1^{-1} : C^\text{new}_1(w_1, w_2) \rightarrow C^\text{new}_2(w_1, w_2)$$

as partial isometries from A_1 to C_2. For $i = 1, 2$, let \tilde{w}_i be a representative of w_i in the normalizer of H_i in G_i. Define

(5.5) $${K^\text{new}}(w_1, w_2) = (M^\text{new}_1(w_1, w_2) \times M^\text{new}_2(w_1, w_2)) \cap \text{Ad}_{(e, w_2)}^{-1} K,$$

(5.6) $${L^\text{new}}(w_1, w_2) = (M^\text{new}_1(w_1, w_2) \times M^\text{new}_2(w_1, w_2)) \cap \text{Ad}_{(w_1, e)} L.$$

Then it follows from Lemma 3.4 that

$${A^\text{new}}(w_1, w_2) := (w_2^{-1} a, K^\text{new}(w_1, w_2)) \quad \text{and} \quad {C^\text{new}}(w_1, w_2) := (c w_1^{-1}, L^\text{new}(w_1, w_2))$$

are admissible pairs for $M_{A_1} \times M_{C_2}$. Let

$$R^\text{new}_A(w_1, w_2) = K^\text{new}(w_1, w_2) \left(U^A_1 \times U^A_2 \right)$$

$$R^\text{new}_C(w_1, w_2) = L^\text{new}(w_1, w_2) \left(U^A_1 \times U^A_2 \right) \cap$$

$$\left(A^\text{new}_1 \times A^\text{new}_2 \right).$$

Proposition 5.2. (Induction Step): Every (R_A, R_C) double coset in $G_1 \times G_2$ is of the form

$$[m_{A_i} w_1, m_{A_i} w_2 m_{C_2}]$$

for some $w_i \in A^\text{new}_i$, $m_{A_i} \in M_{A_i}$, $m_{C_2} \in M_{C_2}$.

Two such cosets \([m_A, w_1, w_2 m_{C_2}]\) and \([m'_A, w'_1, w'_2 m'_{C_2}]\) coincide if and only if \(w'_1 = w_1, w'_2 = w_2\), and \((m_A, m_{C_2})\) and \((m'_A, m'_{C_2})\) are in the same \((R_A^{new}(w_1, w_2), R_{C}^{new}(w_1, w_2))\) double coset of \(M_A \times M_{C_2}\).

Proof. Recall that for \(i = 1, 2\),

\[K_i = \eta_i(K) \subset M_{A_i} \quad \text{and} \quad L_i = \eta_i(L) \subset M_{C_i},\]

where \(\eta_i: G_1 \times G_2 \rightarrow G_i\) is the projection to the \(i\)th factor. Let

\[
\begin{align*}
\tilde{P}_{A_i} &= K_i U_{A_i} \subset P_{A_i}, \\
\tilde{P}_{A,1} &= (M_{A_1} \times \{e\}) \cdot R_A = P_{A_1} \times \tilde{P}_{A_2}, \\
\tilde{P}_{C_i} &= L_i U_{C_i} \subset P_{C_i}, \\
P_{C,1} &= (\{e\} \times M_{C_2}) \cdot R_C = \tilde{P}_{C_1} \times P_{C_2}.
\end{align*}
\]

Consider the (left) action of \(P_{A,1} \times P_{C,2}\) on \(G_1 \times G_2\), defined by

\[
(5.7) \quad (p_{A_1}, \tilde{p}_{A_2}, \tilde{p}_{C_1}, p_{C_2}) \cdot (g_1, g_2) = (p_{A_1} g_1 \tilde{p}_{C_1}^{-1}, \tilde{p}_{A_2} g_2 \tilde{p}_{C_2}^{-1})
\]

for \((p_{A_1}, \tilde{p}_{A_2}, \tilde{p}_{C_1}, p_{C_2}) \in P_{A,1} \times P_{C,2}\) and \((g_1, g_2) \in G_1 \times G_2\). The set of orbits for this action coincides with the set of \((P_{A,1}, P_{C,2})\) double cosets of \(G_1 \times G_2\), which, by (4.2), consists of the double cosets of the form \(P_{A,1}(w_1, w_2)P_{C,2}\) for \((w_1, w_2) \in A_1 A_2^C_1 \times A_2 A_2^C_2\). We will apply Lemma 4.3 for \(P = P_{A,1} \times P_{C,1}\) and \(R = R_{A,2} \times R_{C}\) to classify \((R_{A,2}, R_{C})\) double cosets in \(G_1 \times G_2\). For \(w_i \in A_i W^C_i\), with \(i = 1, 2\), let \(\text{Stab}_{w_i} \subset P_{A,1} \times P_{C,2}\) be the stabilizer subgroup of \(P_{A,1} \times P_{C,2}\) at \((w_1, w_2)\). In view of Lemma 4.3, to classify \((R_A, R_C)\) double cosets in \(G_1 \times G_2\), it suffices to understand the space of double cosets

\[
(5.8) \quad (R_A \times R_C) \backslash P_{A,1} \times P_{C,2} / \text{Stab}_{w_i}, \quad \text{for each pair} \ (w_1, w_2) \in A_1 A_2 C_1 \times A_2 A_2 C_2.
\]

To this end, consider the projection

\[
\pi := \pi_{A_1} \times \pi_{A_2} \times \pi_{C_1} \times \pi_{C_2}: P_{A,1} \times P_{C,2} \rightarrow M_{A_1} \times K_2 \times L_1 \times M_{C_2}.
\]

(See §4 for notation). Since \(M_{A_1} \times K_2 \times L_1 \times M_{C_2}\) normalizes \(U_{A_1} \times U_{A_2} \times U_{C_1} \times U_{C_2}\), \(\pi\) induces an identification

\[
(5.9) \quad (K \times L) \backslash (M_{A_1} \times K_2 \times L_1 \times M_{C_2}) \cong (X_1 \times X_2)(M_{A_1} \times M_{C_2}),
\]

where \(X_1 = \eta_1(\ker(\eta_2|K)) \subset Z_{A_1}\), and \(Y_2 = \eta_2(\ker(\eta_1|L)) \subset Z_{C_2}\). Indeed, for

\[
(m_{A_1, k_2, l_1, m_{C_2}}) \in M_{A_1} \times K_2 \times L_1 \times M_{C_2},
\]

let \(k_1 \in K_1\) and \(l_2 \in L_2\) be such that \((k_1, k_2) \in K\) and \((l_1, l_2) \in L\). Then

\[
(K \times L)(m_{A_1, k_2, l_1, m_{C_2}}) = (K \times L)(k_1^{-1} m_{A_1, e}, e, e, l_2^{-1} m_{C_2}).
\]

It is easy to see that the map

\[
(K \times L)(m_{A_1, k_2, l_1, m_{C_2}}) \mapsto (X_1 \times X_2)(k_1^{-1} m_{A_1, e}, l_2^{-1} m_{C_2})
\]

gives a well-defined identification of the two spaces in (5.9), and that the right translation of \((m_{A_1, k_2, l_1, m_{C_2}})\) on \((K \times L) \backslash (M_{A_1} \times K_2 \times L_1 \times M_{C_2})\) becomes the following map on \((X_1 \times X_2) \backslash (M_{A_1} \times M_{C_2})\):

\[
(5.10) \quad (X_1 \times X_2)(m_{A_1, k_2, l_1, m_{C_2}})(X_1 \times X_2)(k_1^{-1} m_{A_1, e}, l_2^{-1} m_{C_2}).
\]

Thus, every \((R_A, R_C)\) double coset in \(G_1 \times G_2\) is of the form \([m_A, w_1, w_2 m_{C_2}]\) for a unique pair \((w_1, w_2) \in A_1 A_2 C_1 \times A_2 A_2 C_2\) and for some \((m_{A_1}, m_{C_2}) \in M_{A_1} \times M_{C_2}\). Two such double cosets \([m_A, w_1, w_2 m_{C_2}]\) and \([l_A, w_1, w_2 l_{C_2}]\) coincide if and only if \((X_1 \times X_2)(m_{A_1}, m_{C_2})\) and \((X_1 \times X_2)(l_{A_1}, m_{C_2})\) are in the same \(\pi(\text{Stab}_{w_1, w_2})\) orbit for the action of \(\pi(\text{Stab}_{w_1, w_2})\) on \((X_1 \times X_2)(M_{A_1} \times M_{C_2})\) given in (5.10). Consider the map

\[
\nu: M_{A_1} \times M_{C_2} \rightarrow (X_1 \times X_2)(M_{A_1} \times M_{C_2}): \nu(m_{A_1}, m_{C_2}) = (X_1 \times X_2)(m_{A_1, m_{C_2}}^{-1}).
\]
The proof of Proposition 5.2 will be complete once we prove the following fact about ν: for every $(m_{A_1} \times m_{C_2}) \in M_{A_1} \times M_{C_2}$,

\begin{equation}
\nu^{-1}\left((X_1 \times Y_2) (m_{A_1}, m_{C_2}^{-1}) \cdot \pi(\text{Stab}_{(w_1, w_2)}) \right) = R_A^{\text{new}}(w_1, w_2) (m_{A_1}, m_{C_2}) R_C^{\text{new}}(w_1, w_2),
\end{equation}

where again the action of $\pi(\text{Stab}_{(w_1, w_2)})$ on $(X_1 \times Y_2) \setminus (M_{A_1} \times M_{C_2})$ is given in (5.10). To prove this property of ν, we set

\begin{align*}
D_1 &= A_1 \cap w_1(C_1), \quad D_2 = A_2 \cap w_2(C_2), \quad E_1 = C_1 \cap w_1^{-1}(A_1), \quad E_2 = C_2 \cap w_2^{-1}(A_2).
\end{align*}

Then we know from 1) of Lemma 4.2 that $\pi(\text{Stab}_{(w_1, w_2)})$ consists precisely of all the elements of the form

$$
(\text{Ad}_{v_1}(l_1) u_{D_1}^{A_1}, k_2 w_2 l_1 u_{C_1}^{A_1}, \text{Ad}_{w_2}(k_2) u_{C_2}^{A_2}),
$$

where $u_{D_1}^{A_1} \in U_{D_1}^{A_1}$, $u_{C_1}^{A_1} \in U_{C_1}$, and $u_{C_2}^{A_2}$, $w_2 \in K_2 \cap M_{D_2}$. It is then easy to see from the definition of the action in (5.10) and from the properties of the groups K and L as stated in 2) and 3) of Lemma 3.4 that (5.11) holds.

\subsection*{5.3. Proof of Theorem 2.2.}

Fix two elements $v_1 \in W_{1}^{C_1}$ and $v_2 \in A_2 W_2$. According to Proposition 4.1 and (4.5), they can be uniquely decomposed as

\begin{align}
(5.12) & \quad v_1 = u_1 w_1, \quad 1 \in W_{A_1}^{A_1 \cap w_1(C_1)}; \\
(5.13) & \quad v_2 = w_2 u_2, \quad 1 \in W_{C_1}^{C_1 \cap w_2(C_2)}.
\end{align}

Recall the definition of $A_1^{\text{new}}(w_1, w_2)$ in (5.3). Set

\begin{equation}
A_1^{\text{new}}(w_1, w_2)(u_1, u_2) = \{ \alpha \in A_1^{\text{new}}(w_1, w_2) | (u_1 (c w_1^{-1}) v_2^{-1} (w_2^{-1}))^{\alpha} \text{ is well defined} \}
\end{equation}

and is in $A_1^{\text{new}}(w_1, w_2)$ for $n = 0, 1, \ldots$.

Recall that $A_1(v_1, v_2)$ is defined in (2.1).

\textbf{Lemma 5.3.} Let $v_1 \in W_{1}^{C_1}$ and $v_2 \in A_2 W_2$ be decomposed as $v_1 = u_1 w_1$ and $v_2 = w_2 u_2$ as in (5.12)-(5.13). Then $A_1^{\text{new}}(w_1, w_2)(u_1, u_2) = A_1(v_1, v_2)$.

\textbf{Proof.} Note that the composition of maps in (5.14) is nothing but

$$
(u_1 w_1) c^{-1} (v_2^{-1} w_2^{-1}) a = v_1 c^{-1} v_2^{-1} a.
$$

Thus if $\alpha \in A_1^{\text{new}}(w_1, w_2)(u_1, u_2)$ then $(u_1 f^{-1} w_2^{-1} d)^{\alpha} \alpha$ is well-defined and is a root of $A_1^{\text{new}}(w_1, w_2) \subset A_1$. Therefore $\alpha \in A_1(v_1, v_2)$. Next we prove the opposite inclusion. First we show that if $\beta \in A_1$ and $c^{-1} v_2^{-1} a(\beta)$ is well-defined, then $\beta \in A_1^{\text{new}}(w_1, w_2)$. The assumptions imply that $a(\beta) \in A_2$ and $w_2^{-1} w_2^{-1} a(\beta) \in C_2$. Since $u_2 \in W_{C_2}$, we get that $w_2^{-1} a(\beta) \in \Delta_{C_2}$. Because $w_2 \in A_2 W_{C_2}$, we further deduce that $w_2^{-1} a(\beta) \in \Delta_{C_2}$. Now $a(\beta) \in A_2 \cap w_2(\Delta_{C_2})$ and due to (4.6), $a(\beta) \in A_2 \cap w_2(C_2)$, so $\beta \in A_1^{\text{new}}(w_1, w_2)$. If $\alpha \in A_1(v_1, v_2)$ then $(c^{-1} v_2^{-1} a)(v_1 c^{-1} v_2^{-1} a)^{\alpha}$ needs to be well defined for all $n = 0, 1, \ldots$ so $\alpha \in A_1^{\text{new}}(w_1, w_2)$ and $(v_1 c^{-1} v_2^{-1} a)^n(\alpha)$ is well defined and is in $A_1^{\text{new}}(w_1, w_2)$ for all $n = 1, 2, \ldots$ Therefore $\alpha \in A_1^{\text{new}}(w_1, w_2)(u_1, u_2)$.

Recall the groups $K(v_1, v_2)$ and $L(v_1, v_2)$ given in (2.4) and (2.5). It is easy to see from Lemma 5.1 that Theorem 2.2 is equivalent to the following proposition.

\textbf{Proposition 5.4.} Any (R_A, R_C) double coset of $G_1 \times G_2$ is of the form $[m_{C_1} v_1, v_2 m_{C_2}]$ for some $v_1 \in W_{1}^{C_1}$, $v_2 \in A_2 W_2$, $m_1 \in M_{A_1(v_1, v_2)}$, and $m_2 \in M_{C_2(v_1, v_2)}$. Two such cosets $[m_{C_1} v_1, v_2 m_{C_2}]$ and $[l_1 v_1, l_2 v_2]$ coincide if and only if $v_i = v_i'$ for $i = 1, 2$, and (m_1, m_2) and (l_1, l_2) are in the same $(K(v_1, v_2), L(v_1, v_2))$ double coset in $M_{A_1(v_1, v_2)} \times M_{C_2(v_1, v_2)}$.

Proof of Proposition 5.4. It is not hard to see that by repeatedly using Proposition 5.2 and by using Lemma 5.3, we can reduce the description of \((R_A, R_C)\) double cosets in \(G_1 \times G_2\) to that of the special cases treated in Lemma 5.1. Proposition 5.4 holds trivially for such cases. Thus it suffices to prove Proposition 5.4 for \(G_1 \times G_2\) by assuming that it holds for \(M_{A_1} \times M_{C_2}\).

For \((w_1, w_2) \in A_1 W_{A_1}^{C_1} \times A_2 W_{A_2}^{C_2}\) we set

\[
D(w_1, w_2) = R_{A_1}^{\text{new}}(w_1, w_2) \backslash M_{A_1} \times M_{C_2}/R_{C_2}^{\text{new}}(w_1, w_2)
\]

and use \([m_{A_1}, m_{C_2}]\) to denote the point in \(D(w_1, w_2)\) defined by \((m_{A_1}, m_{C_2}) \in M_{A_1} \times M_{C_2}\). Then by Proposition 5.2, we have the disjoint union

\[
G_1 \times G_2 = \bigsqcup_{(w_1, w_2)} \bigsqcup_{[m_{A_1}, m_{C_2}] \in D(w_1, w_2)} [m_{A_1} \hat{w}_1, \hat{w}_2 m_{C_2}],
\]

where \((w_1, w_2) \in A_1 W_{A_1}^{C_1} \times A_2 W_{A_2}^{C_2}\). For such a pair \((w_1, w_2)\), and for \(u_1 \in W_{A_1}^{A_1 \cap w_1(C_1)}\) and \(u_2 \in C_{E_2} \cap w_2^{-1}(A_2) W_{C_2}\), set \(v_1 = u_1 w_1\) and \(v_2 = u_2 w_2\). Then we know from Proposition 4.1 and (4.5) that \(v_1 \in W_{A_1}^{C_1}\) and \(v_2 \in A_2 W_{A_2}\), and that every \(v_1 \in W_{C_1}^{C_1}\) and \(v_2 \in A_2 W_{A_2}\) are of this form. Choose representatives \(\hat{v}_1\) and \(\hat{v}_2\) of \(u_1\) and \(u_2\) in the normalizers of \(H_1\) and \(H_2\) in \(M_{A_1}\) and \(M_{C_2}\) respectively such that \(\hat{v}_1 = \hat{u}_1 \hat{w}_1\) and \(\hat{v}_2 = \hat{w}_2 \hat{u}_2\). Set

\[
D(v_1, v_2) = K(v_1, v_2) \backslash M_{A_1(v_1, v_2)} \times M_{C_2(v_1, v_2)}/L(v_1, v_2),
\]

and let \([m_1, m_2]\) denote the point in \(D(v_1, v_2)\) defined by \((m_1, m_2) \in M_{A_1(v_1, v_2)} \times M_{C_2(v_1, v_2)}\). Then by applying Proposition 5.4 to \(D(w_1, w_2)\) and by using Lemma 5.3, we know that

\[
D(w_1, w_2) = \bigsqcup_{(u_1, u_2)} \bigsqcup_{[m_1, m_2] \in D(v_1, v_2)} [m_1 \hat{v}_1, \hat{v}_2 m_2],
\]

is a disjoint union, where \((u_1, u_2) \in W_{A_1}^{A_1 \cap w_1(C_1)} \times C_{E_2} \cap w_2^{-1}(A_2) W_{C_2}\). Thus we have

\[
G_1 \times G_2 = \bigcup_{v_1 \in W_{A_1}^{C_1}, v_2 \in A_2 W_{A_2}} \bigcup_{[m_1, m_2] \in D(v_1, v_2)} [m_1 \hat{v}_1, \hat{v}_2 m_2]
\]

as a disjoint union. \(\square\)

6. Proofs of Theorem 2.5 and Theorem 2.7

We will keep the notation as in §2.3 and §2.4.

6.1. Proof of Theorem 2.5.

Lemma 6.1. For \(q = (m_1 \hat{v}_1, \hat{v}_2 s_2)\), where \((v_1, v_2) \in W_1^{C_1} \times A_2 W_2\), \(m_1 \in M_{A_1(v_1, v_2)}\) and \(s_2 \in Z_{C_2(v_1, v_2)}\), let

\[
(6.1) \quad \text{Stab}_M(q) = \text{Ker}(v_1, v_2) \cap \text{Ad}(m_1, c)L(v_1, v_2)
\]

\[
(6.2) \quad = (M_{A_1(v_1, v_2)} \times M_{C_2(v_1, v_2)}) \cap \text{Ad}^{-1}(c, \hat{e}_2)K \cap \text{Ad}(m_1, c)L
\]

\[
(6.3) \quad \text{Stab}_U(q) = \text{Stab}(q) \cap ((U_{A_1(v_1, v_2)} \cap v_1(U_1)) \times (U_{C_2(v_1, v_2)} \cap v_2^{-1}(U_2))).
\]

Then \(\text{Stab}(q) = \text{Stab}_M(q) \text{Stab}_U(q)\).

Proof. By Proposition 4.1 and (4.5), we can write \(v_1 = u_1 w_1\) and \(v_2 = u_2 w_2\), where \(w_1 \in A_1 W_{A_1}^{C_1}\), \(u_1 \in W_{A_1}^{A_1 \cap w_1(C_1)}\), \(u_2 \in A_2 W_{A_2}^{C_1}\), and \(w_2 \in C_{E_2} \cap w_2^{-1}(A_2) W_{C_2}\). We will first give a description of \(\text{Stab}(q)\) in terms of the groups \(R(v_1, v_2)\) and \(L(v_1, v_2)\) in (5.5) and (5.6). Set \(\hat{v}_1 = \hat{v}_1 \hat{w}_1^{-1} \in M_{A_1}\) and \(\hat{v}_2 = \hat{w}_2^{-1} \hat{v}_2 \in M_{C_2}\).
Lemma 4.2. \(\text{Ad} \) using Lemma 5.3 one proves inductively that \(\mathcal{C}_v \) for the action given in (2.8). The group \(\text{Stab} \) is a well defined homomorphism. The following Lemma describes explicitly \(\text{Stab} \).

Lemma 6.2. The following is a group exact sequence

\[
\{ e \} \rightarrow (\ker \eta_1|_L) \cap (\text{Id} \times v_2^{-1})(\ker \eta_1|_K) \hookrightarrow \text{Stab}_M(q) \rightarrow J_{m_1}(v_1, v_2) \rightarrow \{ e \}.
\]

The next Lemma will be used to describe the structure of \(\text{Stab}_U(q) \), stated in Theorem 2.5.

Lemma 6.3. The maps \(\sigma_1 \) and \(\sigma_2 \) given by (2.15)-(2.16) are well defined endomorphisms of \(U_{A_1(v_1, v_2)} \cap v_1(U_1) \) and \(U_{C_2(v_1, v_2)} \cap v_2^{-1}(U_2) \), respectively. Moreover for some sufficiently large integer \(k \), \(\sigma_i^{k+1} = e \) for \(i = 1, 2 \).
Proof. We will only prove the statements for σ_1 as the ones for σ_2 are analogous. First we show that
\[
\tilde{\sigma}_1 = \text{Ad}_{c_1} \theta_c^{-1} \pi_{C_2} \text{Ad}_{v_{2,2}} \theta_2 \pi_{A_1}
\]
is a well defined endomorphism of $U_{A_1(v_1,v_2)} \cap v_1(U_1)$ and $\tilde{\sigma}_1^{k+1} \equiv e$ for some sufficiently large integer k. For a given subset $\Phi \subset \Delta_1^+$ with the property
\[
(6.5) \quad \alpha, \beta \in \Phi \text{ and } \alpha + \beta \in \Delta_1^+ \Rightarrow \alpha + \beta \in \Phi
\]
define
\[
U_1^\Phi = \prod_{\alpha \in \Phi} U_1^\alpha.
\]
Recall that (6.5) implies that this product does not depend on the order in which it is taken and moreover U_1^Φ is an algebraic subgroup of U_1.

Extend by linearity $a: A_1 \to A_2$ and $c: C_1 \to C_2$ to bijections $a: \Delta_1^+ \to \Delta_2^+$ and $c: \Delta_2^+ \to \Delta_2^+$. For a partial map $f: \Delta_1 \to \Delta_1$ and a subset $Y \subset \Delta_1$ denote $f(Y) := f(Y \cap \text{Dom}(f))$, where $\text{Dom}(f)$ is the domain of f. Denote $d = v_1 e^{-1} v_2^{-1} a$ which will be treated as a partial bijection from Δ_1 to Δ_1. Set
\[
\Phi^{(0)} = \left(\Delta_1^+ - \Delta_{A_1(v_1,v_2)}^+ \right) \cap v_1(\Delta_1^+) \text{ and inductively } \Phi^{(i+1)} = d(\Phi^{(i)}), \quad i \geq 0.
\]
Since the partial map d preserves addition, all sets $\Phi^{(i)}$ satisfy the property (6.5) and thus
\[
U_1^{(i)} := U_1^{\Phi^{(i)}}
\]
are algebraic subgroups of U_1. Moreover $\Phi^{(i+1)} \subset \Phi^{(i)}$ for $i \geq 0$ because $v_1 \in W_1^{C_1}$ and for some positive integer k, $\Phi^{(k+1)} = \emptyset$ because all powers d^k are well defined on a root $\alpha \in \Delta_1$ only if $\alpha \in \Delta_{A_1(v_1,v_2)}$. Thus we have the decreasing sequence of unipotent groups
\[
(6.6) \quad U_{A_1(v_1,v_2)} \cap v_1(U_1) = U_1^{(0)} \supset U_1^{(1)} \supset \ldots \supset U_1^{(k)} \supset U_1^{(k+1)} = \{e\}.
\]
By direct computation one checks that for $\alpha \in \Phi^{(0)}$, $\tilde{\sigma}_1(U_1^\alpha) = U_1^{d(\alpha)}$ if $d(\alpha)$ is defined and $\tilde{\sigma}_1(U_1^\alpha) = \{e\}$ otherwise. As a consequence, $\tilde{\sigma}_1(U_{A_1(v_1,v_2)} \cap v_1(U_1)) = U_1^{(i)}$ for all $i \geq 1$. Now (6.6) immediately implies that $\tilde{\sigma}_1$ is a well defined endomorphism of $U_{A_1(v_1,v_2)} \cap v_1(U_1)$ and $\tilde{\sigma}_1^{k+1} \equiv e$.

Since $\sigma_1 = \text{Ad}_{m_1} \tilde{\sigma}_1$ the same will be true for σ_1 once we show that $M_{A_1(v_1,v_2)}$ normalizes all groups $U_1^{(i)}$. To show this recall that for a subset $\Phi \subset \Delta_1^+$ satisfying (6.5), the unipotent group $U_1^\Phi \subset U_1$ is normalized by M_{D_1} (for $D_1 \subset \Gamma_1$) if and only
\[
\alpha \in \Phi, \beta \in \Delta_{D_1} \text{ and } \alpha + \beta \in \Delta_1^+ \Rightarrow \alpha + \beta \in \Phi.
\]
By induction on $i \geq 0$ one easily checks that this property is satisfied by $D_1 = A_1(v_1,v_2)$ and $\Phi = \Phi^{(i)}$ because $A_1(v_1,v_2)$ is d-stable and $\Phi^{(i)} = d(\Phi^{(i-1)})$.

To complete the proof of Theorem 2.5, it remains to deduce the formula for $\text{Stab}_U(q)$. Since $v_1 \in A_1(v_1,v_2)W_1^{C_1}$ and $v_2 \in A_2 W_2^{C_2(v_1,v_2)}$, it follows from (4.9) and (4.10) that we have decompositions
\[
(6.7) \quad U_{A_1(v_1,v_2)} \cap v_1(U_1) = (U_1 \cap v_1(U_{C_1})) \ v_1 \left(U_{C_1}^{(e^{-1}(C_2(v_1,v_2)))} \right)
\]
\[
(6.8) \quad U_{C_2(v_1,v_2)} \cap v_2^{-1}(U_2) = (U_2 \cap v_2^{-1}(U_{A_2})) \ v_2^{-1} \left(U_{A_2}^{(d(A_1(v_1,v_2)))} \right).
\]
Both groups on the right hand side of (6.7) are invariant under \(\text{Ad}_m\) for any \(m \in M_{A_1(v_1,v_2)}\) because \(\text{Ad}_m^{-1}M_{A_1(v_1,v_2)} = M_{c^{-1}(C_2(v_1,v_2))} \subset M_{C_1}\). Note also that

\[
\begin{align*}
\phi_1(U_{C_2(v_1,v_2)} \cap v_2^{-1}(U_2)) & \subset v_1 \left(U_{c^{-1}(C_2(v_1,v_2))} \right) \subset U_{A_1(v_1,v_2)} \cap v_1(U_1) \\
\phi_2(U_{A_1(v_1,v_2)} \cap v_1(U_1)) & \subset v_2^{-1} \left(U_{a(A_1(v_1,v_2))} \right) \subset U_{C_2(v_1,v_2)} \cap v_2^{-1}(U_2).
\end{align*}
\]

Let now

\[
(n_1u_1, n_2u_2) \in (U_{A_1(v_1,v_2)} \cap v_1(U_1)) \times (U_{C_2(v_1,v_2)} \cap v_2^{-1}(U_2))
\]

be decomposed according to (6.7) and (6.8). Then \((n_1u_1, n_2u_2) \in \text{Stab}(q)\) if and only if

\[
\begin{cases}
\text{Ad}_{v_2^{-1}} \theta_a \pi_{A_1}(n_1u_1) = u_2 \\
\text{Ad}_{n_1v_1}^{-1}(u_1) = \theta_c^{-1} \pi_{C_2}(n_2u_2)
\end{cases}
\]

or

\[
\begin{cases}
\phi_2(n_1u_1) = u_2 \\
\phi_1(n_2u_2) = u_1
\end{cases}
\]

It follows that

\[
\begin{align*}
(6.12) & \quad u_1 = \phi_1(n_2) \sigma_1(n_1u_1) \quad \text{and} \quad u_2 = \phi_2(n_1) \sigma_2(n_2u_2).
(6.13) & \quad u_1 = \psi_1(n_1, n_2) \quad \text{and} \quad u_2 = \psi_2(n_1, n_2),
\end{align*}
\]

where \(\psi_1\) and \(\psi_2\) are respectively given in (2.19) and (2.20). Conversely, it is easy to see that any \((n_1u_1, n_2u_2)\) of the form in (6.13) for \((n_1, n_2) \in (U_1 \cap v_1(U_{C_1}) \times (U_2 \cap v_2^{-1}(U_{A_2}))\) satisfies (6.11). This completes the proof of Theorem 2.5. \(\square\)

Remark 6.4. The Decompositions in (6.7) and (6.8) are semi-direct products because

\[
\begin{align*}
& v_1 \left(U_{c^{-1}(C_2(v_1,v_2))} \right) \text{ normalizes } U_1 \cap v_1(U_{C_1}) \text{ and } v_2^{-1} \left(U_{a(A_1(v_1,v_2))} \right) \text{ normalizes } U_2 \cap v_2^{-1}(U_{A_2}).
\end{align*}
\]

On the other hand, because of (6.9) and (6.10), the subgroup

\[
\text{Stab}_U(q) \subset (U_{A_1(v_1,v_2)} \cap v_1(U_1)) \times (U_{C_2(v_1,v_2)} \cap v_2^{-1}(U_2))
\]

can be regarded as the “graph”

\[
\text{Stab}_U(q) = \{ n \psi(n) | n \in (U_1 \cap v_1(U_{C_1})) \times (U_2 \cap v_2^{-1}(U_{A_2})) \}
\]

of the map

\[
\psi = \psi_1 \times \psi_2 : (U_1 \cap v_1(U_{C_1})) \times (U_2 \cap v_2^{-1}(U_{A_2})) \to v_1 \left(U_{c^{-1}(C_2(v_1,v_2))} \right) \times v_2^{-1} \left(U_{a(A_1(v_1,v_2))} \right).
\]

We will show in §7 that the map \(\psi\) defines a solution to the set-theoretical quantum Yang–Baxter equation on

\[
\text{Stab}_U(q) \cong (U_1 \cap v_1(U_{C_1})) \times (U_2 \cap v_2^{-1}(U_{A_2}))
\]

(as algebraic varieties).

6.2. Proof of Theorem 2.7. By Lemmas 3.2 and 3.4, we know that

\[
\begin{align*}
\dim R_A &= \dim U_{A_1} + \dim U_{A_2} + \dim K \\
&= \dim P_{A_1} - \dim M_{A_1(v_1,v_2)} + \dim U_{A_2} + \dim K(v_1,v_2) \quad \text{and} \\
\dim R_C &= \dim U_{C_1} + \dim U_{C_2} + \dim L \\
&= \dim U_{C_1} + \dim P_{C_2} - \dim M_{C_2(v_1,v_2)} + \dim L(v_1,v_2).
\end{align*}
\]

The second equalities above follow from the fact that in the setting of Theorem 2.7 for any subset \(D_1\) of \(A_1\)

\[
\dim K - \dim K \cap (M_{D_1} \times M_{a(D_1)}) = \dim M_{A_1} - \dim M_{D_1}.
\]
This is easily deduced from the description of a-graphs given in Lemma 3.2. The second part of Lemma 4.2 and the part of Theorem 2.5 on \(\text{Stab}(q) \) imply
\[
\dim \text{Stab}(q) = \dim U_1 \cap v_1(U_{C_1}) + \dim U_2 \cap v_2^{-1}(U_{A_2}) = \dim U_{C_1} + \dim U_{A_2} - l(v_1) - l(v_2).
\]
Applying Theorem 2.5 for the structure of \(\text{Stab}(q) \), we get
\[
\dim [m_1, v_2] = \dim R_A + \dim R_C - \dim \text{Stab}(q) = l(v_1) + l(v_2) + \dim P_{A_1} - \dim M_{A_1(v_1, v_2)} + \dim P_{C_2} - \dim M_{C_2(v_1, v_2)}
\]
\[
+ \dim K(v_1, v_2) + \dim L(v_1, v_2) - \dim J_{m_1}(v_1, v_2) - \dim (\ker \eta_1|_C \cap (\text{Id} \times v_2^{-1})(\ker \eta_1|_K).
\]
Since \(\dim J(v_1, v_2), m_1 = \dim J(v_1, v_2) - \dim J_{m_1}(v_1, v_2) \), to complete the proof of Theorem 2.7 it only remains to show that
\[
(6.14) \quad \dim J(v_1, v_2) = \dim K(v_1, v_2) + \dim L(v_1, v_2) - \dim M_{C_2(v_1, v_2)}
\]
\[
- \dim \eta_2(KL \cap (v_1^{-1} Z_{A_1(v_1, v_2)} \times v_2 Z_{C_2(v_1, v_2)})) - \dim (\ker \eta_1|_C \cap (\text{Id} \times v_2^{-1})(\ker \eta_1|_K).
\]
Define
\[
Q = \{(k_1, k_2, l_1, l_2) \in K(v_1, v_2) \times L(v_1, v_2) \mid k_2 = l_2\} \subset K(v_1, v_2) \times L(v_1, v_2).
\]
In the two cases of Theorem 2.7 \(Q \) is respectively an algebraic/Lie subgroup of \(K(v_1, v_2) \times L(v_1, v_2) \). By definition \(J(v_1, v_2) \) is the image of \(Q \) under \((k_1, k_2, l_1, l_2) \mapsto (k_1, l_1)\), in particular \(J(v_1, v_2) \) is also an algebraic/Lie group. It is easy to see that the kernel of this homomorphism is \((\ker \eta_1|_C \cap (\text{Id} \times v_2^{-1}))((\ker \eta_1|_K)\). Therefore
\[
(6.15) \quad \dim J(v_1, v_2) = \dim Q - \dim (\ker \eta_1|_C \cap (\text{Id} \times v_2^{-1})(\ker \eta_1|_K).
\]
The homogeneous space \((K(v_1, v_2) \times L(v_1, v_2))/Q\) is isomorphic to \(\eta_2(K(v_1, v_2))\eta_2(L(v_1, v_2)) \subset M_{C_2(v_1, v_2)}\) by \((k_1, k_2, l_1, l_2)Q \mapsto k_2 l_2^{-1}\). Moreover from Lemma 3.2 one obtains
\[
\eta_2(K(v_1, v_2))\eta_2(L(v_1, v_2)) = M_{C_2(v_1, v_2)}\eta_2(K(v_1, v_2)L(v_1, v_2) \cap (Z_{A_1(v_1, v_2)} \times Z_{C_2(v_1, v_2)})\]
and
\[
(6.16) \quad \dim Q = \dim K(v_1, v_2) + \dim L(v_1, v_2) - \dim M_{C_2(v_1, v_2)}
\]
\[
- \dim \eta_2(K(v_1, v_2)L(v_1, v_2) \cap (Z_{A_1(v_1, v_2)} \times Z_{C_2(v_1, v_2)})\).
\]
Finally substituting (6.15) in (6.16) and using that the projections of \(K(v_1, v_2)L(v_1, v_2) \cap (Z_{A_1(v_1, v_2)} \times Z_{C_2(v_1, v_2)})\) and \(K \cap (v_1^{-1} Z_{A_1(v_1, v_2)} \times v_2 Z_{C_2(v_1, v_2)})\) under \(\eta_2 \) have the same dimensions lead to (6.14). \(\square\)

7. Solutions to the set-theoretical quantum Yang–Baxter equation

Recall that for a set \(V \), the set-theoretical quantum Yang–Baxter equation for an invertible map \(T: V \times V \to V \times V \) is
\[
(7.1) \quad T^{12} T^{13} T^{23} = T^{23} T^{13} T^{12},
\]
where for \(i, j, k \in \{1, 2, 3\} \), \(T^{ij} \) denotes the map from \(V \times V \times V \) to itself that has \(T \) act on the \((i, j)\)th components.

For \(v_1 \in W_{A_1}^{C_1} \) and \(v_2 \in W_{A_2}^{C_2} \), we will set, for notational simplicity,
\[
N_{v_1, v_2} = (U_1 \cap v_1(U_{C_1})) \times (U_2 \cap v_2^{-1}(U_{A_2}))
\]
\[
Q_{v_1, v_2} = v_1 \left(UC_1 \times v_2^{-1} \left(U_{A_2}^{A_1(v_1, v_2)}\right)\right).
\]
Then \(Q_{v_1, v_2} \) normalizes \(N_{v_1, v_2} \), and
\[
N_{v_1, v_2} = (U_{A_1(v_1, v_2)} \cap v_1(U_1)) \times (U_{C_2(v_1, v_2)} \cap v_2^{-1}(U_2)).
\]
Recall from Remark 6.4 that for a point \(q = (\tilde{v}_1 m, \tilde{v}_2 s_2) \in G \times G \), where, \(\tilde{v}_i \) is a representative of \(v_i \) in the normalizer of \(H_i \) in \(G_i \) for \(i = 1, 2 \), \(m \in M_{A_i(v_1, v_2)} \), and \(s_2 \in Z_{C_2(v_1, v_2)} \), we have

\[
\text{Stab}(q) = \{ n \psi(n) | n \in N_{v_1, v_2} \} \subset (U_{A_i(v_1, v_2)} \cap v_1(U_1)) \times (U_{C_2(v_1, v_2)} \cap v_2^{-1}(U_2)),
\]

where \(\psi = \psi_1 \times \psi_2 : N_{v_1, v_2} \rightarrow Q_{v_1, v_2} \) and \(\psi_1 \) and \(\psi_2 \) are respectively given in (2.19) and (2.20). In this section, we show that the map \(\psi \) defines a solution to the set-theoretical quantum Yang–Baxter equation on \(N_{v_1, v_2} \).

As is true for any group \([6]\), the map

\[
T_0 : N_{v_1, v_2} \times N_{v_1, v_2} \rightarrow N_{v_1, v_2} \times N_{v_1, v_2} ; (n, n') \mapsto (n', (n')^{-1}nn')
\]

satisfies the set-theoretical quantum Yang–Baxter equation (7.1). We now show that a twist of \(T_0 \) using the map \(\psi \) is also a solution to (7.1).

Let \(\sigma \) and \(F \) be the maps from \(N_{v_1, v_2} \times N_{v_1, v_2} \) to itself given respectively by

\[
\sigma(n, n') = (n', n),
\]

\[
F(n, n') = (n, \psi(n)n'\psi(n)^{-1}).
\]

Define

\[
T = (\sigma F \sigma)^{-1} T_0 F : N_{v_1, v_2} \times N_{v_1, v_2} \rightarrow N_{v_1, v_2} \times N_{v_1, v_2}.
\]

Proposition 7.1. The map \(T \) is a solution to the set-theoretical quantum Yang–Baxter equation (7.1) on \(N_{v_1, v_2} \).

Proposition 7.1 is a special case of the following general fact.

Lemma 7.2. Assume that \(U \) is a group and that \(Q \) and \(N \) are subgroups of \(U \) such that \(N \cap Q = \{e\} \) and that \(Q \) normalizes \(N \). Suppose that \(\psi : N \rightarrow Q \) is a map such that

\[
S := \{ n \psi(n) | n \in N \}
\]

is a subgroup of \(U \). Let \(T_0, \sigma, F, \) and \(T \) be the maps from \(N \times N \) to itself given by replacing \(N_{v_1, v_2} \) by \(N \) in (7.2), (7.3), (7.4), and (7.5) respectively. Then \(T \) is a solution to the set-theoretical quantum Yang–Baxter Equation (7.1) on \(N \).

Proof. Since \(S \) is a subgroup of \(U \), the map

\[
\tilde{\psi} : S \rightarrow Q : n \psi(n) \mapsto \psi(n)
\]

is a group homomorphism. Thus the map

\[
S \times N \rightarrow N : (n \psi(n), n') \mapsto (n \psi(n)) \cdot n' := \psi(n)n'\psi(n)^{-1}
\]

defines a left action of \(S \) on \(N \) by group automorphisms. Moreover, it is clear from the definition that the map \(\pi : S \rightarrow N : n \psi(n) \mapsto n \) is a bijective 1-cocycle on \(S \) with coefficients in \(N \), i.e., \(\pi \) is bijective and that

\[
\pi(s_1 s_2) = \pi(s_1) \pi(s_2), \quad s_1, s_2 \in S.
\]

By [20, Theorem 6], the map \(T \) is a solution to (7.1).

Remark 7.3. Although for any integer \(m \geq 2 \), the action of the Braid group \(B_m \) on \(N^{\times m} \) induced by \(T \) is isomorphic to the one induced by \(T_0 \) [20, Theorem 6], the fact that \(T \), as the twisting of \(T_0 \) by \(F \), still satisfies the quantum Yang–Baxter Equation (7.1) is non-trivial. When \(N \) is abelian, the fact that \(T \) satisfies (7.1) is also proved in [9].
null
induces an isomorphism between the quotient spaces $R_A \setminus (P_{A_1} \times P_{A_2})$ and $K \setminus (M_{A_1} \times M_{A_2})$. We know from 1) of Lemma 4.2 that

$$(\pi_{A_1} \times \pi_{A_2})(\operatorname{Stab}(\tilde{w}_1, \tilde{w}_2)) = P_{A_1}^{\tilde{A}_1(\Gamma_{1}(C_1))} \times P_{A_2}^{\tilde{A}_2(\Gamma_{2}(C_2))}.$$

Since $M_{A_1} \times M_{A_2}$ normalizes $N_{A_1} \times N_{A_2}$, we see that the projection $\pi_{A_1} \times \pi_{A_2}$ induces an isomorphism of double coset spaces

$$R_{A}P_{A_1} \times P_{A_2}/\operatorname{Stab}(\tilde{w}_1, \tilde{w}_2) \cong K\setminus M_{A_1} \times M_{A_2}/(P_{A_1}^{\tilde{A}_1(\Gamma_{1}(C_1))} \times P_{A_2}^{\tilde{A}_2(\Gamma_{2}(C_2))}).$$

By Lemma 8.3, every $(K, P_{A_1}^{\tilde{A}_1(\Gamma_{1}(C_1))} \times P_{A_2}^{\tilde{A}_2(\Gamma_{2}(C_2))})$-double coset in $M_{A_1} \times M_{A_2}$ contains exactly one point of the form (e, w) for some $w \in a(\tilde{A}_1(\Gamma_{1}(C_1))W_{A_2}^{\tilde{A}_2(\Gamma_{2}(C_2))}$. Thus every R_A-orbit in $(G_1 \times G_2)/(P_{C_1} \times P_{C_2})$ contains a unique element of the form $(\tilde{w}_1, \tilde{w}_2)$, where $w_1 \in A_1W_{C_1}$, $w_2 \in A_2W_{C_2}$, and $w \in a(\tilde{A}_1(\Gamma_{1}(C_1))W_{A_2}^{\tilde{A}_2(\Gamma_{2}(C_2))}$. Let $v_1 = w_2$ and $v_2 = ww_2$. Proposition 8.1 now follows from Proposition 4.1.

REFERENCES

DEPARTMENT OF MATHEMATICS, THE UNIVERSITY OF HONG KONG, POKFULAM ROAD, HONG KONG
E-mail address: jlu@maths.hku.hk

DEPARTMENT OF MATHEMATICS, UC SANTA BARBARA, SANTA BARBARA, CA 93106, U.S.A.
E-mail address: yakimov@math.ucsb.edu