<table>
<thead>
<tr>
<th>Title</th>
<th>Acanthostigma and Tubeufia species, including T. claspisphaeria sp. nov., from submerged wood in Hong Kong</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Kodsueb, R; Lumyong, S; Lumyong, P; McKenzie, EHC; Ho, WH; Hyde, KD</td>
</tr>
<tr>
<td>Citation</td>
<td>Mycologia, 2004, v. 96 n. 3, p. 667-674</td>
</tr>
<tr>
<td>Issued Date</td>
<td>2004</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/53365</td>
</tr>
<tr>
<td>Rights</td>
<td>This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.</td>
</tr>
</tbody>
</table>
Acanthostigma and Tubeufia species, including T. claspisphaeria sp. nov., from submerged wood in Hong Kong

Rampai Kodsueb
Saisamorn Lumyong
Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand

Pipob Lumyong
Department of Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand

Eric H.C. McKenzie
Landcare Research, Private Bag 92170, Auckland, New Zealand

Wai Hong Ho
Kevin D. Hyde
Centre for Research in Fungal Diversity, Department of Ecology & Biodiversity, The University of Hong Kong, Pokfulam Road, Hong Kong

Abstract: Acanthostigma scopulum, Tubeufia claspisphaeria sp. nov. and T. paludosa were identified from submerged wood collected in a small forest stream on Lantau Island, Hong Kong. The collections of Acanthostigma scopulum and Tubeufia paludosa differed slightly from the original descriptions. Tubeufia claspisphaeria differs from previously described species in that it has hook-shaped setae that form radially around the ostiole. This new species is described and illustrated and compared with the most similar species. A dichotomous key to the 16 accepted species of Tubeufia is provided.

Key words: new species, saprobic fungi, systematics

INTRODUCTION

There are 22 genera in the Tubeufiaceae (Barr 1980, Rossman 1987, Kirk et al 2001). Some genera, such as Melioliphila and Uredinophila, are hyperparasites on sooty molds and on rust fungi, while Podonectria is parasitic fungi on scale insects. Acanthostigma and Tubeufia are saprobes, usually found on old, rotten wood. Previous examinations of freshwater fungi occurring on submerged wood in streams in the tropics and subtropics have yielded numerous novel fungi, including hyphomycetes (Hyde et al 2002, McKenzie et al 2002), coelomycetes (Hyde 1993) and ascomycetes (Wong and Hyde 1999, Cai et al 2002). During our survey of fungi occurring on naturally submerged wood, we collected an Acanthostigma and two Tubeufia species, one being a species new to science, from a small forest stream in Hong Kong. The three species are described, illustrated and compared with known taxa. A key to the 16 accepted species of Tubeufia is provided.

MATERIALS AND METHODS

Submerged wood was retrieved from a stream near the Trappist Monastery, Lantau Island, Hong Kong, in Apr 2002 and returned to the laboratory, where it was incubated in zip-lock plastic bags at room temperature. Humidity was maintained by adding moistened paper towels. Samples were examined within 3 d and periodically over 1 mo for the presence of sporulating structures. Cultures of fungi were obtained where possible from single spores (Choi et al 1999). To stimulate sporulation, 1 cm² blocks of colonized agar were placed in water in a bubble chamber overnight.

TAXONOMY

Acanthostigma De Not. and Tubeufia Penz. & Sacc. Acanthostigma currently includes six species and recently has been reviewed by Réblóvá and Barr (2000). The genus is characterized by vinaceous, reddish-brown or dark brown ascomata that are covered with dark brownish-black, often opaque, obtuse or acute setae. The ascospores are hyaline, multiseptate and cylindrical-fusiform to elongate fusiform. The anamorphs are in Helicosporium and Helicomyces. In species of Tubeufia the ascomata are hyaline, whitish or yellowish to pinkish, but may become dark at maturity. They are smooth, or are covered with protruding cells, thick-walled hyphal appendages, or short dark setae (Réblóvá and Barr 2000).

Acanthostigma scopulum (Cooke & Peck) Peck, Bull. New York State Mus. 1:22 (1887) (Figs. 1–6) Ascomata 145–250 μm diam, superficial, globose, solitary or gregarious, dark brown to black, membranous, ostiolate, with setae; setae (56–)80–90(–99) μm wide at base, 1.5–2 μm wide at apex, dark brown, 1–2-septate, thick-walled, straight. Asci (64–)90–120(–130) × 8–10 μm

Accepted for publication October 20, 2003.

1 Corresponding author. E-mail: scboi009@chiangmai.ac.th
Figs. 1–6. *Acanthostigma scopulum* (from HKU[M] 17121). 1. Ascomata on natural substratum. 2. Dark brown, septate setae with acute apex. 3–4. A cluster of mature and immature asci. 5. Ascus. 6. Ascospore. Pseudoparaphyses in Fig. 3–4 (arrowed). Bars: 1 = 200 μm; 2–5 = 30 μm; 6 = 25 μm. Figs. 2–3 mounted in water, other figures mounted in lactophenol.

(x = 103 ± 9.2 μm, n = 20), 8-spored, cylindric-clavate, bitunicate, short stalked, pseudoparaphyses. Ascospores (66–)70–85(–90) × 3–3.5(–4) μm (x = 78 ± 3.4 μm, n = 30), fasciculate, long-fusiform to cylindrical-fusiform, hyaline, straight or slightly curved, (5–)9–12-septate, smooth-walled, guttulate, lacking appendages and sheaths.

Colonies on potato-dextrose agar olive-colored, reaching 1 cm diam in 10 d at room temperature (~28°C), no pigment diffusing into agar, not sporulating even after submergence overnight in a bubble chamber.

Substratum. Wood submerged in streams, decaying wood (*Fagus sylvatica*, *Pinus* sp. and *Tsuga* sp.)

Known distribution. Australia, Europe, Hong Kong and U.S.A.

Specimen examined. HONG KONG. Lantau Island, Trappist Monastery, small stream in forest, on wood partially submerged, 21 Apr 2002, K.D. Hyde (HKU[M] 17121; living culture HKUCC 9117).

Notes. A key to species of *Acanthostigma* was provided by Reblova and Barr (2000). This collection differs from the description for *A. scopulum* provided by Reblova and Barr (2000) in that it has septate setae and wider ascospores 3–3.5(–4) μm versus (2–)2.5–3(–3.5) μm but in other aspects it is similar.

Tubeflua claspisphaeria Kodueb, sp. nov. (Figs. 7–16)

Ascomata 185–330(–350) μm diametro, superficialia, globosa, solitaria vel aggregata, hyalina vel pallide brunnea ubi immatura, atrobunnea vel atris ubi maturus, membranacea, ostiolata, setosa; setae usque 47 μm longa, 10 μm lata, (0–)1(–2)-septata, atrobunnea, hamatus. Peries ascomata usque 60 μm lata crassus, vinacea-brunnea, e cellulis pseudoparenchymatis compositum, 4–5 stratosus, textura globulosa. Asci (93–)105–120(–127) × (12–)14–16(–18) μm, octospori, cylindrico-clavati, bitunicati, pedicellati. Ascosporae (34–)45–60(–64) × 5–7(–8) μm, fasciculatae, elongatae-fusiformis, (3–)5–6(–8)-septatae, hyalinae, curvatae, guttulatae.

Etymology. In reference to the clasp-like setae on the ascomata. Ascomata 185–330(–350) μm diam, superficial, globose, solitary or grouped, hyaline to pale brown when immature, dark brown becoming black when mature, membranous, ostiolate, with setae that form around ostiole. Setae from surface of ascomata, up to 47 μm long and 10 μm wide, (0–)1(–2)-septate, atrobunnea, thick-walled, hook-shaped. Peridium up to 60 μm wide, vinaceous brown, comprising 4–5 lay-
Figs. 7–16. Tubeufia claspisphaeria (from holotype). 7. Ascomata on natural substratum. 8. Longitudinal section through an ascoma. 9. Setae. 10. A cluster of mature and immature asci. 11. Asci. 12–16. Ascospores. Pseudoparaphyses in Fig. 10 (arrowed). Bars: 7 = 250 μm; 8 = 50 μm; 9 = 25 μm; 10–11 = 30 μm; 12 = 15 μm; 13–16 = 10 μm. Figs. 8–10 and 12 mounted in water, other figures mounted in lactophenol.

Table I. *Tubeufia* species and their present synonyms (accepted name in bold)

<table>
<thead>
<tr>
<th>Taxa</th>
<th>Synonym</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>T. acaciae Tilak & S. B. Kale</td>
<td>None</td>
<td>Although not examined this taxon may not be a Tubeufia with its violet to red ascomata and multisepate ascospores</td>
</tr>
<tr>
<td>T. aciculospora Katum. & Y. Harada</td>
<td>None</td>
<td>This species is unusual as it has ascospores with pointed ends Katumoto and Harada (1979)</td>
</tr>
<tr>
<td>T. alpina L. Holm & Nograsek</td>
<td>Acanthostigmina longisporum</td>
<td>This was considered to be synonymous with A. longisporum by Réblova and Barr (2000)</td>
</tr>
<tr>
<td>T. asclepiadis Bat. & Garnier</td>
<td>Thaxteriella asclepiadis</td>
<td>Transferred in Crane et al (1998)</td>
</tr>
<tr>
<td>T. aurantiella (Penz. & Sacc.) Rossman</td>
<td>(=Calonectria aurantiella)</td>
<td>Mentioned in Crane et al (1998), transferred from Calonectria (Rossman 1979)</td>
</tr>
<tr>
<td>T. brevispina (M. E. Barr & Rogers) J. L. Crane, Shearer & M. E. Barr</td>
<td>(=Acanthostigmella brevispina)</td>
<td>Crane et al (1998)</td>
</tr>
<tr>
<td>T. clintonii (Peck) M. E. Barr</td>
<td>Acanthostigma perpusillum</td>
<td>This was considered to be synonymous with A. perpusillum by Réblova and Barr (2000)</td>
</tr>
<tr>
<td>T. coccicola (Ellis & Everh.)</td>
<td>Podonectria coccicola Petch</td>
<td>Rossmann(1987)</td>
</tr>
<tr>
<td>T. cylindrothecia (Seaver) Höhn.</td>
<td>Tubeufia paludosa</td>
<td>Synonymized by Rossman (1977)</td>
</tr>
<tr>
<td>T. dactylariae Chang</td>
<td>None</td>
<td>Chang (2003)</td>
</tr>
<tr>
<td>T. eriodermae Etayo</td>
<td>Acanthostigmella genuflexa</td>
<td>Etayo (2002)—possibly Chaetosphaerulina</td>
</tr>
<tr>
<td>T. indicis (Dharne & E. Müll.)</td>
<td>Tubeufia paludosa</td>
<td>Synonymized by Rossman (1977)</td>
</tr>
<tr>
<td>T. minutula Munk</td>
<td>Taphrophiella micanthi</td>
<td>Réblova and Barr (2000)</td>
</tr>
<tr>
<td>T. ovatum Rossman</td>
<td>None</td>
<td>For discussion see Rossman (1979)</td>
</tr>
<tr>
<td>T. paludosa (P. Crouan & H. Crouan) Rossman</td>
<td>None</td>
<td>Etayo (2002)—possibly Chaetosphaerulina</td>
</tr>
<tr>
<td>T. parvula Dennis</td>
<td>None</td>
<td>Drawn in Ellis and Ellis (1985)</td>
</tr>
<tr>
<td>T. pezizula (Berk. & M. A. Curtis) M. E. Barr</td>
<td>Thaxteriella pezizula</td>
<td>Type species of Thaxteriella (Sivanesan 1984, Barr 1980)</td>
</tr>
<tr>
<td>T. roraimensis (Samuels & E. Müll.)</td>
<td>Thaxteriella roraimensis</td>
<td>Samuels and Müller (1978); also mentioned in Crane et al (1998)</td>
</tr>
</tbody>
</table>
Table I. Continued

<table>
<thead>
<tr>
<th>Taxa</th>
<th>Synonym</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>T. rugosa C. Booth</td>
<td>Tubeufia helicoma</td>
<td>Barr (1980)</td>
</tr>
<tr>
<td>T. scopula (Cooke & Peck), M. E. Barr</td>
<td>Acanthostigma scopulum</td>
<td>Barr (1980), Réblóva and Barr (2000)</td>
</tr>
<tr>
<td>T. stromaticola (Henn.) Rossman</td>
<td>Transferred from Calonectria</td>
<td>Rossman (1979)</td>
</tr>
<tr>
<td>T. trichella (Sacc., E. Bommer & M. Rousseau) Scheuer</td>
<td>Taphrophila trichela</td>
<td>Réblóva and Barr (2000)</td>
</tr>
<tr>
<td>T. trichospora (Berk. & Broome) Petch</td>
<td>Ophionectria trichospora</td>
<td>Rossman (1977)</td>
</tr>
<tr>
<td>T. vermicularispora (T. Hino & Kat. Hino) Sivan.</td>
<td>Chaetosphaerulina vermicularispora</td>
<td>This has black carbonaceous ascomata and is probably not a Tubeufia. It was described as a Chaetosphaerulina (Hino and Katumoto 1954)</td>
</tr>
</tbody>
</table>

....

ers of thick-walled textura globulosa, outer cells brown-walled, inner cells with hyaline walls. Pseudo-paraphyses 1.5–2.5 μm wide, hypha-like, numerous, cellular, unbranched. Asc (93–)105–120 (–127) × (12–)14–16 (–18) μm (x = 109 × 15.1 μm, n = 15), 8-spored, cylindric-clavate, bitunicate, with a small ocular chamber, persistently pedicellate. Ascospores (34–)45–60 (–64) × 5–7 (–8) μm (x = 49 × 5.9 μm, n = 35), fasciculate, elongate-fusiform, (3–)5–6 (–8)–septate, hyaline, sometimes slightly curved, smooth-walled, guttulate, lacking appendages or sheaths.

Anamorph. Unknown.

Colonies on potato-dextrose agar dark green to black, 1 cm diam in 1 wk at room temperature (–28 C). Mycelium mostly immersed, aerial mycelium velvety to fluffy, no pigment diffusing into agar, not sporulating even after submergence overnight in a bubble chamber. Mycelium less dense at the outer edge than in center, with branching mycelial strands extending from edge of colony.

Substratum. Wood submerged in streams.

Known distribution. Hong Kong.

Tubeufia paludosa (P. Crouan & H. Crouan) Rossman, Mycologia 69:383 (1977) (Figs. 17–23)

Ascomata 185–350 μm diam, superficial, globose, brown to dark-brown, solitary, sparse, surface roughened, membranous. Asc (162–)170–180 × (14–)15–18 (–19) μm (x = 170 × 16.1 μm; n = 17), numerous, 8-spored, cylindric-oblong, bitunicate, hyaline, with a subapical ring, rounded at apex, persistently pedicellate, pseudoparaphyses. Ascospores (77–)120–135 (–155) × 4–5 (–6) μm (x = 127 × 4.3 μm, n = 30), fasciculate, narrowly elongate, cylindric or filiform, hyaline, (18–)20–25–septate, straight or slightly curved, smooth-walled, guttulate, with small mucilaginous pads at each end.

Anamorph. Helicosporium sp.

Colonies on potato-dextrose agar 3.5 cm diam in 3 wk. Mycelium mostly immersed, no pigment diffusing into agar, hyphae less dense in outer zone, sporulating, forming a brownish-gray turf of upright setiform conidiophores, becoming ochraceous or brownish with age; conidiogenous cells produced laterally as thin-walled pegs. Conidia coiled two or three times, multiseptate, coils 37–86.4 μm diam, cells 4.6–5.4 μm wide.

Substratum. Wood submerged in streams, decaying woody fruit, palm fruit peduncle and bamboo.

Known distribution. Bermuda, Brazil, Columbia, Europe, Hong Kong, India, Indonesia, Panama, Trinidad, U.S.A. and Venezuela.

Specimen examined. HONG KONG. Lantau Island, Trappist Monastery, small stream in forest, on wood partially submerged, 21 Apr 2002, K.D. Hyde (HKU[M]17122; living culture HKUCC 9118).

The genus *Tubeufia* has included at least 40 epithe etns as listed in IndexFungorum (http://www.indexfungorum.org/Names/Names.asp). Many of these taxa have been transferred to other genera (Barr 1980, Crane et al 1998) as summarized in Table I. Our two species are typical of *Tubeufia* because the ascomata are initially pale and have either
a glabrous surface or only short setae (Fig. 24). In ascospore size and morphology *Tubeufia claspisphaeria* is most similar to *T. acaciae*, *T. pachythrix* and *T. stromaticola*. It differs from these species in that it has a row of hook-like setae that form radially around the ostiole. The ascospores of *T. claspisphaeria*, *T. pachythrix* and *T. stromaticola* are elongate-fusiform, while those of *T. acaciae* are cylindrical or vermiform. Ascospores of *T. claspisphaeria* are wider than those of the other three species. Our collection of *Tubeufia paludosa* is similar to the description given by Barr (1980) but differs in that it has globose ascomata and mucilaginous pads at both ends of the ascospore.

Tubeufia species have rarely been reported from freshwater habitats (Shearer 1993) and are more commonly found on rotting vegetation (Barr 1980). *Tubeufia paludosa* previously has been reported from submerged grasses (Shearer 1993), *T. cylindrotheicia* and *T. palmarum* from submerged wood (Ho et al 2001, Sivichai et al 2002). The anamorphs, however, commonly are reported from submerged freshwater litter (Ho et al 2002, Sivichai et al 2002).

DICHOTOMOUS KEY TO THE SPECIES OF *TUBEUFIA*

1. Lichenicolous fungi ... 2

1. Not lichenicolous fungi ... 3

2. Ascomata white, ascospores 105–145 × 4–5 μm, acicular, 17–19-septate *T. eriodermae*

2. Ascomata orange-yellow to grayish-yellow, ascospores 40–50 × (3.5–4.5 μm, fusiform, 5–8-septate *T. pannariae*

3. Ascospores <10 septa ... 4

3. Ascospores with >10 septa .. 14

4. Ascospores shorter than 21 μm ... 5

4. Ascospores longer than 21 μm ... 6

5. Ascomata reddish-brown, ascospores 14–15 × 3.5–4 μm, oblong-elliptical, 3-septate *T. parvula*

5. Ascomata hyaline to pale yellow, ascospores (13–)14–18(–21) × (3.5–)4–5(–7) μm, fusoid, 3-septate *T. brevispina*

6. Ascospores up to 7 septa .. 7

6. Ascospores >7 septa .. 11

7. Ascospore 48–56 × 6–7 μm, cylindrical or worm-like, often curved, pointed of both ends, 5–7-septate *T. acaciae*

7. Ascospores narrower than 6 μm ... 8

8. Ascospores less than 3.5 μm wide ... 9

8. Ascospores more than 3.5 μm wide ... 10

9. Ascospores 65–75 × 2.5–3.5 μm, acicular, 4–7-septate *T. aciculospora*

9. Ascospores 66–150 × 2–3 μm, filiform, 5–7-septate *T. helicomycetes*

10. Ascospores 40–57 × 4–5 μm, long-fusiform, multisepate (4-celled according to Rehm 1907) *T. pachythrix*

10. Ascospores 50–70 × 4–5 μm, long-fusoid, 5–7-septate *T. stromaticola*

11. Ascomata with a row of hook-like setae, form radially around the ostiole, ascospores (34–)45–60(–64) × 5–7(–8) μm, elongate-fusiform, (3–)5–6(–7)-septate *T. claspisphaeria*

11. Ascomata not as above .. 12

12. Ascospores 32–36 × 6–7 μm, fusiform, 7–8-septate *T. dactylariae*

12. Ascospores narrower than 6 μm .. 13

13. Ascospores 30–40(–50) × 3–4 μm, fusiform with subacute to round ends, 5–7(–9)-septate *T. palmarum*

13. Ascospores 45–66 × 3.5–5 μm, narrowly fusiform to cylindric, 7–9-septate *T. aurantiella*

14. Ascospores shorter than 70 μm .. 15

14. Ascospores (70–)100–200(–230) × (2.5–3.5–7(–8) μm, fusiform with acute ends, up to 35 septa *T. paludosa*

15. Ascospores 40–55(–65) × (2.5–)3–5 μm, elongate clavate or fusoid, (5–)7–9(–13)-septate *T. cylindrotheicia*

15. Ascospores (27–)30–52 × 2.5–3.5(–4.5) μm, elongate fusoid, often curved, (5–)7–10(–13)-septate *T. cerea*

ACKNOWLEDGMENTS

The senior author would like to thank Department of Ecology & Biodiversity, The University of Hong Kong, for facilitating the work at the Centre for Research in Fungal Diversity. Thanks to Chiang Mai University Graduate School for partial support to the first author’s doctoral study. Thanks also are extended to B. Bussaban, H.Y.M. Leung, M.H.W. Ng, I. Promputtha and S. Thongkantha for various help.

LITERATURE CITED

