<table>
<thead>
<tr>
<th>Title</th>
<th>Two new species of Diplococcium from the tropics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Goh, TK; Hyde, KD; Umali, TE</td>
</tr>
<tr>
<td>Citation</td>
<td>Mycologia, 1998, v. 90 n. 3, p. 514-517</td>
</tr>
<tr>
<td>Issued Date</td>
<td>1998</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/53359</td>
</tr>
<tr>
<td>Rights</td>
<td>This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.</td>
</tr>
</tbody>
</table>
Two new species of Diplococcium from the tropics

T. K. Goh\(^1\)
K. D. Hyde
T. E. Umali

Department of Ecology and Biodiversity, The University of Hong Kong, Pokfulam Road, Hong Kong

Abstract: Two new species of *Diplococcium* are described and illustrated. *Diplococcium aquaticum* sp. nov., from submerged wood in Australia, is distinct in the genus in having slender conidiophores and pyriform, uniseptate, bicolored conidia. *Diplococcium dendrocalamus* sp. nov., from senescent culms of *Dendrocalamus* sp. in the Philippines, differs from other species in the genus in having robust, unbranched, attenuated conidiophores and oblong to ellipsoidal, thick-walled, 1–2-septate, large conidia.

Key Words: Hyphomycetes, litter fungi, systematic, taxonomy

The genera *Spadicoides* S. Hughes and *Diplococcium* Grove are closely related and have similar conidial ontogeny (Holubová-Jechová, 1982). In both genera, the conidiogenous cells are polytretic (Ellis, 1971b). When conidia detach, pores are clearly visible on the conidiogenous cells where the conidia are borne. Species in both genera produce conidia which are unicellular or have up to 7-eusepta. In many species, the septa are thick and darkly pigmented. The generic concepts of the two genera have been revised by Sinclair et al. (1985), and branching of conidiophores is not considered an important criterion separating them. Catenation of conidia is currently the sole diagnostic character separating *Diplococcium* from *Spadicoides* (Goh and Hyde, 1996; Sinclair et al., 1985).

During our investigation of tropical microfungi, we have collected two *Diplococcium* species; one on submerged wood in a freshwater lake in north Queensland, Australia, and the other on a senescent bamboo culm in a tropical rain forest in Luzon, Philippines. These two *Diplococcium* species differ morphologically from other species in the genus and are, therefore, being described as new. Our attempts to grow these two new species in culture were not successful.

Diplococcium aquaticum Goh, K. D. Hyde et Umali, sp. nov.

Coloniae in substrato naturale effusae, atrobrunneae. Mycelium partim superficialiae et partim immersum, ex hyphis ramosis, subhyalinis vel pallide bruneis, laevibus, septatis, 1.5–2 μm latissimis. Conidiophora ex substratis vel hyphis superficialibus singulatim oriunda, erecta, recta vel leniter flexuosa, sursum interdum nodulata, ad apicem rotundata, septata, ramosa, pallide brunnea vel modice brunea, ad apicem leniter pallidiora, laevia, 80–180 × 2.5–3 μm, in latitudine uniformia. Cellulæ conidiogenæ in conidiophoris incorporatae, polytreticae, terminales et intercalares. Conidia (5–)7–13 × 4–5 μm, breve catenulata, elipsoidea vel pyriforma, ad apicem late rotundata, laevia, plerumque uniseptata, septum atrum et excentricum ad basem propriæ, leniter constricta, bicoloria; cellula apicalis atro olivacea vel pallide brunnea, 5–6.5 × 4–5 μm; cellula basalis subhyalina vel pallidissime flavidobrunnea, 2.5–5 × 2.5–4 μm.

Etymology. *Diplococcium aquaticum*, referring to the habitat on wood submerged in freshwater.

Colonies on natural substratum effuse, dark brown. Mycelium partly superficial and partly immersed, composed of branched, subhyaline to pale brown, smooth, septate, 1.5–2 μm wide hyphae. Setae and *hypophodia* absent. Conidiophores arising singly directly from the substratum or as lateral branches from the superficial mycelium, erect or ascending, straight or slightly flexuous, apical portion sometimes nodulate, rounded at the tip, septate, branched, pale brown to medium brown, slightly paler at the apex, smooth, 80–180 × 2.5–3 μm, uniform in width. Conidiogenous cells integrated, polytretic, terminal and intercalary. Conidia (5–)7–13 × 4–5 μm, borne in
short chains, ellipsoidal to pyriform, broadly rounded at the apex, smooth, predominantly 1-septate, septum dark and eccentric (closer to the base), slightly constricted at the septum, bicolored; apical cell dark olivaceous to pale brown, 5–6.5 × 4–5 μm; basal cell subhyaline to very pale yellowish brown, 2.5–5 × 2.5–4 μm.

Teleomorph. Unknown.

This species is unique in the genus in having slender conidiophores (2.5–3 μm wide) and pyriform conidia. It is comparable to *D. graminearum* R. F. Castañeda & W. B. Kendr. (Castañeda Ruiz and Kendrick, 1991) which also produces uniseptate, bicolored conidia. The latter, however, differs in its unbranched conidiophores and obpyriform conidia, with a central septum. In *D. graminearum*, the basal cell of the conidia is darker than the apical cell.

Diplococcium dendrocalami Goh, K. D. Hyde et Umali, sp. nov.

Coloniae in substrato naturale effusae, atro-brunneae. Mycelium immersum. Conidiophora solitaria vel 2-4 gregaria, non ramosa, erecta, recta, attenuata, 120–280 μm longa, deorsum 10–12 μm lata, apicum versus attenuata et sursum 7.5–9 μm lata, distincte 4–9-septata, crassitunicata, laevia, modice flavidobrunnea, in coloratione uniformia, cum regenerationibus percurrentibus interdum praedita. Cellulae conidiogenae in conidiophoris incorporatae, polytreticae, terminales et intercalares vel interdum etiam basilares, pori ca 0.8 μm diam praeditae. Conidia breviseptata, oblonga vel ellipticae, utrinque late rotundata, crassitunicata, laevia, plerumque 1(–2)-septata, raro 3-septata, illa uniseptata (12–)14(–16) × 6–9 μm, illa biseptata 17–22 × 6–9 μm, ad septa non consticta vel leniter consticta, modice flavidobrunnea, concoloria; septa ca 2 μm crassa et atra.

Etymology. *dendrocalami*, referring to its habitat on *Dendrocalamus*.

HOLOTYPE. PHILIPPINES. LUZON, LAGUNA: Los Baños, Mt. Makiling, on senescent culms of *Dendrocalamus* sp., Sep. 1995, T. E. Umali & F. Nono, TD118SP (HKU(M) 5800).

Coloniæ on natural substratum effuse, dark brown. Mycelium immersed. Setæ and hyphopodia absent. Conidiophores arising singly or groups of 2-4, unbranched, erect, straight, attenuated, 120–280 μm long, 10–12 μm wide near the base, attenuate to 7.5–9 μm wide towards the apex, distinctly 4–9-septate, thick-walled, smooth, medium yellowish brown, uniform in color, sometimes with 1–2 percurrent regenerations. Conidiogenous cells integrated, polytretic with pores ca 0.8 μm diam, terminal and intercalary, sometimes also basal. Conidia borne in short chains, oblong or ellipsoidal, broadly rounded at both ends, thick-
walled, smooth, mostly 1(-2)-septate, occasionally 3-septate, not constricted or slightly constricted at the septa, medium yellowish brown, concolorous; septa ca 2 μm thick and dark, usually with a visible central septal pore; unisepctate conidia (12-)14-16(-17) × 6-9 μm; 2-septate conidia 17-22 × 6-9 μm.

Teleomorph. Unknown.

Diplococcium dendrocalami somewhat resembles *D. clavariarum* (Desm.) Hol.-Jech. (Holubová-Jechová, 1982) since the conidia are approximately the same width, ellipsoidal, thick-walled, and have a thick dark septum. The latter, however, differs in having conidiophores which are chiefly branched and slender (3.5-6 μm wide). *Diplococcium clavariarum* has been reported as a parasite on living carpophores of *Clavaria* species (Holubová-Jechová, 1982; Samuels et al., 1997), whereas *D. dendrocalami* has been found as a saprobe. *Diplococcium dendrocalami* is also comparable to *D. insolitum* Hol.-Jech. in which the conidiophores are attenuated and sometimes regenerate percurrently (Holubová-Jechová, 1982). However, the conidia in *D. insolitum* are mainly 2-septate, tricolored, and broadly obclavate.

Acknowledgments.—We wish to thank Helen Leung, A.Y. P. Lee, and Ken M. K. Wong for their technical and photographic assistance. The University of Hong Kong is thanked for the award of a Post-doctoral Fellowship to Dr. T. K. Goh.

LITERATURE CITED

