<table>
<thead>
<tr>
<th>Title</th>
<th>Runx2 regulates endochondral ossification in condyle during mandibular advancement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Tang, GH; Rabie, ABM</td>
</tr>
<tr>
<td>Citation</td>
<td>Journal Of Dental Research, 2005, v. 84 n. 2, p. 166-171</td>
</tr>
<tr>
<td>Issued Date</td>
<td>2005</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/53209</td>
</tr>
<tr>
<td>Rights</td>
<td>This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.</td>
</tr>
</tbody>
</table>
RESEARCH REPORTS

G.H. Tang1,2 and A.B.M. Rabie1*

1Hard tissue biology and repair research group and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, 34 Hospital Road, Hong Kong SAR, China; and 2Department of Orthodontics, School of Stomatolgy, Shanghai Second Medical University, Shanghai, China; *corresponding author, rabie@hkusua.hku.hk

J Dent Res 84(2):166-171, 2005

ABSTRACT

Runx2 is a transcription factor prerequisite for chondrocyte maturation and osteoblast differentiation. We tested the hypothesis that Runx2 is responsible for signaling chondrocyte maturation and endochondral ossification in the condyle during mandibular advancement. Fifty 35-day-old Sprague-Dawley rats were fitted with functional appliances for 3, 7, 14, 21, and 30 days. Experimental animals with 50 matched controls were labeled with bromodeoxyuridine for evaluation of the invasion of chondroclasts and osteoblasts into condylar cartilage. Mandibular advancement elicited Runx2 expression in condylar cartilage, and subsequently led to an expansion of type X collagen domain in the hypertrophic layer. Stronger Runx2 mRNA signals in subchondral bone corresponded with the increase in the recruitment of osteoblasts and chondroblasts, which preceded the increase of new bone formation in the condyle. Thus, Runx2 mediates chondrocyte terminal maturation and endochondral ossification in the mandibular condyle in response to mandibular advancement.

KEY WORDS: Runx2, mechanical stress, mandibular condyle, chondrocyte, osteoblast.
that Runx2 is a molecular linker of mechanical signals and osteoblast differentiation (Ziros et al., 2002). To test the hypothesis that Runx2 is responsible for signaling chondrocyte maturation and endochondral ossification in the condyle during mandibular advancement, we designed this study to investigate the temporal and spatial patterns of the expression of Runx2 in condylar cartilage in response to mandibular advancement, and to correlate Runx2 expression with the pattern of expression of type X collagen, the recruitment of chondroclasts and osteoblasts, and the amount of new bone formation in the condyle.

MATERIALS & METHODS

Experimental Animals and BrdU Labeling

One hundred female Sprague-Dawley rats at 35 days of age were randomly allotted to 5 control and 5 experimental groups (n = 10). Experimental animals were fitted with functional appliances, which positioned the mandible forward (Rabie et al., 2001). Rats were killed after 3, 7, 14, 21, and 30 days. To study the cell kinetics of the skeletal progenitors, we labeled animals with bromodeoxyuridine (BrdU, Sigma, St. Louis, MO, USA) by intraperitoneal injection. Half of the rats in each group received the drug 1 hr before death, at a dosage of 2.5 mg/100 g body weight. The other half of the rats were labeled with BrdU 3 days before death, at a dosage of 5 mg/100 g. The injections were given at the same time of day (9:00-11:00 a.m.). The experiment was approved by the Committee on the Use of Live Animals in Teaching and Research of the University of Hong Kong.

Histochemical Staining and in situ Hybridization

Condyles were harvested, and paraffin sections were cut mid-sagittally. We used PAS (periodic acid and Schiff’s reagent) staining and Alcian blue-PAS staining to identify the new bone formation and the histological structure of the condyle (Rabie and Hagg, 2002; Rabie et al., 2003c). Chondroclasts with the characteristics of TRAP (tartrate-resistant acid phosphatase) activities were identified with the Leukocyte Acid Phosphatase Kit (Sigma, St. Louis, MO, USA) (Rabie et al., 2004). In situ hybridization and immunohistochemical staining were carried out as described in detail previously (Rabie et al., 2004). The primary antibody for type X collagen was a monoclonal mouse IgG (Quartett, Berlin, Germany). To visualize the BrdU labeled cells, we used a monoclonal anti-BrdU antibody (Sigma, St. Louis, MO, USA). To ascertain the specificity of the immunostaining, we included negative controls in which the primary antibodies were replaced by non-immune serum.

Quantitative and Statistical Analysis

A true-color computer-assisted image analyzing system with a digital camera (Leica DC 300 V2.0, Leica, Wetzlar, Germany) and software (Qwin V2.4, Leica, Cambridge, UK) was applied for quantitative analysis (Rabie et al., 2003c). Measurements were carried out in the superior-posterior region of the condyle, where the cartilage layer runs parallel to the articular surface, and appeared to be uniform among animals. Two measurement frames of 550 x 400 μm were applied, with one in the cartilage layer and the other in the subchondral bone layer (Fig. 1). Images were captured inside the frame with a magnification of 360X.

The numbers of cells with positive immunostaining of Runx2 and BrdU (more than 80 pixels) were counted by the computer in the upper and lower measurement frames, respectively. The depth of the hypertrophic layer stained with type X collagen was determined as the mean of the measurements...
RESULTS

Upon mandibular advancement, stronger expression of Runx2 mRNAs was observed in condylar cartilage and the subchondral bone (Figs. 1A-1D, 2A, 2D). Mechanical loading also elevated Runx2 protein synthesis, especially in hypertrophic chondrocytes (Figs. 1F, 1G, 2B, 2E). Quantitative analysis demonstrated significantly higher levels of Runx2 expression in condylar cartilage in response to mandibular advancement (Fig. 3A). Type X collagen was limited to the hypertrophic layer and to the cartilage islands in the subchondral bone (Figs. 2C, 2F). Significant expansion of the type X collagen domain was recorded on days 14 and 21 during mandibular advancement (Figs. 2C, 2F, 3B). At the end of the experiment on day 30, however, type X collagen staining dropped below the control level (Fig. 3B).

When BrdU was injected 1 hr before death, only bone marrow cells and the chondroclasts were labeled (Figs. 4A, 4C). Osteoblasts lining the trabecular bone lacked positive staining (Fig. 4A). Alternatively, when BrdU was administered three days before death, the osteoblasts and the progenitor cells approaching the bone surface were labeled (Fig. 4B). Chondroclasts with strong TRAP activity remained positively stained (Figs. 4C, 4D). Thus, the three-day BrdU-labeled cells detected in the erosive zone of the cartilage were skeletal cells, either osteoblasts or chondroclasts (Figs. 4E, 4F). Quantitative measurements showed an increase in the number of labeled skeletal cells on days 14 and 21 during mandibular advancement (Fig. 3C).
DISCUSSION
The mandibular condyle undergoes endochondral bone formation, where it necessitates tight control of chondrogenesis, cartilage degradation, blood vessel invasion, and osteoblast recruitment (Rabie and Hagg, 2002). In the present study, we showed that the transcription factor Runx2 is in charge of regulating these processes during growth modification of the condyle induced by forward mandibular positioning.

Runx2 has been well-documented to regulate chondrocyte hypertrophy during chondrogenesis in long bones. Runx2-deficient mice showed impaired chondrocyte differentiation with no hypertrophic chondrocytes (Inada et al., 1999). Overexpression of Runx2 caused acceleration of endochondral ossification due to precocious chondrocyte maturation (Takeda et al., 2001). An in vitro study suggested that Runx2 is a target of mechanical signals (Ziros et al., 2002). In the mandibular condyle, Runx2 was expressed in pre-hypertrophic and hypertrophic chondrocytes during natural growth (Rabie et al., 2004). Forward mandibular positioning causes pull in the posterior condyle, which creates a strain alignment of the mesenchymal cells and other cells in the extracellular matrix of condylar cartilage (Rabie et al., 2001; Tang et al., 2004). Analysis of our present data demonstrated that stretching the condylar tissues enhanced Runx2 expression in condylar cartilage, on both transcriptional and translational levels (Figs. 1, 2). To reveal if the induced Runx2 expression promoted chondrocyte hypertrophy in condylar cartilage, we evaluated type X collagen expression. Expression of type X collagen is the trait of hypertrophic chondrocytes, and it precedes the onset of endochondral ossification in the mandibular condyle (Rabie and Hagg, 2002). In the present study, an expansion of type X collagen domain in the hypertrophic layer was identified on days 14 and 21 in response to mechanical strain (Figs. 2C, 2F, 3B). It was important to note that the increase of Runx2 expression was first identified on day 7 (Fig. 3A), which preceded that of the type X collagen (Fig. 3B). Moreover, the increase of Runx2 expression under mechanical strain was most evident on day 14 (152%), which preceded the maximum increase of type X collagen expression on day 21 (56%) (Figs. 3A, 3B). It was suggested that the expression of type X collagen is not a direct target of Runx2, but rather is secondary to the appearance of hypertrophic chondrocytes regulated by Runx2 (Enomoto et al., 2000). Thus, mandibular advancement elevated Runx2 expression in condylar cartilage. Runx2 subsequently promoted chondrocyte hypertrophy and terminal maturation, leading to an increase in the synthesis of type X collagen and an expansion of the cartilage template.

The conversion of cartilage to bone requires a precise coordination of the activities of chondroclasts and osteoblasts to remove the cartilage and to deposit the osteoid. Runx2 was first identified as a crucial transcription factor for osteoblast differentiation (Ducy et al., 1997, 1999; Harada et al., 1999; Jimenez et al., 1999; Karsenty et al., 1999). Under mechanical stress, more Runx2 mRNA expression was identified in the subchondral bone area of the mandibular condyle (Figs. 1D, 2G-H). When BrdU was administered 1 hr before death (A), the labeled cells were accumulated in the center of the blood vessels. The disc-shaped osteoblasts lining the subchondral bone surface were not labeled (A, arrowheads). When BrdU was administered 3 days before death (B), almost all the labeled cells in the marrow cavity were skeletal progenitor cells migrating toward the cavity wall (B, arrows). The differentiated osteoblasts on the bone surface were labeled (B, arrowheads). The labeled cells in the erosive front were multinuclear chondroclasts (C) with strong TRAP activities (D). Three-day BrdU labeling showed more osteoblasts and chondroclasts in the erosive zone during mandibular advancement (F: 14 days after the experiment) than during natural growth (E: 49 days old).

Figure 4. BrdU labeling in 56-day-old rats showed the differentiation of osteoblasts. When BrdU was administered 1 hr before death (A), the labeled cells were accumulated in the center of the blood vessels. The disc-shaped osteoblasts lining the subchondral bone surface were not labeled (A, arrowheads). When BrdU was administered 3 days before death (B), almost all the labeled cells in the marrow cavity were skeletal progenitor cells migrating toward the cavity wall (B, arrows). The differentiated osteoblasts on the bone surface were labeled (B, arrowheads). The labeled cells in the erosive front were multinuclear chondroclasts (C) with strong TRAP activities (D). Three-day BrdU labeling showed more osteoblasts and chondroclasts in the erosive zone during mandibular advancement (F: 14 days after the experiment) than during natural growth (E: 49 days old).
To find out if osteoblast transportation was also increased, we counted the BrdU-labeled cells in the erosive front of the condylar cartilage (Figs. 4E, 4F). The TRAP-positive chondroclasts adjacent to eroding calcified cartilage were constantly labeled from 1 hr to 3 days after BrdU administration (Figs. 4C, 4D). The differentiated osteoblastic cells, however, were observed only 3 days after the labeling (Fig. 4B). This was in line with earlier reports that the formation of chondroclasts could be detected as early as 5 min after 3H]thymidine administration (Heeley et al., 1983), while the proliferation and differentiation of precursors into osteoblasts required 72 hrs (Turner et al., 1998). Analysis of our data showed a decrease in the recruitment of osteoblasts and chondroclasts in the condyle during natural growth (Fig. 3C). This could explain the decrease in the amount of new bone formation in the condyle with age (Fig. 3D). Mandibular advancement, however, significantly increased the formation of these cells on days 14 and 21, which followed the elevation of Runx2 expression first identified on day 7 (Figs. 3A, 3C). This suggested that, in the condyle, Runx2 might play a role in osteoblast differentiation and function similar to that demonstrated in long bones. Large increases in osteoblastic and chondroclastic invasion on day 21 might account for the decrease in type X collagen domain as it is being replaced by bone, and therefore a significant increase in new bone formation on day 30 is noted (Figs. 3B, 3D).

Runx2 has been stated to up-regulate VEGF (vascular endothelial growth factor) expression (Zelzer et al., 2001). Thus, analysis of the present data further supports our previous findings that mandibular forward positioning solicits an increase in the expression of VEGF, the key regulator of neovascularization (Rabie et al., 2002). The significant increase in the invasion of new blood vessels, with their perivascular sites rich in mesenchymal cells, thus contributes to a significant increase in the number of skeletal progenitors in the erosive zone. The increase in Runx2 expression triggered by mechanical stimulation could induce mesenchymal cell differentiation into osteoblasts, while the hematopoietic cells differentiated into chondroclasts. The increase in the recruitment of osteoblasts and chondroclasts thus directly contributed to the removal of cartilage and the deposition of bony tissues, leading to enhanced endochondral ossification in the condyle.

Elucidating the signaling pathway that regulates the growth modification of the mandibular condyle under biomechanical stimulation is essential for the practicing clinician to be able to base his/her clinical treatment modalities on sound scientific concepts. Our present findings reiterated the importance of Runx2 during endochondral bone formation in mandibular condyles. Mandibular advancement elicited Runx2 expression, which up-regulated the expression of VEGF and elevated type X collagen expression. The cooperation of these factors promoted chondrocyte terminal maturation and also induced chondroclast invasion and osteoblast formation, resulting in more new bone formation in the condyle in response to forward mandibular positioning.

ACKNOWLEDGMENT

This research was supported by CRCG grant 10203770.22311.08003.323.01 from the University of Hong Kong.

REFERENCES

Rabie AB, Hagg U (2002). Factors regulating mandibular condylar...