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Abstract 

 

A complete set of series form solutions of stress and displacement functions, including all 

higher order terms, around the crack tip for anisotropic crack problems have been newly 

derived by eigenfunction expansion approach. The analytical solutions of displacement 

functions were classified into four cases with respect to different types of complex parameters 

and different corresponding physical meanings. By employing these displacement functions 

as global interpolation functions, fractal two-level finite element method (F2LFEM) was 

applied to evaluate the stress intensity factors (SIFs) for various kinds of anisotropic crack 

problems. In the method of F2LFEM, the infinite number of nodal displacements was 

transformed to a small set of generalized coordinates by fractal transformation technique. 

New element matrices need not be generated and the singular numerical integration was 

avoided completely. Numerical examples of the four cases were studied and high accurate 

results of SIFs were obtained.  
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1.  Introduction 

 

The usefulness of the SIF in the analysis of the problems of residual strength, fatigue crack 

growth rate and stress corrosion has resulted in effort being expanded on the determination of 

SIFs. The use of the SIF in examining crack stability requires an accurate prediction or 

estimation of the stress field in the vicinity of the crack tip for the given structural geometry, 

loading and boundary conditions. However, analytical solutions only exist for certain 

relatively simple cases due to the complicated boundary conditions associated with the 

governing equations. Over the last decade or so, finite element method (FEM) has been firmly 

established as a standard procedure for the solution of practical fracture problems. A number 

of techniques have been suggested for the evaluation of SIF from the finite element results but 

adequate representation of the crack tip singularity remains a common problem to most of 

these methods. 

 

Fractal Finite Elements is originated with Panagiotopoulos (1992, 1993). He adopted the 

Iterated Function System to model fractal boundaries and fractal bodies, obtaining asymptotic 

results for stresses and strains in elastic bodies by classical finite element method. The normal 

and tangent loads acting on the fractal boundaries were thoroughly investigated and defined 

using the method of fractal interpolation function. Recently Carpinteri et al. (2001) introduced 

a new mathematical formulation to handle the mechanical quantities of displacements and 

total energy of fractal bodies based on fractional calculus. The principle of virtual work for 

fractal media was rigorously demonstrated and the fractal FEM was introduced by the use of 

devil’s staircase spline functions. 

 

The use of fractal geometry to generate infinite number of finite elements around the crack 

tips has been adopted by Hu, et al. (1998), Song and Wolf (2002) and Leung and Su (1994, 

1995b, 1998c). The method proposed by Leung and Su was entitled fractal two-level finite 

element method (F2LFEM). The advantage of this method is that instead of solving large 

number of unknowns for conventional finite element meshes, after fractal transformation by 

the global interpolation functions, only a small set of generalized coordinates remains to be 

determined. The singularity of the crack tip is modeled by the fractal geometry concepts such 

that infinitesimal mesh refinement around the crack tip can be achieved. The SIF can be 

obtained directly from the generalized coordinates without any post-processing technique. 
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The method of F2LFEM has been successfully applied to solve many kinds of crack problems 

such as mode I, II, III and mixed-mode 2D cracks (Leung & Su, 1994, 1995a, 1995b, 1996a, 

1996c), cracked classical and Reissner’s Plates (Leung & Su, 1996b, 1996d, Su et al., 1998, 

Su & Leung, 2001a, Su & Sun, 2002a), axisymmetric cracks (Leung & Su, 1998c), penny-

shaped and circumferential cracks (Leung & Su, 1998b), vibration of cracked beams (Leung 

& Su, 1998a), together with three-dimensional (3D) cracks (Leung & Su, 1995c, Su & Leung, 

2001b). Recently, this method has been found to be able to evaluate the coefficients of the 

higher order terms of the crack tip asymptotic field (Su & Sun, 2002b). Upon the above 

review, this method has been proved to be efficient and accurate to evaluate the stress 

intensity factors (SIFs) for cracks in elastic and isotropic materials. Now this method is 

extended to tackle elastic anisotropic crack problems, using the newly derived displacement 

functions around the crack tip (Sun, 2003) as the global interpolation functions. 

 

2.  Fractal Two-Level Finite Element Method 

 

2.1 Introductory formulation of anisotropic elasticity 

 

For a through cracked composite lamina in a state of plane stress, the equations of equilibrium 

in the absence of body forces are 
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Due to the symmetry of compliance matrix, there are altogether six independent constants. 

Substituting the stress-strain relation (2) into the following compatibility equation 
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A stress function, F, is defined as follows such that the equilibrium equations can be satisfied 
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Substituting the above stress functions into Eq. (4), the governing equation is obtained 
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This equation can also be written in terms of differential operators as 
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It has been proved by Lekhnitskii (1963) that the characteristic Eq. (8) could have either 

complex, or purely imaginary roots but could not have real roots in the case of any ideal 

elastic body with real constants a11, 2a11+a66, a22 not equal to zero. The general form of the 

characteristic roots can be denoted as, 

  ,   βαµ i+=1 δγµ i+=2

  βαµµ i−== 13 , δγµµ i−== 24      (9) 

The quantities of  and  are called the complex parameters which characterize the degree 

of anisotropy in the case of plane problems. According to their values it can be judged how 

much a given body differs from that of the isotropic, for which  always equal to i. 

1µ 2µ

21 µµ =

 

The complex parameters got from characteristic Eq. (8) can be grouped into four cases (Sun, 

2003). As shown in Fig. 1, Cases I to III correspond to orthotropic cases with the elasticity 

axes parallel to the coordinate axes, and Case IV corresponds to a general orientation of 

elasticity axes. For Cases I to III when the terms a  in the compliance matrix, the 

characteristic Eq. (8) will be the form 

02616 == a
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Introducing the notations of 12
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can be got based on different relations between A and B as shown in Table 1. These different 

roots (complex parameters) will lead to different final analytical solutions shown in next 

section. This is also the main reason why Cases I to III are separated although they have the 

same physical meanings. 
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For Case IV when coordinate system and the elasticity axes do not coincide with each other, 

the characteristic Eq. (8) will be a fourth order equation. To avoid dealing with this 

complicated equation, it has been shown by Lekhnitskii et al. (1968) that a simple 

transformation formula shown below can be followed to get the complex parameters in 

coordinate system x’oy’ from those in xoy (see Fig. 2), and the complex parameters µ  and 

 in xoy can be obtained from Eq. (9). 
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2.2 Global interpolation function 

 

By adopting appropriate form of stress function F (Eq. (5)), adding up the boundary 

conditions, the analytical solutions of stress and displacement near the crack tip were derived 

by Sun and Su (2003) using eigenfunction expansion technique. Those series form of 

displacement functions shown below can serve as global interpolation function in F2LFEM: 
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where 

  and δ  are the imaginary parts of the complex parameters (see Case I in Table 1), β
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and r and φ  are the polar coordinates shown in Fig. 1(a). 

 

(2) Case II. 
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where 

  is the imaginary part of the complex parameter (see Case II in Table 1), β
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and r and φ  are the polar coordinates shown in Fig. 1(a). 

 

(3) Cases III and IV 
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The v component of the displacement can be obtained by replacing  by  and  by , 

(k = 1, 2) in the above Eq. (14). 
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and r and φ  are the polar coordinates shown in Fig. 1(b). 

 

In the above Eqs. (12) to (14), the coefficients of a1j, a2j, b1j and b2j are generalized 

coordinates which are to be determined after loading and boundary conditions are imposed. 

The relationship between the SIFs and the coefficients can be got by the following definitions: 
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substituting the corresponding stress components into the above equations, the higher order 

terms vanish when r  and only the singular term of 0→ r1  remains. Therefore the SIFs are 

related to the first term of the generalized coordinates (b11 and b21 or a11 and b11) as follows 

(Sun, 2003), 
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2.3 Formulation of F2LFEM 

 

In the formulation of F2LFEM, the cracked elastic body is divided into the singular region Ψ 

and the regular regions Ω by the boundary Γ0 as shown in Fig. 3. In the regular region, the 

conventional finite elements are adopted and the nodal displacements serve as unknowns. 

Conventional FEM suggest the following local (1st level) interpolation for the element 

displacements , ( )xu

   .        (19) Ndu =

where  is the shape function matrix in terms of the natural coordinates ( , and 

 is the nodal displacement vector. 

),( ηξNN = ),ηξ

d
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Within the singular region, an infinite set {Γ1, Γ2, Γ3,...} of curves similar to the shape of Γ0 

with proportionality constants 1ξ , 2ξ , 3ξ ,... ( 10 << ξ

m

) are generated. Let the 

displacements of the master nodes on the boundary Γ0 be d  and those of the slave nodes 

within the boundary Γ0 be d . The grading of mesh inside the singular region can be 

controlled by the proportionality constant 

s

ξ <1. Higher values of ξ  will produce finer grade 

of mesh and vice versa. 

 

It has been shown (Sun, 2003) that displacements near the crack tip do not vary arbitrarily but 

follow certain displacement patterns which automatically satisfy the boundary conditions at 

the crack surface. These displacement patterns serve as good global (2nd level) interpolation 

functions for F2LFEM to interpolate the nodal displacements near the crack tip, as follows, 

          (20) ( ) ( )arTrd θθ ,, =s

in which T  is a transformation matrix and a  is the unknown generalized coordinate 

vector which is independent of the polar coordinates. 
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According to the conservation of strain energy, after transformation, the global finite element 

stiffness equation (Leung & Su, 1994) can be written as 
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2.4 Fractal transformation 

 

To carry out the transformation, the first layer stiffness matrix K  for the first layer of mesh 

(Fig. 3) is first partitioned with respect to s and m: 
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as follows, 
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Furthermore, considering the matrix transformation of the kth inner layer of the element 

stiffness matrix and the assembly of inner layer of meshes from the 2nd layer to infinite layer, 

the generalized stiffness matrix K  is written as i
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where K  is the stiffness of the kk th layer which had been proved to be equal to the stiffness 

matrix of the first layer (Leung & Su, 1994) and T  is the transformation matrix of the kk th 

layer of mesh. Since T  is a power series of r, it can be related to the transformation matrix 
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Eq. (29) is a geometrical series, it can be further simplified as 
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where k  is the ijij
f th entry in matrix T K , and Tf T f f α α ξij ij= ( )  is a scaling function for the 

entry. Eq. (30) implies that the transformation and assembly of all the inner layer elements 

 11 



can be accomplished effectively by modifying the generalized stiffness matrix of the first 

layer using the scaling function α . The complete generalized stiffness matrix for the singular 

region can be calculated by adding up Eqs. (26) and (30) of the first layer and the inner layers 

of stiffness matrices, respectively. 

ij

2µ

 

 

 

 

3.  Numerical examples for Case I crack problems 

 

3.1. Rectangular plates with a central crack under tension 

 

The problems considered are shown in Fig. 4. A rectangular sheet with a central crack of 2a is 

under tensile stress of σ . Bowie and Freese (1972) have successfully presented extensive 

data on this kind of problems for several different geometries and materials. The SIFs 

presented by Bowie and Freese have not related to practical material properties, only the value 

of complex parameters  and  rather than the explicit material constants were given. It is 

therefore considered sufficient to fix β  as unity and vary the parameter of δ  to find how 

much the degree of anisotropy can affect the SIFs. According to the relations of two complex 

parameters (Case I in Table 1), one has 

1µ

  21 EE=βδ , ( ){ }2
1

1212121 22 νδβ +=+ GEEE −    (32) 

putting  into the above equations, one has 1=β

  21
2 EE=δ , ( ){ }2

1

1212121 22 νδ +=+ GEEE1    (33) −

In the present study, Young’s modulus E1 is fixed as 30 units and 12ν  as 0.3, E2 and G12 are 

varied to attain the variation of δ  as shown in Table 2. 2

 

The mesh for F2LFEM analysis is shown in Fig. 4. Due to symmetry of this problem, only 

one-quarter of the plate needs to be modeled. Three types of height to width ratio (h/w=1.0, 

1.5, 2.0) are investigated and each type contains different values of δ  and different crack 

length to specimen width ratio a/w. The dimensionless SIFs got from F2LFEM are tabulated 

in Tables 3, 4 and 5 for h/w=1.0, 1.5 and 2.0 respectively. The results are compared with 

2
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those from Bowie and Freese (1972) in Figs. 5, 6 and 7. The errors are found to be less than 

3.0%. 

 

3.2. Infinite strip with internal crack under tension, pure bending 

 

Infinite orthotropic strip with internal crack subjected to uniform tension and pure bending as 

shown in Fig. 8 are studied by F2LFEM. The crack varies its position and length by different 

value of ratios a/h and b/h. For pure bending load case (Fig. 8(b)), the normalizing maximum 

stress at the edges of the strip is 26 hM=σ . The material properties under consideration are: 

  E1 = 170.65GPa, E2 = 55.16GPa, ν12 = 0.1114, ν21 = 0.036.  

 

The dimensionless SIFs got from F2LFEM solutions are compared with those from Kaya and 

Erdogan (1980) for each type of load case and for different kinds of crack geometries. For 

convenience, the result comparison for a/h = 0.1 and 0.2 is tabulated together in Table 6, and 

the comparison for a/h = 0.3 and 0.4 is shown in Table 7. From these two tables, the errors are 

found to be less than 1.0% generally. It should be noted that the negative SIFs given in Tables 

6 and 7 are meaningful only if the results are used in superposition with other results in such a 

way that the combined SIFs are positive. 

 

4.  Numerical examples for Case II crack problems 

 

Although Case II crack problems have not been studied before, the analytical solution of Eq. 

(13) can be verified by comparing Case II (Eq. (13)) with Case I (Eq. (12)) problems. For 

Case I crack problems when the complex parameters are µ  and , by setting δ 

close to β, the result of SIF could be approaching that of Case II crack problems. This 

provides a way to verify the present analytical solutions. 

βi=1 δµ i=2

 

The example considered is a square plate (h/w=1.0) with single central crack of a/w=0.5 as 

shown in Fig. 4. The verification study is tabulated in Table 8, E1 and E2 are set to be 30 and 

300 units, 12ν   is set to be 0.3, the shear modulus of G12 is varied to approach the Case II 

crack problems in which the equation of ( ) 02 21
2

12121 =−− EEvGE  can be satisfied. The 

corresponding SIFs for each types of material are shown in the last column. It can be seen that 
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very good agreement has been obtained when Case I solutions approaching that of Case II 

which is directly calculated by the new approach derived in the last section. 

 

5.  Numerical examples for Case III crack problems 

 

Examples of internal and edge cracks in a long orthotropic strip considered by Delale and 

Erdogan (1977) is studied by F2LFEM. As shown in Fig. 9, for each type of problems, only 

one-quarter of the whole plate needs to be modeled. The hatched areas in the figure represent 

the singular regions in which fractal meshes are generated by F2LFEM. The material 

considered is a kind of boron-epoxy composite which possesses the following properties: 

 E1 = 3.1×10 6 psi (21.37 GPa), E2 = 9.7×10 6 psi (66.88 GPa), 

 G12 = 2.6×10 6 psi (17.93 GPa),  v12=0.2. 

The complex parameters for this kind of orthotropic material are: 

  = 0.29098 + 0.69325i,  = -0.29098 + 0.69325i. 1µ 2µ

 

The results from F2LFEM and Delale & Erdogan (1977) are tabulated together in Tables 9 

and 10. The percentage of error is generally less than 1.0%. 

 

6.  Numerical examples for Case IV problems 

 

It is well known that cracks usually occur parallel to the fibre direction in composite 

laminates. The numerical examples of this case where cracks are not parallel to the fibre 

directions are mainly used for testing the general anisotropic formulation. 

 

6.3.1. Single edge cracked plate with rotating material axes 

 

As shown in Fig. 10, an example of an edge cracked rectangular plate with one edge fixed 

under shear is studied. Two kinds of materials shown in Fig. 10 are considered which 

represents two kinds of graphite-epoxy composite. The mode I and mode II SIFs are 

calculated in terms of different orientation of material axes θ. For material 1, the results from 

F2LFEM solutions are compared with those from Song & Wolf (2002) and Tan & Gao (1992) 

in Table 11. The errors are found to be less than 1.0%. 
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The problems shown in Fig. 10 have also been studied by Chu and Hong (1990) for material 

2. Their results are compared with those determined from F2LFEM in Table 12. Slightly 

higher discrepancies are found for mode II SIFs, especially when the value of aII πτK  is 

close to zero. This phenomenon is acceptable since larger numerical error appears when the 

SIF goes to a very small value.   

 

Chu and Hong (1990) have also studied the problems of single edge-cracked plate under 

tension with rotating material axes for material 2 and presented their results in graphical form. 

F2LFEM is used to re-calculate the SIFs for this problem and the results from F2LFEM are 

shown in Table 12 and comparison is shown in Fig. 11. 

 

6.3.2. An inclined crack in rectangular plate under tension 

 

An example of a rectangular plate with an inclined crack under tension is studied. As shown 

in Fig. 12, the crack is centrally placed at 45° degree. The crack length to width ratio is 

selected to be a/w=0.2 and the height to width ratio ranges from 1.0 to 3.0. The material 

considered is a kind of glass-epoxy composite which possesses the following properties: 

 E1 = 7.0×10 6 psi (48.26 GPa), E2 = 2.5×10 6 psi (17.24 GPa), 

 G12 = 1.0×10 6 psi (6.89 GPa), v12=0.29. 

 

The dimensionless SIFs aI πσK  and aK II πσ  are calculated in terms of different 

orientation of material axes θ. The results from F2LFEM and from Gandhi (1972) are 

tabulated together in Tables 13, 14 and 15 for h/w=1.0, 2.0 and 3.0 respectively. The errors 

are found to be less than 1.0% for both mode I and mode II SIFs. 

 

7.  Conclusions 

 

The extension of F2LFEM to various kinds of anisotropic crack problems has been presented. 

In this paper, the infinite number of nodal displacements in the singular region is transformed 

to a new set of generalized coefficients by means of fractal transformation technique. By 

taking advantage of the dimensional independence of the stiffness matrices of the two-

dimensional (2D) elements with similar shape, a single transformation of the stiffness for the 

first two layers of mesh is enough for all. The number of unknowns is reduced remarkably, 
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and hence the computational effort is substantially decreased. The SIFs can be directly 

evaluated from the coefficients of global interpolation function. Excellent agreement with 

error generally less than 1.0% for all four cases of anisotropic crack problems has been 

obtained. 
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Figure3. Regular & singular regions and construction of fractal mesh. 
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Figure 4. Single central crack subjected to tension. 

(Hatched area represents the singular region). 
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Figure 5. Comparison of SIFs for cracked rectangular plate, h/w=1.0. 
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Figure 6. Comparison of SIFs for cracked rectangular plate, h/w=1.5. 
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Figure 7. Comparison of SIFs for cracked rectangular plate, h/w=2.0. 
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Figure 8. Infinite strip with internal crack subjected to various loading. 

(a). uniform tension, (b). pure bending. 
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Figure 10. Single edge cracked plate under shear. (a/w=0.5, h/w=2.0) 
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Figure 11. Variation of aK I πσ  and aK II πσ  with material orientation angle θ for 

single edge cracked plate under tension. (material 2) 
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Figure 12. Inclined crack geometry and fractal mesh configuration. 
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Case Orientation of elasticity axes 
Coefficients of the 

compliance matrix 
The complex parameters 

I 
βµ iBAAi =−+= 2

1 , 

δµ iBAAi =−−= 2
2 . 

βµ iBi ==1 , 

12 µµ = . 

βαµ iABiA +=−±−= 2
1 , 

βαµ i+−=2 . 

βα
θµθ
θθµ

µ i+=
+

−
=′

sincos
sincos

1

1
1 , 

δγ
θµθ
θθµ

µ i+=
+

−
=′

sincos
sincos

2

2
2 . 

II 

III 

Orthotropy and coincident 

with the coordinate axis, see 

Fig. 1(a). 

a11, a22, a66, a12 ≠ 0 

a16 = a26 = 0 

IV 

Orthotropy but not coincident 

with the coordinate axis, see 

Fig. 1(b). 

a11, a22, a66, a12,  

a16 , a26 ≠ 0 

Table 1. Classification of anisotropic crack prob

parameters .(note 

lems based on the complex 

µ 12121 2 vGEA −=  and 21 EEB = ) 

 

 

 E1 (psi×106) E2 (psi×106) 
2δ  

12ν  

1=β  

G12 (psi×106) 

0.1 30.0 300.0 0.3 17.647 

0.3 30.0 100.0 0.3 15.789 

0.5 30.0 60.0 0.3 14.286 

0.7 30.0 42.857 0.3 13.043 

0.9 30.0 33.333 0.3 12.000 

1.0 30.0 30.0 0.3 11.538 

1.1 30.0 27.273 0.3 11.111 

1.5 30.0 20.0 0.3 9.677 

2.5 30.0 12.0 0.3 7.317 

3.5 30.0 8.571 0.3 5.882 

4.5 30.0 6.667 0.3 4.918 

Table 2. Material constants and complex parameters for cracked rectangular plate (Case I). 
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      a/w 

 δ2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

0.1 1.035 1.148 1.320 1.540 1.816 2.169 2.606 3.112 

0.3 1.027 1.096 1.212 1.369 1.566 1.800 2.076 2.417 

0.5 1.020 1.076 1.169 1.297 1.454 1.642 1.874 2.196 

0.7 1.016 1.065 1.145 1.254 1.390 1.555 1.769 2.088 

0.9 1.014 1.057 1.128 1.226 1.348 1.500 1.704 2.023 

1.0 1.013 1.054 1.122 1.215 1.333 1.480 1.681 1.999 

1.1 1.012 1.052 1.117 1.206 1.319 1.462 1.661 1.980 

1.5 1.009 1.044 1.101 1.179 1.281 1.414 1.606 1.925 

2.5 1.006 1.035 1.081 1.146 1.235 1.357 1.543 1.862 

3.5 1.004 1.030 1.072 1.131 1.214 1.332 1.514 1.833 

4.5 1.003 1.028 1.066 1.123 1.203 1.318 1.498 1.815 

Table 3. SIFs for central crack tension from F2LFEM, h/w=1.0. 

 
      a/w 

 δ2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

0.1 1.031 1.070 1.165 1.291 1.442 1.618 1.820 2.123 

0.2 1.022 1.056 1.126 1.219 1.335 1.478 1.670 1.983 

0.3 1.015 1.046 1.103 1.181 1.282 1.413 1.604 1.924 

0.5 1.009 1.036 1.081 1.147 1.235 1.358 1.548 1.875 

0.7 1.006 1.031 1.072 1.132 1.215 1.336 1.525 1.854 

0.9 1.004 1.028 1.067 1.124 1.205 1.324 1.513 1.843 

1.0 1.003 1.028 1.065 1.121 1.202 1.320 1.509 1.839 

1.1 1.003 1.027 1.064 1.119 1.199 1.317 1.505 1.835 

Table 4. SIFs for central crack tension from F2LFEM, h/w=1.5. 

 
      a/w 

 δ2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

0.1 1.022 1.036 1.093 1.171 1.268 1.391 1.558 1.864 

0.2 1.016 1.033 1.076 1.137 1.221 1.338 1.519 1.843 

0.3 1.010 1.029 1.066 1.122 1.202 1.318 1.505 1.834 

0.4 1.008 1.026 1.062 1.116 1.195 1.311 1.499 1.831 

0.5 1.006 1.025 1.060 1.113 1.191 1.308 1.497 1.829 

Table 5. SIFs for central crack tension from F2LFEM, h/w=2.0. 
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Tension (a/h=0.1) Pure Bending (a/h=0.1) Tension (a/h=0.2) Pure Bending (a/h=0.2) 
b/h 

LaK I πσ)(  LbK I πσ)(  LaK I πσ)(  LbK I πσ)(  LaK I πσ)(  LbK I πσ)(  LaK I πσ)(  LbK I πσ)(  

From F2LFEM 

0.2 1.0455 1.0367 0.7823 0.6754     

0.3 1.1213 1.0807 0.7739 0.5495 1.0224 1.0199 0.5616 0.4596 

0.4 1.2155 1.1227 0.7630 0.4136 1.0537 1.0400 0.5216 0.3166 

0.5 1.3138 1.1555 0.7387 0.2661 1.0947 1.0623 0.4802 0.1694 

0.6 1.4057 1.1817 0.6979 0.1090 1.1379 1.0874 0.4326 0.0178 

0.7 1.4854 1.2174 0.6419 -0.0564 1.1814 1.1293 0.3780 -0.1400 

0.8 1.5538 1.3079 0.5738 -0.2386 1.2301 1.2301 0.3160 -0.3160 

0.9 1.6267 1.6267 0.4941 -0.4941 1.3079 1.5538 0.2386 -0.5738 

From Kaya & Erdogan (1980) 

0.2 1.0385 1.0296 0.7771 0.6708     

0.3 1.1172 1.0758 0.7717 0.5462 1.0154 1.0129 0.5577 0.4565 
0.4 1.2122 1.1183 0.7614 0.4114 1.0494 1.0355 0.5202 0.3145 
0.5 1.3106 1.1512 0.7373 0.2647 1.0909 1.0584 0.4791 0.1682 
0.6 1.4027 1.1775 0.6967 0.1083 1.1342 1.0836 0.4316 0.0173 
0.7 1.4826 1.2133 0.6406 -0.0565 1.1778 1.1255 0.3771 -0.1399 
0.8 1.5510 1.304 0.5727 -0.238 1.2264 1.2264 0.3152 -0.3152 
0.9 1.6241 1.6241 0.4929 -0.4929 1.3040 1.5510 0.2380 -0.5727 

Corresponding errors (%) 

0.2 0.68 0.69 0.67 0.69     

0.3 0.37 0.46 0.28 0.60 0.69 0.69 0.70 0.68 
0.4 0.28 0.39 0.21 0.53 0.41 0.43 0.27 0.66 
0.5 0.24 0.37 0.19 0.54 0.35 0.37 0.23 0.70 
0.6 0.21 0.36 0.18 0.69 0.33 0.35 0.23 2.85 
0.7 0.19 0.34 0.20 -0.15 0.31 0.34 0.24 0.08 
0.8 0.18 0.30 0.20 0.27 0.30 0.30 0.24 0.24 
0.9 0.16 0.16 0.24 0.24 0.30 0.18 0.27 0.20 

Table 6. SIFs comparison for an internal crack of length  in an orthotropic 

strip under tension. ( ) (a/h = 0.1 and 0.2) 

 

 

 

 

 

 

L2
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Tension (a/h=0.3) Pure Bending (a/h=0.3) Tension (a/h=0.4) Pure Bending (a/h=0.4) 
b/h 

LaK I πσ)(  LbK I πσ)(  LaK I πσ)(  LbK I πσ)(  LaK I πσ)(  LbK I πσ)(  LaK I πσ)(  LbK I πσ)(  

From F2LFEM 

0.4 1.0148 1.0138 0.3548 0.2538     

0.5 1.0303 1.0251 0.3059 0.1054 1.0118 1.0116 0.1515 0.0508 

0.6 1.0540 1.0451 0.2561 -0.0455 1.0224 1.0224 0.0997 -0.0997 

0.7 1.0848 1.0848 0.2020 -0.2020 1.0451 1.0540 0.0455 -0.2561 

0.8 1.1293 1.1814 0.1400 -0.3780 1.0874 1.1379 -0.0178 -0.4326 

0.9 1.2174 1.4854 0.0564 -0.6419 1.1817 1.4057 -0.1090 -0.6979 

From Kaya & Erdogan (1980) 

0.4 1.0079 1.0068 0.3524 0.2521     

0.5 1.0261 1.0208 0.3054 0.1042 1.0049 1.0046 0.1505 0.0505 
0.6 1.0504 1.0415 0.2558 -0.0459 1.0182 1.0182 0.1001 -0.1001 
0.7 1.0811 1.0811 0.2017 -0.2017 1.0415 1.0504 0.0459 -0.2558 
0.8 1.1255 1.1778 0.1399 -0.3771 1.0836 1.1342 -0.0173 -0.4316 
0.9 1.2133 1.4826 0.0565 -0.6406 1.1775 1.4027 -0.1083 -0.6966 

Corresponding errors (%) 

0.4 0.69 0.69 0.69 0.68     

0.5 0.41 0.42 0.16 1.20 0.69 0.69 0.68 0.64 
0.6 0.35 0.35 0.13 -0.84 0.41 0.41 -0.41 -0.41 
0.7 0.34 0.34 0.14 0.14 0.35 0.35 -0.84 0.13 
0.8 0.34 0.31 0.08 0.24 0.35 0.33 2.85 0.23 
0.9 0.34 0.19 -0.15 0.20 0.36 0.21 0.69 0.19 

Table 7. SIFs comparison for an internal crack of length  in an orthotropic 

strip under tension. ( ) (a/h = 0.3 and 0.4) 

 

 E1 E2 

L2

2/)( abL −=

12ν  G12 β δ KI 

30 300 0.3 20 0.87759 0.36034 7.1997 

30 300 0.3 21 0.82579 0.3829 7.2014 

30 300 0.3 22 0.77188 0.40969 7.2038 

30 300 0.3 23 0.71217 0.44404 7.2068 

30 300 0.3 24 0.63246 0.50000 7.2103 

Case I 

30 300 0.3 24.3 0.58579 0.53983 7.2114 

Case II 30 300 0.3 24.34165 0.56236 0.56232 7.2116 

Table. 8 SIFs comparison for Case I approaching and Case II calculation. 
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(a) single internal crack (b) symmetric edge cracks 

a/w 
Delale & 

Erdogan 

(1977) 

F2LFEM 
Error 

(%) 

2a/w 
Delale & 

Erdogan 

(1977) 

F2LFEM 
Error 

(%) 

0.1 1.0064 1.0062 -0.02 0.1 1.593 1.599 0.36 
0.2 1.0261 1.0258 -0.03 0.2 1.587 1.591 0.26 
0.3 1.0611 1.0610 -0.01 0.3 1.590 1.594 0.28 
0.4 1.1155 1.1155 0.00 0.4 1.613 1.616 0.19 
0.5 1.1966 1.1966 0.00 0.5 1.661 1.665 0.27 
0.6 1.3183 1.3184 0.01 0.6 1.750 1.757 0.38 
0.7 1.5099 1.5176 0.51 0.7 1.912 1.929 0.89 
0.8 1.8471 1.8626 0.84 0.8 2.220 2.250 1.36 
0.9 2.6278 2.6298 0.08 0.9 2.982 3.194 7.11 

Table 9. SIF aK I πσ   for (a) single internal and (b) double edge cracks 

 

 

LaK I πσ)(  LbK I πσ)(  
a/w b/w Delale & 

Erdogan (1977) 
F2LFEM Error (%) 

Delale & 

Erdogan (1977) 
F2LFEM Error (%) 

0.1 0.5 1.179 1.181 0.14 1.117 1.120 0.28 
0.2 0.6 1.111 1.117 0.50 1.096 1.101 0.50 
0.4 0.8 1.099 1.105 0.50 1.127 1.132 0.45 
0.5 0.9 1.132 1.134 0.21 1.231 1.233 0.14 
0.1 0.9 1.689 1.691 0.13 1.705 1.707 0.10 
0.5 0.95 1.200 1.201 0.09 1.461 1.460 -0.09 

Table 10. SIFs LaK I πσ)(  and LbK I πσ)(  for (c) symmetric collinear 

cracks of length  in an orthotropic trip,  

 

 

 

 

 

 

 

L2 abL −=2 .
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F2LFEM Song & Wolf (2002) Tan & Gao (1992) 
Difference with 

Song & Wolf (%) θ  

aKI πτ  aKII πτ  aKI πτ  aKII πτ  aKI πτ  aKII πτ  mode I mode II 

0° 8.801 1.339 8.821 1.341 8.789 1.458 -0.23 -0.17 

30° 9.833 5.012 9.852 5.066 9.924 5.122 -0.19 -1.06 

60° 9.622 3.395 9.645 3.407 9.697 3.405 -0.23 -0.36 

90° 8.835 1.030 8.871 1.029 8.89 1.044 -0.40 0.12 

120° 11.231 -1.280       

150° 10.348 -2.472       

160° 9.669 -1.888       

170° 9.061 -0.591       

180° 8.801 1.339       

Table 11. SIFs for single edged-cracked plate under shear. (material 1) 

 

Single edge-cracked plate under shear Tension (Fig. 11) 

F2LFEM Chu & Hong (1990) Error (%) F2LFEM θ  

aKI πτ  aKII πτ  aKI πτ  aKII πτ  mode I mode II aKI πσ  aKII πσ  

-90° 8.866 1.037 8.835 1.030 -0.35 -0.65 2.960 0.000 

-80° 9.721 0.341 9.793 0.302 0.75 -11.51 2.994 -0.193 

-70° 10.871 -0.547 10.862 -0.493 -0.09 -9.80 3.100 -0.405 

-60° 11.269 -1.234 11.231 -1.280 -0.33 3.72 3.209 -0.626 

-50° 11.145 -1.899 11.213 -2.014 0.61 6.04 3.260 -0.834 

-40° 10.871 -2.444 10.905 -2.473 0.32 1.19 3.227 -0.974 

-30° 10.237 -2.336 10.348 -2.472 1.08 5.84 3.115 -0.988 

-20° 9.621 -1.926 9.669 -1.888 0.50 -1.98 2.961 -0.842 

-10° 8.992 -0.501 9.061 -0.591 0.77 17.91 2.825 -0.512 

0° 8.695 1.358 8.801 1.339 1.22 -1.42 2.777 0.000 

10° 8.857 3.171 8.928 3.294 0.80 3.89 2.825 0.512 

20° 9.343 4.646 9.365 4.548 0.24 -2.11 2.961 0.842 

30° 9.763 4.966 9.833 5.012 0.72 0.93 3.115 0.988 

40° 10.008 4.778 10.082 4.820 0.74 0.89 3.227 0.974 

50° 9.862 4.101 9.952 4.150 0.91 1.19 3.260 0.834 

60° 9.639 3.410 9.622 3.395 -0.17 -0.45 3.209 0.626 

70° 9.218 2.707 9.215 2.647 -0.03 -2.23 3.100 0.405 

80° 8.669 1.775 8.722 1.788 0.61 0.74 2.994 0.193 

90° 8.866 1.037 8.835 1.030 -0.35 -0.65 2.960 0.000 

Table 12. SIFs for single edged-cracked plate under shear and tension. (material 2) 
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aK I πσ  aK II πσ  
θ  

Gandhi (1972) F2LFEM Error (%) Gandhi (1972) F2LFEM Error (%) 

0° 0.525 0.5251 0.03 0.516 0.5151 -0.17 

45° 0.519 0.5191 0.01 0.514 0.5157 0.34 

90° 0.535 0.5395 0.85 0.529 0.5323 0.62 

105° 0.543 0.5456 0.47 0.531 0.5357 0.88 

120° 0.544 0.5400 -0.73 0.527 0.5286 0.31 

135° 0.538 0.5371 -0.17 0.522 0.5236 0.30 

180° 0.525 0.5251 0.03 0.516 0.5151 -0.17 

Table 13. SIFs  for inclined crack with rotating material axes θ, h/w=1.0. 

 

aK I πσ  aK II πσ  
θ  

Gandhi (1972) F2LFEM Error (%) Gandhi (1972) F2LFEM Error (%) 

0° 0.522 0.5229 0.17 0.507 0.5066 -0.08 

45° 0.515 0.5148 -0.03 0.505 0.5068 0.36 

90° 0.513 0.5171 0.81 0.509 0.5117 0.53 

105° 0.517 0.5187 0.32 0.510 0.5154 1.06 

120° 0.524 0.5201 -0.74 0.512 0.5130 0.20 

135° 0.532 0.5306 -0.26 0.511 0.5123 0.26 

180° 0.522 0.5229 0.17 0.507 0.5066 -0.08 

Table 14. SIFs  for inclined crack with rotating material axes θ, h/w=2.0. 

 

aK I πσ  aK II πσ  
θ  

Gandhi (1972) F2LFEM Error (%) Gandhi (1972) F2LFEM Error (%) 

0° 0.523 0.5229 -0.02 0.507 0.5064 -0.12 

45° 0.515 0.5148 -0.03 0.505 0.5068 0.36 

90° 0.512 0.5157 0.73 0.506 0.5092 0.63 

105° 0.516 0.5180 0.40 0.509 0.5139 0.96 

120° 0.524 0.5202 -0.73 0.511 0.5128 0.36 

135° 0.531 0.5306 -0.07 0.511 0.5123 0.25 

180° 0.523 0.5229 -0.02 0.507 0.5064 -0.12 

Table 15. SIFs  for inclined crack with rotating material axes θ, h/w=3.0. 
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