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Abstract

A complete set of series form solutions of stress and displacement functions, including all
higher order terms, around the crack tip for anisotropic crack problems have been newly
derived by eigenfunction expansion approach. The analytical solutions of displacement
functions were classified into four cases with respect to different types of complex parameters
and different corresponding physical meanings. By employing these displacement functions
as global interpolation functions, fractal two-level finite element method (F2LFEM) was
applied to evaluate the stress intensity factors (SIFs) for various kinds of anisotropic crack
problems. In the method of F2LFEM, the infinite number of nodal displacements was
transformed to a small set of generalized coordinates by fractal transformation technique.
New element matrices need not be generated and the singular numerical integration was
avoided completely. Numerical examples of the four cases were studied and high accurate

results of SIFs were obtained.
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1. Introduction

The usefulness of the SIF in the analysis of the problems of residual strength, fatigue crack
growth rate and stress corrosion has resulted in effort being expanded on the determination of
SIFs. The use of the SIF in examining crack stability requires an accurate prediction or
estimation of the stress field in the vicinity of the crack tip for the given structural geometry,
loading and boundary conditions. However, analytical solutions only exist for certain
relatively simple cases due to the complicated boundary conditions associated with the
governing equations. Over the last decade or so, finite element method (FEM) has been firmly
established as a standard procedure for the solution of practical fracture problems. A number
of techniques have been suggested for the evaluation of SIF from the finite element results but
adequate representation of the crack tip singularity remains a common problem to most of

these methods.

Fractal Finite Elements is originated with Panagiotopoulos (1992, 1993). He adopted the
Iterated Function System to model fractal boundaries and fractal bodies, obtaining asymptotic
results for stresses and strains in elastic bodies by classical finite element method. The normal
and tangent loads acting on the fractal boundaries were thoroughly investigated and defined
using the method of fractal interpolation function. Recently Carpinteri et al. (2001) introduced
a new mathematical formulation to handle the mechanical quantities of displacements and
total energy of fractal bodies based on fractional calculus. The principle of virtual work for
fractal media was rigorously demonstrated and the fractal FEM was introduced by the use of

devil’s staircase spline functions.

The use of fractal geometry to generate infinite number of finite elements around the crack
tips has been adopted by Hu, et al. (1998), Song and Wolf (2002) and Leung and Su (1994,
1995b, 1998c). The method proposed by Leung and Su was entitled fractal two-level finite
element method (F2LFEM). The advantage of this method is that instead of solving large
number of unknowns for conventional finite element meshes, after fractal transformation by
the global interpolation functions, only a small set of generalized coordinates remains to be
determined. The singularity of the crack tip is modeled by the fractal geometry concepts such
that infinitesimal mesh refinement around the crack tip can be achieved. The SIF can be

obtained directly from the generalized coordinates without any post-processing technique.



The method of F2LFEM has been successfully applied to solve many kinds of crack problems
such as mode I, II, IIT and mixed-mode 2D cracks (Leung & Su, 1994, 1995a, 1995b, 1996a,
1996¢), cracked classical and Reissner’s Plates (Leung & Su, 1996b, 1996d, Su et al., 1998,
Su & Leung, 2001a, Su & Sun, 2002a), axisymmetric cracks (Leung & Su, 1998c), penny-
shaped and circumferential cracks (Leung & Su, 1998b), vibration of cracked beams (Leung
& Su, 1998a), together with three-dimensional (3D) cracks (Leung & Su, 1995¢, Su & Leung,
2001b). Recently, this method has been found to be able to evaluate the coefficients of the
higher order terms of the crack tip asymptotic field (Su & Sun, 2002b). Upon the above
review, this method has been proved to be efficient and accurate to evaluate the stress
intensity factors (SIFs) for cracks in elastic and isotropic materials. Now this method is
extended to tackle elastic anisotropic crack problems, using the newly derived displacement

functions around the crack tip (Sun, 2003) as the global interpolation functions.
2. Fractal Two-Level Finite Element Method
2.1 Introductory formulation of anisotropic elasticity

For a through cracked composite lamina in a state of plane stress, the equations of equilibrium

in the absence of body forces are
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The strain-stress relation for a homogeneous anisotropic material is
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Due to the symmetry of compliance matrix, there are altogether six independent constants.
Substituting the stress-strain relation (2) into the following compatibility equation
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results in
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A stress function, F), is defined as follows such that the equilibrium equations can be satisfied
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Substituting the above stress functions into Eq. (4), the governing equation is obtained
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This equation can also be written in terms of differential operators as
D,D,D,D, =0 (7
where D, = (i -, ij, i=1,2,3,4
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and y; are the characteristic roots of the characteristic equation
allu4_2aléu3+(2a12+a66)uz_2a26u+a22 =0 (8)

It has been proved by Lekhnitskii (1963) that the characteristic Eq. (8) could have either
complex, or purely imaginary roots but could not have real roots in the case of any ideal
elastic body with real constants a;;, 2a;;+ass, az; not equal to zero. The general form of the
characteristic roots can be denoted as,

u=a+ip, w, =y +id

Hy=p =a—if}, p,=p,=y—id 9)
The quantities of p, and p, are called the complex parameters which characterize the degree
of anisotropy in the case of plane problems. According to their values it can be judged how

much a given body differs from that of the isotropic, for which p, = p, always equal to i.

The complex parameters got from characteristic Eq. (8) can be grouped into four cases (Sun,
2003). As shown in Fig. 1, Cases I to III correspond to orthotropic cases with the elasticity
axes parallel to the coordinate axes, and Case IV corresponds to a general orientation of

elasticity axes. For Cases I to III when the terms a,, = a,, =0 in the compliance matrix, the

characteristic Eq. (8) will be the form
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Introducing the notations of A4 =

can be got based on different relations between 4 and B as shown in Table 1. These different
roots (complex parameters) will lead to different final analytical solutions shown in next
section. This is also the main reason why Cases I to III are separated although they have the

same physical meanings.

For Case IV when coordinate system and the elasticity axes do not coincide with each other,
the characteristic Eq. (8) will be a fourth order equation. To avoid dealing with this
complicated equation, it has been shown by Lekhnitskii et al. (1968) that a simple
transformation formula shown below can be followed to get the complex parameters in

coordinate system x’oy’ from those in xoy (see Fig. 2), and the complex parameters p, and
L, in xoy can be obtained from Eq. (9).
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2.2 Global interpolation function
By adopting appropriate form of stress function F (Eq. (5)), adding up the boundary
conditions, the analytical solutions of stress and displacement near the crack tip were derived
by Sun and Su (2003) using eigenfunction expansion technique. Those series form of
displacement functions shown below can serve as global interpolation function in F2LFEM:
(1) Case I.
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B and & are the imaginary parts of the complex parameters (see Case I in Table 1),
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and r and ¢ are the polar coordinates shown in Fig. 1(a).

(2) Case I1.

_ " ./ my, J : Jo _J o
u= —2mIZrIJ z{blj{[—m—?-l-g+(—I)JJCOSEGI—ECOS(E—QJQI}

J=0
my JoiofJ
—b, || - 1 —=sin| =-2 0
2{( " —-(- )jsm2 2sm(2 jl}}
oy N n P B |
V—Zi’ll;rl”{bl{(n—?———( 1)’ ]smzeﬁzsm(z—%@l}
+by,; n—z—i+( 1)/ cosje +icos(] 2)6l
n o 2 2 2 2

B is the imaginary part of the complex parameter (see Case II in Table 1),
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and r and ¢ are the polar coordinates shown in Fig. 1(a).

(3) Cases IIl and IV
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The v component of the displacement can be obtained by replacing p, by ¢, and p, by ¢,,

(k=1, 2) in the above Eq. (14).
where

o, B,y and & can be found in Table 1 (Case III and IV),
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and r and ¢ are the polar coordinates shown in Fig. 1(b).

In the above Egs. (12) to (14), the coefficients of aj;, ay, bj; and by are generalized
coordinates which are to be determined after loading and boundary conditions are imposed.

The relationship between the SIFs and the coefficients can be got by the following definitions:
K, :1ri£13\/2nrcy|¢:0 , K, :lrif(}"zmw 40 (15)

substituting the corresponding stress components into the above equations, the higher order
terms vanish when » — 0 and only the singular term of 1/ 7 remains. Therefore the SIFs are

related to the first term of the generalized coordinates (b;; and b,; or a;; and b;;) as follows

(Sun, 2003),
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2.3 Formulation of F2LFEM

In the formulation of F2LFEM, the cracked elastic body is divided into the singular region ¥
and the regular regions Q by the boundary I'y as shown in Fig. 3. In the regular region, the
conventional finite elements are adopted and the nodal displacements serve as unknowns.
Conventional FEM suggest the following local (1% level) interpolation for the element
displacements u(x),

u=Nd. (19)
where N = N(&,n) is the shape function matrix in terms of the natural coordinates (§,n), and

d is the nodal displacement vector.



Within the singular region, an infinite set {I'j, I's, I's,...} of curves similar to the shape of I'y
with proportionality constants &', &%, &° ,.. (0<& <1 ) are generated. Let the
displacements of the master nodes on the boundary Iy be d,, and those of the slave nodes
within the boundary I'y be d,. The grading of mesh inside the singular region can be
controlled by the proportionality constant & <1. Higher values of & will produce finer grade

of mesh and vice versa.

It has been shown (Sun, 2003) that displacements near the crack tip do not vary arbitrarily but
follow certain displacement patterns which automatically satisfy the boundary conditions at
the crack surface. These displacement patterns serve as good global (2““l level) interpolation
functions for F2LFEM to interpolate the nodal displacements near the crack tip, as follows,

d (r0)=T(r,0)a (20)
in which T =T(r,0) is a transformation matrix and a is the unknown generalized coordinate

vector which is independent of the polar coordinates.

According to the conservation of strain energy, after transformation, the global finite element

stiffness equation (Leung & Su, 1994) can be written as

Kd =Q, 1)
Kd =Q,. (22)
Eva Kmm KmsT P2y Qm I dm
where K =| ’ , Q=1 and d, = . (23)
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2.4 Fractal transformation

To carry out the transformation, the first layer stiffness matrix K/ for the first layer of mesh
(Fig. 3) is first partitioned with respect to s and m:
k. K/ 1{ d, }

K/d= 24
LKés Kéde 29

m

The displacements at the slaves can be replaced by the global (2™ level) interpolation function

as follows,

10
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where the transformation matrix Tsf can be evaluated by using Egs. (12) to (14) and a is the

generalized coordinate vector. After transformation, one has,

_ [ a My ropsf s | a
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ms s

Furthermore, considering the matrix transformation of the ™ inner layer of the element

stiffness matrix and the assembly of inner layer of meshes from the 2™ layer to infinite layer,

the generalized stiffness matrix K’ is written as
Ka= {Z T K*T* }a (27)
k=2

where K* is the stiffness of the &™ layer which had been proved to be equal to the stiffness
matrix of the first layer (Leung & Su, 1994) and T is the transformation matrix of the k™"
layer of mesh. Since T isa power series of r, it can be related to the transformation matrix
of the 1% layer T/ by

T" =T/ Diagfo ;| (28)

where a; =a; (¢ ,k) is a scaling function for the transformation matrices. By comparing the

transformation matrices T* and T/, it had been shown that o j(1/2,k):1/ 2/%D" when

& =1/2. Putting Eq. (28) into Eq. (27), one has,

K'a= {Z Diagla., " T/ K’ T’ Diag[o. j]}a (29)

k=2

Eq. (29) is a geometrical series, it can be further simplified as

ig _ ~ I
Kla=|--- a;k/ -ja (30)
h = zoo L 31
where ocl-j—kzzoa,-aj—z(iﬂ)_l (31)

— T —
where klf is the ;™ entry in matrix T/ K/1/ ;and a; =a;(§) is a scaling function for the

entry. Eq. (30) implies that the transformation and assembly of all the inner layer elements

11



can be accomplished effectively by modifying the generalized stiffness matrix of the first

layer using the scaling function o ;. The complete generalized stiffness matrix for the singular

region can be calculated by adding up Egs. (26) and (30) of the first layer and the inner layers

of stiffness matrices, respectively.

3. Numerical examples for Case I crack problems
3.1. Rectangular plates with a central crack under tension

The problems considered are shown in Fig. 4. A rectangular sheet with a central crack of 2a is
under tensile stress of o . Bowie and Freese (1972) have successfully presented extensive
data on this kind of problems for several different geometries and materials. The SIFs
presented by Bowie and Freese have not related to practical material properties, only the value
of complex parameters p, and p, rather than the explicit material constants were given. It is
therefore considered sufficient to fix B as unity and vary the parameter of & to find how
much the degree of anisotropy can affect the SIFs. According to the relations of two complex

parameters (Case I in Table 1), one has

Bod :\/El/Ez B +d :\/E{V(El/Ez)"'El/ZGlz _VIZ}% (32)

putting B =1 into the above equations, one has

1

8% = Ei[Ex , 1+6 =N2{\(E, JE,) + E, [2G,, ~v , | (33)
In the present study, Young’s modulus E; is fixed as 30 units and v, as 0.3, £, and G, are

varied to attain the variation of & > as shown in Table 2.

The mesh for F2LFEM analysis is shown in Fig. 4. Due to symmetry of this problem, only
one-quarter of the plate needs to be modeled. Three types of height to width ratio (A/w=1.0,
1.5, 2.0) are investigated and each type contains different values of &> and different crack
length to specimen width ratio a/w. The dimensionless SIFs got from F2LFEM are tabulated
in Tables 3, 4 and 5 for A/w=1.0, 1.5 and 2.0 respectively. The results are compared with

12



those from Bowie and Freese (1972) in Figs. 5, 6 and 7. The errors are found to be less than

3.0%.
3.2. Infinite strip with internal crack under tension, pure bending

Infinite orthotropic strip with internal crack subjected to uniform tension and pure bending as
shown in Fig. 8 are studied by F2LFEM. The crack varies its position and length by different
value of ratios a/h and b/h. For pure bending load case (Fig. 8(b)), the normalizing maximum

stress at the edges of the strip is 6 = 6M/h* . The material properties under consideration are:

E;=170.65GPa, E>;=55.16GPa, v;>=0.1114, v;;= 0.036.

The dimensionless SIFs got from F2LFEM solutions are compared with those from Kaya and
Erdogan (1980) for each type of load case and for different kinds of crack geometries. For
convenience, the result comparison for a/4 = 0.1 and 0.2 is tabulated together in Table 6, and
the comparison for a/h = 0.3 and 0.4 is shown in Table 7. From these two tables, the errors are
found to be less than 1.0% generally. It should be noted that the negative SIFs given in Tables
6 and 7 are meaningful only if the results are used in superposition with other results in such a

way that the combined SIFs are positive.
4. Numerical examples for Case II crack problems

Although Case II crack problems have not been studied before, the analytical solution of Eq.
(13) can be verified by comparing Case II (Eq. (13)) with Case I (Eq. (12)) problems. For

Case I crack problems when the complex parameters are p, =i and p, =id , by setting o

close to f, the result of SIF could be approaching that of Case II crack problems. This

provides a way to verify the present analytical solutions.

The example considered is a square plate (A/w=1.0) with single central crack of a/w=0.5 as
shown in Fig. 4. The verification study is tabulated in Table 8, E; and E, are set to be 30 and

300 units, v,, is set to be 0.3, the shear modulus of G;; is varied to approach the Case II

crack problems in which the equation of (El /2G,, —vlz)2 —E,/E, =0 can be satisfied. The

corresponding SIFs for each types of material are shown in the last column. It can be seen that

13



very good agreement has been obtained when Case I solutions approaching that of Case II

which is directly calculated by the new approach derived in the last section.

5. Numerical examples for Case III crack problems

Examples of internal and edge cracks in a long orthotropic strip considered by Delale and
Erdogan (1977) is studied by F2LFEM. As shown in Fig. 9, for each type of problems, only
one-quarter of the whole plate needs to be modeled. The hatched areas in the figure represent
the singular regions in which fractal meshes are generated by F2LFEM. The material
considered is a kind of boron-epoxy composite which possesses the following properties:

E;=3.1x10 ° psi (21.37 GPa), E>=9.7x10 ° psi (66.88 GPa),
G12=2.6x10 ® psi (17.93 GPa), v1,=0.2.

The complex parameters for this kind of orthotropic material are:

u, =0.29098 + 0.693251, m, =-0.29098 + 0.69325i.

The results from F2LFEM and Delale & Erdogan (1977) are tabulated together in Tables 9

and 10. The percentage of error is generally less than 1.0%.

6. Numerical examples for Case IV problems

It is well known that cracks usually occur parallel to the fibre direction in composite
laminates. The numerical examples of this case where cracks are not parallel to the fibre

directions are mainly used for testing the general anisotropic formulation.

6.3.1. Single edge cracked plate with rotating material axes

As shown in Fig. 10, an example of an edge cracked rectangular plate with one edge fixed
under shear is studied. Two kinds of materials shown in Fig. 10 are considered which
represents two kinds of graphite-epoxy composite. The mode I and mode II SIFs are
calculated in terms of different orientation of material axes 0. For material 1, the results from
F2LFEM solutions are compared with those from Song & Wolf (2002) and Tan & Gao (1992)

in Table 11. The errors are found to be less than 1.0%.
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The problems shown in Fig. 10 have also been studied by Chu and Hong (1990) for material
2. Their results are compared with those determined from F2LFEM in Table 12. Slightly

higher discrepancies are found for mode II SIFs, especially when the value of K, /‘C Jna is

close to zero. This phenomenon is acceptable since larger numerical error appears when the

SIF goes to a very small value.

Chu and Hong (1990) have also studied the problems of single edge-cracked plate under
tension with rotating material axes for material 2 and presented their results in graphical form.
F2LFEM is used to re-calculate the SIFs for this problem and the results from F2LFEM are

shown in Table 12 and comparison is shown in Fig. 11.
6.3.2. An inclined crack in rectangular plate under tension

An example of a rectangular plate with an inclined crack under tension is studied. As shown
in Fig. 12, the crack is centrally placed at 45° degree. The crack length to width ratio is
selected to be a/w=0.2 and the height to width ratio ranges from 1.0 to 3.0. The material
considered is a kind of glass-epoxy composite which possesses the following properties:

E;="7.0x10 ° psi (48.26 GPa), E;=2.5x10 ° psi (17.24 GPa),
G1>=1.0x10 ° psi (6.89 GPa), v15=0.29.

The dimensionless SIFs K, /G\/E and K, /G\/E are calculated in terms of different

orientation of material axes 6. The results from F2LFEM and from Gandhi (1972) are
tabulated together in Tables 13, 14 and 15 for ~/w=1.0, 2.0 and 3.0 respectively. The errors
are found to be less than 1.0% for both mode I and mode II SIFs.

7. Conclusions

The extension of F2LFEM to various kinds of anisotropic crack problems has been presented.
In this paper, the infinite number of nodal displacements in the singular region is transformed
to a new set of generalized coefficients by means of fractal transformation technique. By
taking advantage of the dimensional independence of the stiffness matrices of the two-
dimensional (2D) elements with similar shape, a single transformation of the stiffness for the

first two layers of mesh is enough for all. The number of unknowns is reduced remarkably,
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and hence the computational effort is substantially decreased. The SIFs can be directly
evaluated from the coefficients of global interpolation function. Excellent agreement with
error generally less than 1.0% for all four cases of anisotropic crack problems has been

obtained.
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Figure 9. Infinite strip with central and edge cracks.
(a). Infinite strip with an internal crack.
(b).Infinite strip with symmetric edge cracks.

(c). Infinite strip with symmetric collinear cracks.
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Figure 10. Single edge cracked plate under shear. (a/w=0.5, h/w=2.0)
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Figure 12. Inclined crack geometry and fractal mesh configuration.
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. i o Coefficients of the
Case | Orientation of elasticity axes ) ) The complex parameters
compliance matrix
w o=iVA+VA>-B =B,
I
Wy =iVA-vA4>-B =3 .
Orthotropy and coincident
. . . app, A2, Aos, A2 70 | g =iy \/E =ip,
11| with the coordinate axis, see
, a;s=ax=0 _
Fig. 1(a). W, =Hy.
A= a2lB L —asip.
11
l.lz =—0 + iB .
o , My cosO —sin6 —a+ip
Orthotropy but not coincident oo o s M= 0T L, sin0 )
IV | with the coordinate axis, see '
Fig. 1(b) as, ax# 0 , W, cosO —sin® i
ig. . == .
g = cosO + ., sin®

Table 1. Classification of anisotropic crack problems based on the complex

parameters p .(note 4=E,/2G,, —v,, and B=E,/E,)

0 E; (psix10% | E, (psix10%) v, G> (psix10%)
0.1 30.0 300.0 0.3 17.647
0.3 30.0 100.0 0.3 15.789
0.5 30.0 60.0 0.3 14.286
0.7 30.0 42.857 0.3 13.043
0.9 30.0 33333 0.3 12.000
=1 1.0 30.0 30.0 0.3 11.538
1.1 30.0 27273 0.3 11111
1.5 30.0 20.0 03 9.677
25 30.0 12.0 0.3 7317
35 30.0 8.571 0.3 5.882
45 30.0 6.667 0.3 4918

Table 2. Material constants and complex parameters for cracked rectangular plate (Case I).
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aw

52 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.1 1.035 1.148 1.320 1.540 1.816 2.169 2.606 3.112
0.3 1.027 1.096 1.212 1.369 1.566 1.800 2.076 2.417
0.5 1.020 1.076 1.169 1.297 1.454 1.642 1.874 2.196
0.7 1.016 1.065 1.145 1.254 1.390 1.555 1.769 2.088
0.9 1.014 1.057 1.128 1.226 1.348 1.500 1.704 2.023
1.0 1.013 1.054 1.122 1.215 1.333 1.480 1.681 1.999
1.1 1.012 1.052 1.117 1.206 1.319 1.462 1.661 1.980
1.5 1.009 1.044 1.101 1.179 1.281 1.414 1.606 1.925
2.5 1.006 1.035 1.081 1.146 1.235 1.357 1.543 1.862
3.5 1.004 1.030 1.072 1.131 1.214 1.332 1.514 1.833
4.5 1.003 1.028 1.066 1.123 1.203 1.318 1.498 1.815

Table 3. SIFs for central crack tension from F2LFEM, #/w=1.0.
a/w

52 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.1 1.031 1.070 1.165 1.291 1.442 1.618 1.820 2.123
0.2 1.022 1.056 1.126 1.219 1.335 1.478 1.670 1.983
0.3 1.015 1.046 1.103 1.181 1.282 1.413 1.604 1.924
0.5 1.009 1.036 1.081 1.147 1.235 1.358 1.548 1.875
0.7 1.006 1.031 1.072 1.132 1.215 1.336 1.525 1.854
0.9 1.004 1.028 1.067 1.124 1.205 1.324 1.513 1.843
1.0 1.003 1.028 1.065 1.121 1.202 1.320 1.509 1.839
1.1 1.003 1.027 1.064 1.119 1.199 1.317 1.505 1.835

Table 4. SIFs for central crack tension from F2LFEM, A/w=1.5.
a/w

52 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.1 1.022 1.036 1.093 1.171 1.268 1.391 1.558 1.864
0.2 1.016 1.033 1.076 1.137 1.221 1.338 1.519 1.843
0.3 1.010 1.029 1.066 1.122 1.202 1.318 1.505 1.834
0.4 1.008 1.026 1.062 1.116 1.195 1.311 1.499 1.831
0.5 1.006 1.025 1.060 1.113 1.191 1.308 1.497 1.829

Table 5. SIFs for central crack tension from F2LFEM, /#/w=2.0.
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vk Tension (a/h=0.1)  Pure Bending (a/h=0.1)  Tension (a/h=0.2) Pure Bending (a/h=0.2)

K, (@)/o il K,(b)/onl K,(@)/onl  K,(b)/orL K,(@)/srL K,(b)/oVrL K,(a)/oNrL  K,(b)/orL

From F2LFEM

0.2 1.0455 1.0367 0.7823 0.6754

0.3 1.1213 1.0807 0.7739 0.5495 1.0224 1.0199 0.5616 0.4596
0.4 1.2155 1.1227 0.7630 0.4136 1.0537 1.0400 0.5216 0.3166
0.5 1.3138 1.1555 0.7387 0.2661 1.0947 1.0623 0.4802 0.1694
0.6 1.4057 1.1817 0.6979 0.1090 1.1379 1.0874 0.4326 0.0178
0.7 1.4854 1.2174 0.6419 -0.0564 1.1814 1.1293 0.3780 -0.1400
0.8 1.5538 1.3079 0.5738 -0.2386 1.2301 1.2301 0.3160 -0.3160
0.9 1.6267 1.6267 0.4941 -0.4941 1.3079 1.5538 0.2386 -0.5738

From Kaya & Erdogan (1980)

02 10385 1.029  0.7771 0.6708

03 11172 10758  0.7717 0.5462  1.0154  1.0129 05577  0.4565
04 12122 11183 07614  0.4114  1.0494 10355  0.5202  0.3145
0.5 13106 11512  0.7373 02647  1.0909  1.0584  0.4791 0.1682
0.6 14027 11775  0.6967 0.1083  1.1342  1.0836 04316  0.0173
0.7 14826 12133  0.6406  -0.0565 1.1778  1.1255 03771  -0.1399
0.8 15510 1304 0.5727 0238 12264 12264 03152  -0.3152
0.9 16241 1.6241 04929  -04929 13040 15510 02380  -0.5727

Corresponding errors (%)

0.2 0.68 0.69 0.67 0.69

0.3 0.37 0.46 0.28 0.60 0.69 0.69 0.70 0.68
0.4 0.28 0.39 0.21 0.53 0.41 0.43 0.27 0.66
0.5 0.24 0.37 0.19 0.54 0.35 0.37 0.23 0.70
0.6 0.21 0.36 0.18 0.69 0.33 0.35 0.23 2.85
0.7 0.19 0.34 0.20 -0.15 0.31 0.34 0.24 0.08
0.8 0.18 0.30 0.20 0.27 0.30 0.30 0.24 0.24
0.9 0.16 0.16 0.24 0.24 0.30 0.18 0.27 0.20

Table 6. SIFs comparison for an internal crack of length 2L in an orthotropic

strip under tension. (L =(b—a)/2) (a/h =0.1 and 0.2)



vk Tension (a/h=0.3)  Pure Bending (a/h=0.3)  Tension (a/h=0.4) Pure Bending (a/h=0.4)

K, (@)/o il K,(b)/onl K,(@)/onl  K,(b)/orL K,(@)/srL K,(b)/oVrL K,(a)/oNrL  K,(b)/orL

From F2LFEM
0.4 1.0148 1.0138 0.3548 0.2538
0.5 1.0303 1.0251 0.3059 0.1054 1.0118 1.0116 0.1515 0.0508
0.6 1.0540 1.0451 0.2561 -0.0455 1.0224 1.0224 0.0997 -0.0997
0.7 1.0848 1.0848 0.2020 -0.2020 1.0451 1.0540 0.0455 -0.2561
0.8 1.1293 1.1814 0.1400 -0.3780 1.0874 1.1379 -0.0178 -0.4326
0.9 1.2174 1.4854 0.0564 -0.6419 1.1817 1.4057 -0.1090 -0.6979

From Kaya & Erdogan (1980)

04 10079 1.0068 03524 0.2521

05 10261 10208 03054  0.1042  1.0049 10046  0.1505  0.0505
0.6 10504 10415 02558  -0.0459 1.0182 10182  0.1001  -0.1001
0.7 10811 10811 02017  -02017  1.0415 1.0504  0.0459  -0.2558
08 11255 11778  0.1399  -0.3771  1.0836  1.1342  -0.0173  -0.4316
0.9 12133 14826 00565  -0.6406  1.1775 14027  -0.1083  -0.6966

Corresponding errors (%)

0.4 0.69 0.69 0.69 0.68

0.5 0.41 0.42 0.16 1.20 0.69 0.69 0.68 0.64
0.6 0.35 0.35 0.13 -0.84 0.41 0.41 -0.41 -0.41
0.7 0.34 0.34 0.14 0.14 0.35 0.35 -0.84 0.13
0.8 0.34 0.31 0.08 0.24 0.35 0.33 2.85 0.23
0.9 0.34 0.19 -0.15 0.20 0.36 0.21 0.69 0.19

Table 7. SIFs comparison for an internal crack of length 2L in an orthotropic

strip under tension. (L =(b—a)/2) (a/h = 0.3 and 0.4)

E; E, 5 G, B 0 K;
30 300 0.3 20 0.87759 0.36034 7.1997
30 300 0.3 21 0.82579 0.3829 7.2014
Case ] 30 300 0.3 22 0.77188 0.40969 7.2038
30 300 0.3 23 0.71217 0.44404 7.2068
30 300 0.3 24 0.63246 0.50000 7.2103
30 300 0.3 243 0.58579 0.53983 7.2114
Case 11 30 300 0.3 2434165  0.56236 0.56232 7.2116

Table. 8 SIFs comparison for Case I approaching and Case II calculation.



(a) single internal crack (b) symmetric edge cracks

" Delale & Eror  2a/w Delale & Error
Erdogan F2LFEM %) Erdogan F2LFEM %
(1977) (1977)
0.1 1.0064  1.0062 -0.02 0.1 1.593 1599  0.36
0.2 1.0261 1.0258 -0.03 02 1.587 1.591 0.6
0.3 1.0611 10610 -0.01 0.3 1.590 1.594  0.28
0.4 1.1155  1.1155 000 04 1.613 1616  0.19
0.5 1.1966  1.1966 0.00 0.5 1.661 1.665 027
0.6 1.3183 13184 001 06 1.750 1757  0.38
0.7 15099 15176 051 07 1.912 1929  0.89
0.8 1.8471 1.8626 084 0.8 2.220 2250 136
0.9 26278  2.6298 008 09 2.982 3194 7.11

Table 9. SIF K, / o+na for (a) single internal and (b) double edge cracks

K,(a)/orL K, (b)/c L
aw  blw Delale & Delale &
F2LFEM Error (%) F2LFEM Error (%)
Erdogan (1977) Erdogan (1977)

0.1 0.5 1.179 1.181 0.14 1.117 1.120 0.28
0.2 0.6 1.111 1.117 0.50 1.096 1.101 0.50
0.4 0.8 1.099 1.105 0.50 1.127 1.132 0.45
0.5 0.9 1.132 1.134 0.21 1.231 1.233 0.14
0.1 0.9 1.689 1.691 0.13 1.705 1.707 0.10
0.5 095 1.200 1.201 0.09 1.461 1.460 -0.09

Table 10. SIFs K, (a)/ o+l and K ; (b)/ o~rL for (c) symmetric collinear

cracks of length 2L in an orthotropic trip, 2L =b—a.
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Difference with

F2LFEM Song & Wolf (2002) Tan & Gao (1992)
0 Song & Wolf (%)
K, [tNra K, JtNra  K,JiNma  K,/t\ma K,/iNma K,/tvra model  mode II
0° 8.801 1.339 8.821 1.341 8.789 1.458 -0.23 -0.17
30° 9.833 5.012 9.852 5.066 9.924 5.122 -0.19 -1.06
60° 9.622 3.395 9.645 3.407 9.697 3.405 -0.23 -0.36
90° 8.835 1.030 8.871 1.029 8.89 1.044 -0.40 0.12

120°  11.231 -1.280
150°  10.348 -2.472
160°  9.669 -1.888
170°  9.061 -0.591
180°  8.801 1.339

Table 11. SIFs for single edged-cracked plate under shear. (material 1)

Single edge-cracked plate under shear Tension (Fig. 11)
0 F2LFEM Chu & Hong (1990) Error (%) F2LFEM
K, [tNna K,JtNra  K,JtNma  K,/t\na model modell K,/ovra K,/o+ma

-90° 8.866 1.037 8.835 1.030 -0.35 -0.65 2.960 0.000
-80° 9.721 0.341 9.793 0.302 0.75 -11.51 2.994 -0.193
-70°  10.871 -0.547 10.862 -0.493 -0.09 -9.80 3.100 -0.405
-60°  11.269 -1.234 11.231 -1.280 -0.33 3.72 3.209 -0.626
-50°  11.145 -1.899 11.213 -2.014 0.61 6.04 3.260 -0.834
-40°  10.871 -2.444 10.905 -2.473 0.32 1.19 3.227 -0.974
-30°  10.237 -2.336 10.348 -2.472 1.08 5.84 3.115 -0.988
-20° 9.621 -1.926 9.669 -1.888 0.50 -1.98 2.961 -0.842
-10° 8.992 -0.501 9.061 -0.591 0.77 17.91 2.825 -0.512
0° 8.695 1.358 8.801 1.339 1.22 -1.42 2.777 0.000
10° 8.857 3.171 8.928 3.294 0.80 3.89 2.825 0.512
20° 9.343 4.646 9.365 4.548 0.24 -2.11 2.961 0.842
30° 9.763 4.966 9.833 5.012 0.72 0.93 3.115 0.988
40° 10.008 4.778 10.082 4.820 0.74 0.89 3.227 0.974
50° 9.862 4.101 9.952 4.150 0.91 1.19 3.260 0.834
60° 9.639 3.410 9.622 3.395 -0.17 -0.45 3.209 0.626
70° 9.218 2.707 9.215 2.647 -0.03 -2.23 3.100 0.405
80° 8.669 1.775 8.722 1.788 0.61 0.74 2.994 0.193
90° 8.866 1.037 8.835 1.030 -0.35 -0.65 2.960 0.000

Table 12. SIFs for single edged-cracked plate under shear and tension. (material 2)



} K, Jora K, Jora
Gandhi (1972) F2LFEM  Error (%) Gandhi (1972) F2LFEM  Error (%)

0° 0.525 0.5251 0.03 0.516 0.5151 -0.17
45° 0.519 0.5191 0.01 0.514 0.5157 0.34
90° 0.535 0.5395 0.85 0.529 0.5323 0.62
105° 0.543 0.5456 0.47 0.531 0.5357 0.88
120° 0.544 0.5400 -0.73 0.527 0.5286 0.31
135° 0.538 0.5371 -0.17 0.522 0.5236 0.30
180° 0.525 0.5251 0.03 0.516 0.5151 -0.17

Table 13. SIFs for inclined crack with rotating material axes 6, //w=1.0.

0 K, /G Jra K, /G ra
Gandhi (1972) F2LFEM  Error (%) Gandhi (1972) F2LFEM  Error (%)

0° 0.522 0.5229 0.17 0.507 0.5066 -0.08
45° 0.515 0.5148 -0.03 0.505 0.5068 0.36
90° 0.513 0.5171 0.81 0.509 0.5117 0.53
105° 0.517 0.5187 0.32 0.510 0.5154 1.06
120° 0.524 0.5201 -0.74 0.512 0.5130 0.20
135° 0.532 0.5306 -0.26 0.511 0.5123 0.26
180° 0.522 0.5229 0.17 0.507 0.5066 -0.08

Table 14. SIFs for inclined crack with rotating material axes 6, h/w=2.0.

0 K, /G Jra K, /G Vra
Gandhi (1972) F2LFEM  Error (%) Gandhi (1972) F2LFEM  Error (%)

0° 0.523 0.5229 -0.02 0.507 0.5064 -0.12
45° 0.515 0.5148 -0.03 0.505 0.5068 0.36
90° 0.512 0.5157 0.73 0.506 0.5092 0.63
105° 0.516 0.5180 0.40 0.509 0.5139 0.96
120° 0.524 0.5202 -0.73 0.511 0.5128 0.36
135° 0.531 0.5306 -0.07 0.511 0.5123 0.25
180° 0.523 0.5229 -0.02 0.507 0.5064 -0.12

Table 15. SIFs for inclined crack with rotating material axes 8, A/w=3.0.
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