
A Scheme for Dynamic Detection of Concurrent
Execution of Object-Oriented Software*

Huo Yan Chen, Yu Xia Sun
Department of Computer Science, Jinan University, Guangzhou 5 10632, P. R. China

T. H. Tse
Department of Computer Science and Information Systems, The University of Hong Kong, Hong Kong

Abstract - Program testing-.is the most widely
adopted approach for assuring the quality and
reliability of software systems. Despite the popularity
of the object-onented programs, its testing is much

: more challenging than that of the conventional
programs. ~ We proposed previously a methodology
known as TACCLE for testing object-oriented
software. It has not, however, addressed the aspects
of Concurrency and non-determinism.

~ In this paper, we propose a scheme for
dynamically detecting and testing concurrency in
object-oriented safiware by executing selected
concurrent pairs of operations. The scheme is based
on OBJSA nets and addresses concurrency and non-
determinism problems. An experimental case study is
reported to show the effectiveness of the scheme. in
detecting deadlocks, race conditions and other
coherence problems. The scheme supplements our
previous static approach to detecting deadlock in
Java multithreaded programs. . -

Keywords: Object-oriented program testing, dynamic
detection and testing, concurrency, OBJSA net

1. Introduction

Object-oriented paradigm is becoming the main
~ methodology for software systems analysis and design.
The testing of object-oriented software, however, is
more complex and difficult than that of conventional
programs.

Various approaches to testing object-oriented
software systems have been proposed (5, 6, 8, 9, 10,
111. For example, we proposed in [6] a methodology
TACCLE to test object-oriented software system at the
class and cluster levels. We also presented in [5] an

approach for statically detecting object-oriented
software system at the method level. These earlier
results, however, did not cater for concurrent or non-
deterministic situations. Because of the popularity of
Java and its strong multi-thread mechanisms, the
dynamic testing of concurrency and non-determinism
in object-oriented software systems is of increasing
importance and should be addressed properly.

Carver and Tai [4] proposed to use sequencing
constraints for specification-based testing of
concurrent programs. Despite the effectiveness of the
approach, the sequencing constraints only specified
preceding and succeeding events in the concurrent
system under test. They did not express other
requirements and properties of the system. Zhu and
He 1121 proposed several adequacy criteria for testing
concurrent systems based on high-level Petri nets and
also proved subsumption relationships among them.
They did not, however, provide techniques for
constructing test cases to cover all or part of the
criteria in [12].

In this paper, we propose a scheme for
dynamically detecting and testing concurrency in
object-oriented software by executing selected
concurrent pairs of operations. OUT scheme is based
on OBJSA-net/CLOWN specifications [l, 21, which
have been successfully used in a large and significant
project proposed by the Italian electricity company
ENEL.

We shall present the background concepts of
OBJSA nets in the next section. We shall then discuss
OUT proposed scheme in the subsequent sections.

2. Background Concepts

' This research is supported in part by the National Natural Science Foundation of China under Grant #60173038, the
Guangdong Province Science Foundation under Grant #010421, and the Research Grants Council of Hong Kong.

0-7803-7952-7/03/$17.00@2003 IEEE 4828

To lay the foundations of the paper, we present in
this section the basic concepts of OBJSA nets
originally proposed in [1,2]. We shall adhere as much
as possible to the notation of [2] for the ease of
understanding and comparison.

A net is a triple N = (P, T, F), where P, T, and F
are finite non-empty sets such that P n F = 0 and F c
(P x r) U (T x P). The elements of P, T, and F are
known as places, transitions, and arcs, respectively.
In general, places are used to model conditions or
system resources, and transitions are used to model
operations or actions.

Let V = P U Tbe the set of vertices of N. For any
v E V, O v = 0,j y E V A (y, v) E F } is called the pre-set
o f v , a n d v o = O , I y E V A (V , ~) EF}iscal ledthe
post-set of v.

An extended SA net is a tuple N = (P, T, F, W, ll),
where (P, T, F) is a net. Places in P are partitioned
into two disjoint classes OP and CP. The elements of
OP are called open places and those of CP are called
closed places. Transitions in T are partitioned into
two disjoint classes OTand CT. The elements of OT
are called open transitions and those of CP are called
closed transitions. An arc f E OF E (OP x Or) v
(OT x OP) is said to be an open arc. An arcf E CF c
(CP x r) U (T x CP) is said to be closed. W: F+ Nat
is the arc weight function, where Nut denotes the set
of natural numbers. In particular, Wy) = 1 for every
open arcf: n is a partition of P into disjoint classes n,, n 2 , . . ., n, such that every ni contains either open
places only or closed places only, and for every t E T
Zpp.cn,fi.oW@, 0 = %.(rI,fiVW(t,P).

An extended SA net N is said to be closed if OP =
OT= 0, and open otherwise. The nets generated only
by classes in CP are called elementary subnets of N.

Given an extended SA net N = (P, T, F, W, n)
and an algebraic specification SPEC = (S, Opt, Eq),
an OBJSA component is a SPEC-inscribed net
(N, ins, SPEC) with an initial marking (or initial state)
MO, where ins = (cp, h, q) is a SPEC-inscription of N
such that:

(a) cp: P + S is a sort assignment function, which
divides places into various sorts (or object classes)

while respecting the partition II. Each element of
sort cp@) is known as a token. It is of the form
<nij, dij>, where niJ E Nt denotes the name of the
token and did E D denotes its data content.

(b) h: T + 2s is a cp-respecting arc labeling function,
which assigns labels to the arcs surrounding every
transaction as follows: For every t E T, let O t =

@ I , P2, . . .,pa> and to = {qi, q 2 , . . ., q b } . For every
arc f = (pi, t), iffis open, its label is a variable xi,,
of sort cp@;); otherwise its label is of the form
xi,l <+> xi,* <+> . . . <+> q W m , where each xij is a
variable of sort I+&). Let X, be a list of variables
that label the input arcs of t . For every arc f =
(t, qk) , i f f is open, its label is a term y&K);
otherwise its label is ofthe formy,,,(X) <+>ye,&&)
<+> . . . <+>ykw(X,), where eachyb{X) is a term
of sort cp(q,). Furthermore, for each variable xi j =
<nij, d i p in& there exists a unique termyr,,(X,) =

<nkJ*, dk,.*> of sort (p(qk) such that nk,* = nij and
dkr* = o,(..., dij, ...) for some function q that
specifies the change of the data content due to the
transition t.

(c) q: T+ Boo1 is an inscription function that assigns
to every transaction t a pre-condition q(t, X) for
firing it.

MO associates with each closed place p a multi-set of
tokens of sort p@), under the condition that if the
name of a token appears in the marking of a place, it
must not appear in the marking of any other place of
the same elementary component. An open place op E

OP is associated with all the possible terms of the sort
&P).

An OBJSA net is constructed in a bottom-up
manner. An OBJSA component is said to be
elementary if the underlying net N contains only one
elementary subnet. An OBJSA component is said to
be open if the underlying net N is open. They are
constructed by composing elementary or other open
components together. An 0BJ.A net is a closed
OBJSA component, formed by composing elementary
or open OBJSA components, such that the underlying
net N is closed. Details of composition rules can be
found in [2].

4829

Producers Consumers

c2

- -
Agents

npl, np2, ncl, nc2, nal, na2, na3, na4: ObjectName in the form [type: Type, id Nat], where Type denotes the set of object
sorts, Naf denotes the set of natural numbers, type E @, c} , p denotes producer, c denotes consumer, and id denotes the
object identifier.

dal, da2, da3, da4, dal*, da2*, da3*, da4*: FullMessage in the form [msg: Message, dest: Naf], where dest denotes a
destination object. dul* =dpl. du2* = nullmsg. da3' = du2. da4* = nullmsg.

dpl, dp2, dpl', dp2*, nullmsg: FullMessuge. dpl* = nullmsg. dp2* =produceMessuge(np2).
dcl , dc2, dcl*, dc2*, null: Message.
prl,pr2,pr3: Bool. prl = (fype(na1) ==p) A (id(na1) == id(np1)).

pr2 = (type(na2) ==p) A (fype(na3) == c) A (dest(da2) == id(na3)).
pr3 = (type(na4) == c) A (id(na4) == id(nc1)).

dcl* = msg(da4). dc2* =null.

Figure 1. OBJSA Net Specifying the System in Example 1

4830

Given an OBJSA component with a transition t E
Tsuch that ' t = b1,p2, . . . , p.} and to = { q l , q2, . . ., qb},
a j r i n g mode fort is an assignment function p,: X,
T,@., that associates a ground term of sort (p@J to
every variable xi j in the list X,.

Given a firing mode p,, for each place p a p ,
IN@, t) is defined as follows: (a) IN@, t) = {pl(xii) I
j = 1,2, ..., W@, t) } i fp =pi E O t n CP; (b) IN@, t) =

{P,(X,~)} if p = pi E Of n OP; (c) IN@, t) = 0
otherwise. Given a marking M, a transition f E Tand a
firing mode PI, we say that t is p,-enabled at M if, for
each placepi E Of, IN@, f) c M@J and q(t, p,) = true.

An enabled transition at the initial marking MO of
an OBJSA net is called a source transition. Starting
with MO, the number of times that a source transition
can be consecutively fred is known as the index of the
source transition. A source transition with the largest
index is called the greatest source transition.

In order to help readers understand OBJSA net
concepts, we give here an example adapted from [2].
After we have discussed our scheme in Sections 3 and
4, we shall revisit this example in an experimental
case study in Section 5.

Example 1. Suppose a system comprises 5
producers and 4 consumers asynchronously
exchanging messages through a network of 5 + 4
agents. The constituents of the system can be
specified by OBJSA open components Producers,
Consumers, and Agents, respectively. The OBJSA net
specifying the system is shown in Figure 1. Its initial
marking MO is as follows:

M&2) = {<[p, I], nullmsg>, <[p, 21, nullmsg>,
<[p, 31, nullmsgz, +, 41, nullmsgz,
<[p, 51, nullmsgz};

Mo(c2) = {<[c, 11, n u l b , <[c, 21, null>,
<[c, 31, null>, <[c, 41, null>};

Mo(a1) = {<[p, I], nullmsg>, <b, 21, nullmsg>,
<[p, 31, nullmsgz, <b, 41, nullmsg>,
<[p, 51, nullmsgz, <[c, 11, null>, <[c, 21, null>,
<[c, 31, null>, <[c, 41, null>};

M0@)=0forp ~ P - b 2 , c 2 , a l } .

3. OurScheme

This section describes our scheme for
dynamically detecting and testing concurrency in
object-oriented software by simultaneously executing
selected concurrent pairs.

Given an OBJSA net Osn, let Mi be a reachable
marking. If two transitions til and t,2 (or their
corresponding operations) can be fired simultaneously
at Mi, we say that til and ti2 are a concurrentpair at Mi.
In formal terms, til and ti> are a concurrent pair at Mi if
and only if (til and tn are enabled respectively) and
73p @E "til n 'fi2 A Vp, (IN@, ti2) Q M e) -
IN@, t i l))) . For simplicity, let 11, R, and M denote
IN@, til), IN@, ti2), and M&), respectively. It can
easily he proved that if I1 c Mand 12 E M , then (a) 12
~ M - I I i m p l i e s I I n R # 0 a n d (b) R ~ M - I I i f
and only if I1 Q M - 12. Hence, the expression
IN@, ti2) a M@) -IN@, t i l) above can he replaced by
IN@. til) Q M;@) -IN@, t,2). In other words, tjl and tn
will be a concurrent pair at A& if &d only if (til and tLz
are enabled respectively) and 4 p @ E 'til n "tn A

Let T be a sequence of individual or concurrent
transitions. The notation M,---Z-, Mj means that,
starting with the marking Mi, we can consecutively
fire the transitions in T to obtain the marking Mj
When T is null, M , = 4. The notation M-4
means that simultaneously firing til and ti2 at Mi will
obtain the marking w. In fact, M-4 can be
taken as a test case.

VPr (m@, til) Q Mi@) -IN@, tal)).

If MO M, where MO is the initial marking
of Osn, we say that Mi can be reached by T~. Thus, the

test case M-4 can be written as ri ti1llt~2,
which means that we can reach Mj if we start from MO,
consecutively f r e the individual or concurrent
transitions in Ti. and then simultaneously fire the
concurrent pair til and tn.

Let to be the greatest source transition of a given
OBJSA net Osn. Our scheme for selecting concurrent
test cases ofthe form Mit,lllt,zMicl, or Ti tilllt,2,
contains the following steps:

4831

(I) set M, :=MO, T, := {to}, 5, := null, and i := 1;
(2) if there is a sequence (to, t l , . . ., t p) of transitions in

T, (where k < iT,I) such that, starting with M,,
we can reach 4. after firing to 0 tI . . . * th, that

is, M, f o * f l * " ' . f k >Mi , and if we can find til
(e r Tc) and tn (E T,) that can be fired
simultaneously at Mi,

Mi fl'lfiz >Mi+[, T c : = T c u { f i l } , ~ i : = ~ c * t ~

retum a test case .ri tjllltn;

1;

then {

* t l ... 0tr- ,and.r , :=~~*t~,(l t ,z;

else exit from the scheme;

if we can find til (e T,) and $2 (E T, - { t o }) that

then {

(3) i := i + l ;

can be fired simultaneously at Mi,

tilllfi~
Mi >Mi+l, T c : = T c u { t f l } , T j : = . r c ,

retum a test case 9 tillltn;

go to (3);
};

else set M, :=Mi and go to (2);

and 7, := 7, til(lt,a;

0

4. Discussions

We presented in [7] an approach to detecting
deadlocks in Java multithreaded programs. It
constructs Calling Hierarchy Diagrams and Lock-
Calling-Suspend Diagrams from the programs under
test, and then analyzes special properties to determine
whether is there are potential deadlocks in the
programs. The approach is static and white-box based.
It cannot, for instance, find deadlocks due to dynamic
binding.

As a supplement to the approach described in [7],
the scheme introduced in the last section of this paper
is for detecting and testing concurrency in
object-oriented software by executing selected
concurrent pairs of operations. It is dynamic and
black-box based. It can detect deadlocks due to
dynamic binding.

Because of non-determinism in concurrent
programs, we must use replay techniques to execute
each test case T,. t,lllta obtained in the proposed
scheme. Details of replay techniques can be found in

Our approach can expose various errors due to
concurrency, such as deadlocks, race conditions, and
other coherence problems. The scheme can be applied
not only to Java programs, but also to programs of
other languages that support concurrency.

[31.

5. Experimental Case Study

Applying the above scheme to Example 1, we
obtained the following test cases:

71 t l l (/ t 1 2 = t 0 tlllt0;

T2 tZllIt22 = to t l l l t 0 tzllt3;

T 3 t3Illt3Z = to t $ O t 2 l l b * t3llt2;

T 4 t41Ilt42 = to tlllt0 f2llf3 t3llf2 411t3;

where to = generate, tl = send, rz = exchange, t3 =
receive, and t4 =consume.

We implemented a Java system consisting of 5
producers and 4 consumers as specified in Example 1,
and then injected deadlocks, race conditions and other
coherence problems into the program. All the injected
faults were revealed by our approach.

6. Conclusion

We have presented a black-box and dynamic
scheme for detecting and testing concurrency in
object-oriented sofhvare by executing selected
concurrent pairs of operations based on OBJSA-net
specifications. An experimental case study has also
been reported. More case studies and experiments
will be conducted as future research.

Acknowledgement

We would like to express our thanks to Shuang
Quan Li for the implementation and experiments in
the case study.

4832

References

[l] Battiston E., A. Chizzoni, and F. D. Cindio.
CLOWN as a testbed for concurrent object-
oriented concepts. In Concurrent Object-
Oriented Programming and Petri Nets:
Advances in Petri Nets, pages 131-163. Lecture
Notes on Computer Science, Springer, Berlin,
200 1.

[2] Battiston E., F. de Cindio, and G. Mauri. Modular
algebraic nets to specify concurrent systems.
IEEE Transactions on Software Engineering, 22
(10): 689-705, 1996.

[3] Carver R. H. and K.-C. Tai. Replay and testing for
concurrent programs. IEEE Software, 8 (3):
66-74, 1991.

[4] Carver R. H. and K.-C. Tai. Use of sequencing
constraints for specification-based testing of
concurrent programs. IEEE Transactions on
Software Engineering, 24 (6): 471490, 1998.

[5] Chen H. Y. The design and implementation of a
prototype for data flow analysis at the method-
level of object-oriented testing. In Proceedings
of the 2002 IEEE International Conference on
Systems, Man, and Cybernetics (SMC 2002),
pages 140-145. IEEE Computer Society Press,
Los Alamitos, Califomia, 2002.

[6] Chen H. Y., T. H. Tse, and T. Y. Chen. TACCLE:
a methodology for object-oriented software
testing at the class and cluster levels. ACM
Transactions on Software Engineering and
Methodology, 10 (1): 56-109,2001.

[7] Chen H. Y. Race condition andconcurrency safety
of multithreaded object-oriented programming in
Java. In Proceedings of the 2002 IEEE
International Conference on Systems, Man, and
Cybernetics (SMC 2002), pages 134-139. IEEE
Computer Society Press, Los Alamitos,
Califomia, 2002.

[8] Doong R.-K. and P. G. Frankl. The ASTOOT
approach to testing object-oriented programs.
ACM Transactions on Software Engineering and
Methodology, 3 (2): 101-130, 1994.

[9] Kung D. C., J. Z. Gao, P. Hsia, Y. Toyoshima, and
C. Chen. A test strategy for object-oriented'
programs. In Proceedings of the 19th Annual
International Computer Software and
Applications Conference (COMPSAC ' 9 3 ,
pages 239-244. IEEE Computer Society Press,
Los Alamitos, Califomia, 1995.

[IO] Smith M. D. and D. J. Robson. A framework for
testing object-oriented programs. Journal of
Object-Oriented Programming, 5 (3): 45- 53,
1992.

[l l] Tumer C. D. and D. J. Robson. A state-based
approach to the testing of class-based programs.
Software: Concepts and Tools, 16 (3): lOGll2,
1995.

[12] Zhu H. and X. He. A theory of testing high-level
Petri nets. In Proceedings of the Intemational
Conference on Software: Theory and Practice,
16th IFIP World Computer Congress, pages
443450. Beijing, China, 2000.

4633

