A Scheme for Dynamic Detection of Concurrent
Execution of Object-Oriented Software”

Huo Yan Chen, Yu Xia Sun
Department of Computer Science, Jinan University, Guangzhou 510632, P. R. China

T. H. Tse

Department of Computer Science and Information Systems, The University of Hdng Kong, Hong Kong

Abstract — Program testing-is the most widely
adopted approach for assuring the quality and
_reliability of software systems. Despite the popularity
of the object-oriented programs, its testing is much
.more challenging than that of the conventional
- programs. We proposed previously a methodology
ikmown as TACCLE for testing object-oriented
software. It has not, however, addressed the aspects
of concurrency and non-determinism.

In this paper, we propose a scheme for
dynamically detecting and ftesting concurrency in
" object-oriented software by executing selected
- concurrent pairs of operations. The scheme is based
on OBJSA nets and addresses concurrency and non-
determinism problems. An experimental case study is
reported to show the effectiveness of the scheme. in
detecting deadlocks, race conditions and other
coherence problems. The scheme supplements our
previous static approach fo detecting deadiock in
Java multithreaded programs -

Keywords: ObjAect-orientcd program testing, dynamic
detection and testing, concurrency, OBJSA net

1. Introduction

Object-oriented paradigm is becoming the main

: fnethodo]ogy for software systems analysis and design,

The testing of object-oriented software, however, is
more complex and difficult than that of conventional
programs. =~ _ ‘

Various approaches to testing object-oriented
software systems have been proposed {3, 6, 8, 9, 10,
11]. For example, we proposed in [6] a methodology
TACCLE to test object-oriented software system at the
class and cluster levels. We also presented in [5] an

approach for statically detecting object-oriented
software system at the method level. These earlier
results; however, did not cater for concusrent or non-
deterministic situations. Because of the popularity of
Java and its strong multi-thread mechanisms, the
dynamic testing of concurrency and non-determinism
in object-oriented software systems is of increasing
tmportance and should be addressed properly.

Carver and Tat [4] proposed to use sequencing
constraints for specification-based testing of
concurrent programs. Despite the effectiveness of the
approach, the sequencing constraints only specified
preceding and succeeding events in the concurrent
system under test. They did not express other
requirements and properties of the system. Zhu and
He [12] proposed several adequacy criteria for testing
concurrent systems based on high-level Petri nets and
also proved subsumption relationships among them.
They did not, however, provide techniques for
constructing test cases to cover all or part of the
criteria in [12].

In this ‘paper, we propose a scheme for
dynamically detecting and testing concurrency in
object-oriented software by executing selected
concurrent pairs of operations, Our scheme is based
on OBJSA-net/CLOWN specifications [1, 2], which
have been successfully used in a large and significant
project proposed by the Italian electnmty company
ENEL.

We shall present the background concepts of
OBJSA nets in the next section. We shall then discuss
our proposed scheme in the subsequent sections.

2. Background Concepts

* This research is supported in part by the Nationa! Natural Science Foundation of China under Grant #60173038, the
Guangdong Province Science Foundation under Grant #010421, and the Research Grants Council of Hong Kong.

0-7803-7952-7/03/$17.00©2003 IEEE

4828

To lay the foundations of the paper, we present in
this section the basic concepts of OBISA nets
originally proposed in [1, 2]. We shall adhere as much
as possible to the notation of [2] for the ease of
understanding and comparison.

Anetisatiple N=(P, I, F), where P, T, and F
are finite non-empty sets suchthat PN F=C and F ¢
(P x YU (I'x P). The elements of P, T, and F are
known as places, transitions, and arcs, respectively.
In general, places are used to model conditions or
system resources, and transitions are used to model
operations or actions.

Let V= P w Tbe the set of vertices of N. For any
veV,%={ylye VAa(y,v) e F}is called the pre-set
of v,and+v' = {y |y € V' A (v, 3) € F} is called the
post-set of v.

An extended SA netisatuple N=(P, T, F, W, I,
where (P, T, F) is a net. Places in P are partitioned
into two disjoint classes OP and CP. The elements of
OP are called open places and those of CP are called
closed places. Transitions in T are partitioned into
two disjoint classes OT and C7T. The elements of OT
are called open transitions and those of CP are called
closed transitions. Anarc f€ OF c (OPx O v
(OT x OP)is said to be an open arc. Anarcfe CFg
(CP x Ty (Tx CP) is said to be closed. W: F — Nat
is the arc weight function, where Nat denotes the set
of naturai numbers. In particular, W({f} = 1 for every
open arc f. [] is a partition of P into disjoint classes
[Ti, L, ..., T} such that every], contains either open
places only or closed places only, and for every t € 7,

zpe(nﬂ“!}W(p’ fH= EPE(H,'(-\OO i, P)-

An extended SA net N is said to be closed if OP =
OT =, and open otherwise. The nets generated only
by classes in CP are called elemenrtary subnets of N,

Given an extended SA net N= (P, T, F, W, T])
and an algebraic specification SPEC = (S, Opt, Eq),
an OBJSA component is a SPEC-inscribed net
(N, ins, SPEC) with an initial marking (or initial state)
My, where ins = (¢, &, 1) is a SPEC-inscription of N
such that:

(a) o: P — § is a sort assignment function, which
divides places into various sorts (or object classes)

MmManner.

while respecting the partition I1. Each element of
sort {p{p) is known as a foken. It is of the form
<ny;, d; />, where n;; € Nt denotes the name of the
token and d;; € D denotes its data content.

(b) A: T -> Zsis a @-respecting arc labeling function,
which assigns labels to the arcs surrounding every
transaction as follows: Foreveryt e T, let °t =
{p, P2 ..., Pay and £°= {gy, @2, ..., ¢s}. Forevery
arc f= (p;, 1), if fis open, its label is a variable x;,
of sort @(p)); otherwise its label is of the form
Xy > X5 <H> L. <> x; gy, where each x;; 15 a
variable of sort ¢(p;). Let X; be a list of variables
that label the input arcs of ¢. For every arc f=
(¢, gu), if f is open, its label is a term y(X);

_ otherwise its label is of the form y, (X,) <+>y;2(X)
<> L. <> Ve Xy), Where each yi X)) is a term
of sort ©(g;). Furthermore, for each variable x;; =
<ny; di > in X,, there exists a unique term y; {X;) =
<ny*, di*> of sort @(gy) such that ng,* = n;; and
de,* = o(..., dy, ...) for some function o, that
specifies the change of the data content due to the
transition .

(¢) m: T — Bool is an inscription function that assigns
to every transaction ¢ a pre-condition n(y, X;) for
firing it.

M, associates with each closed place p a multi-set of

tokens of sort ¢(p), under the condition that if the

name of a token appears in the marking of a place, it
must not appear in the marking of any other place of

the same elementary component. An open place op €
OP is associated with all the possible terms of the sort

o(op).

An OBJSA net is constructed in a bottom-up
An OBJSA component is said to be
elementary if the underlying net N contains only one
elementary subnet. An OBJSA component is said to
be open if the underlying net N is open. They are
constructed by composing elementary or other open
components together. An OBJSA net is a closed
OBJSA component, formed by composing elementary
or open OBJSA components, such that the underlying
net N is closed. Details of composition rules can be
found in [2].

4829

Producers Consumers

generate consume
*
<upl, dp2*> <nc2, de2> 4 <ncl, de2*>
pl cl c2
1 dol> <ncl, del*> ncl. d 1-}
<npl,dpl*> <npl, ap nel, ae
receive
send . <nal, dal>
<na4, dad*>
<nal, dal*> al
<nad, dad>
<na3, da3> <nal, da2*>
a3
* <na3, da3*>
exchange
Agents

npl, np2, ncl, nc2, nal, na2, nal, na4d: ObjectName in the form [type: Type, id; Nat], where Type denotes the set of object
sorts, Nat denotes the set of natural numbers, type € {p, ¢}, p denotes producer, ¢ denotes consumer, and id denotes the

object identifier.
dal, da2, da3, dad, dal*, dal*, da3*, da4*: FullMessage in the form [msg: Message, dest: Nat], where dest denotes a

destination object. dal* =dpl. da2*=nullmsg. da3*=da2. dad* =nullmsg.
dpl, dp2, dpl*, dp2*, nulimsg: FullMessage. dpl1* = nullmsg. dp2* = produceMessage(np2).
dcl, dc2, del*, de2*, null: Message. dc1* = msg(dad). dc2* = null.
prl, pr2, pr3: Bool. prl = (type(nal) == p) A (id(nal) == id(np1)).
pr2 = (type(na2) == p) A (type{nal) == ¢} A {dest{da?) == id(na3)).
pr3 = (type(nad) == c) A (id(ned) == id(ncl)). '

Figure 1. OBJSA Net Specifying the System in Example 1

4830

Given an OBJSA component with a transition f €
T'such that °t= {p1, pa, ..., pa} and ° = {q1, G2, ..., @5},
a firing mode for ¢ is an assignment function B, X, >
T4 that associates a ground term of sort ¢(py) to
every variable x;; in the list X,.

Given a firing mode B, for each place peP,
IN(p, £} is defined as follows: (a) IN(p, £} = {Bfx:) |
J=L2, ., Wp D}ifp=p; et CP; (b)IN(p,)=
B} ifp=pi e % OP; (c) INp, D) = @
otherwise. Given a marking M, a transitionf € Tand a
firing mode [3,, we say that ¢ is B,-enabled at M if, for
each place p; e °f, IN(p,,) € M(p;} and n(¢, B,) = true.

An enabled transition at the initial marking M, of
an OBJSA net is called a source transition. Starting
with M, the number of times that a source transition
can be consecutively fired is known as the index of the
source transition. A source transition with the largest
index is called the greatest source transition.

In order to help readers understand OBJSA net
concepts, we give here an example adapted from [2].
After we have discussed our scheme in Sections 3 and
4, we shall revisit this example in an experimental
case study in Section 5.

Example 1. Suppose a system comprises 5
producers and 4 consumers asynchronously
exchanging messages through a network of 5+4
agents. The constituents of the system can be
specified by OBIJSA open components Producers,
Consumers, and Agents, respectively. The OBISA net
specifying the system is shown in Figure 1. Its initial
marking Mj is as follows:

Molp2) = {<[p, 1], mulmsg>, <[p, 2], ulimsg>,
<[p, 3], nullmsg>, <[p, 4], nullmsg>,
<[p, 5], nullmsg>};

My(c2) = {<[¢, 1], null>, <[c, 2], null>,
<[c, 3], null=, <[c, 4], null>};

Mo(al) = {<[P» 1]: nu[lmg>, <[ps 2]s nullmsg>,
<[p, 31, nulimsg>, <|[p, 4], nulimsg>,
<[p, 5, nullmsg>, <[c, 1], null>, <[c, 2], null>,
<[c, 3], null>, <[c, 4], nuii>};

Mp)=Dforp e P-{p2, c2,al}.

4831

3. Our Scheme

This section describes our scheme for
dynamically detecting and testing concurrency in
object-oriented software by simultancously executing
selected concurrent pairs.

Given an OBJSA net Osn, let M; be a reachable
marking, If two transitions #; and #» (or their
corresponding operations) can be fired simultaneously
at M;, we say that ¢; and ¢, are a concurrent pair at M,
In formal terms, ¢;; and ¢; are a concurrent pair at Mf; if
and only if (#; and 7 are enabled respectively) and
—3p (pe °th N *ta A VB (UN(p, tn) @ M{p) -
IN(p, t;,))). For simplicity, let 71, J2, and M denote
IN(p, tn), IN(p,), and M{p), respectively. It can
easily be proved that if /1 ¢ M and I2 ¢ M, then (a) 2
eM-Timpliesll "R =@ and by R e M-~11if
and only if /1 ¢ M — 2. Hence, the expression
IN(p, 12} @ M{p) — IN(p, 1) above can be replaced by
IN(p, ty) & Mi(p} — IN(p, 12). In other words, #; and 7>
will be a concurrent pair at M; if and only if (1; and £,
are enabled respectively) and —3p (p € 1 N "2 A
VB (IN(p, tn) < M{p) — IMp, t))).

Let 1 be a sequence of individual or concurrent
transitions. The notation M;—"— M; means that,
starting with the marking M;, we can consecutively
fire the transitions in T to obtain the marking A

When t is null, M;= M;. The notation M,—1¥2 3 o7,
means that simultaneously firing £, and #; at M; will

obtain the marking M;. In fact, M— a2, M;canbe
taken as a test case.

If My——3 M,, where Mj is the initial marking
of Osn, we say that M; can be reached by 1;. Thus, the

test case M,——tﬂﬂ—»ﬂr{, can be written as 1; ® & |fa,
which means that we can reach M; if we start from Mj,
consecutively fire the individual or concurrent
transitions in 1, and then simultaneously fire the
concurrent pair # and #;.

Let #, be the greatest source transition of a given

OBIJSA net Osn. Our scheme for selecting concurrent

10t
test cases of the form M,—Ulﬂ—>M,-+1, or T; ¢ 4yt

contains the following steps:

(1) setM, =M, T, :='{to}, T =null, and i = 1;

(2} ifthere is a sequence (%, £, ..., £;) of transitions in
T, (where & <|T,|) such that, starting with M,,

we can reach M, after firing fp e £ ® ... # 1, that
Lot e, ot

is, M,—%1—% 5 M. and if we can find £,
(# T.) and 1 (€ T,) that can be fired
simultaneously at M;, '
then {
£l

M—LL s My, T.=T.u{ta}, =194

efie. ..o and 1. =1, fyllta;
return a test case t; ® f||tn;
b
else exit from the scheme;
3) =i+l)

if we can find t;) (¢ T.) and # (€ T, — {t;}) that
can be fired simultaneously at M,
then {

L iE. .
M~ M, T~ T ()t =t
and 1. == 1. @ ty]lta;
return a test case t; ® f; |4
goto (3);
5
else set M. := M; and go to (2); O

4. Discussions

We presented in [7] an approach to detecting
deadlocks in Java multithreaded programs. It
constructs Calling Hierarchy Diagrams and Lock-
Calling-Suspend Diagrams from the programs under
test, and then analyzes special properties to determine
whether is there are potential deadlocks in the
programs. The approach is static and white-box based.
1t cannot, for instance, find deadlocks due to dynamic
binding.

As a supplement to the approach described in [7],
the scheme introduced in the last section of this paper
is for detecting and testing concurrency in
object-oriented software by executing selected
concurrent pairs of operations. It is dynamic and
black-box based. 1t can detect deadlocks due to
dynamic binding.

Because of non-determinism in concurrent
programs, we must use replay rechrigues to execute
each test case 1 t;|/ty obtained in the proposed
scheme. Details of replay technigues can be found in

[3].

Our approach can expose various errors due to
concurrency, such as deadlocks, race conditions, and
other coherence problems. The scheme can be applied
not only to Java programs, but also to programs of
other languages that support concurrency.

5. Experimental Case Study

Applying the above scheme to Example 1, we
obtained the following test cases:

71 @ tilltis = fo @ fjto;

3 0 |t = 1o @ 11|t @ £o|13;

T3 @ [t = 10 @ ti|ltg @ &ofits @ 13ltr;

T4 ® tylltay = o @ ty|to @ 12|13 @ Llit2 © La|t5;

where tp = generate, #; = send, £, = exchange, #; =
receive, and 74 = consume.

We implemented a Java system consisting of 5
producers and 4 consumers as specified in Example 1,
and then injected deadlocks, race conditions and other
coherence problems into the program. All the injected
faults were revealed by our approach.

6. Conclusion

We have presented a black-box and dynamic
scheme for detecting and testing concurrency in
object-oriented software by executing selected
concurrent pairs of operations based on OBJSA-net
specifications. An experimental case study has also
been reported. More case studies and experiments
will be conducted as future research.

Acknowledgement

We would like to express our thanks to Shuang
Quan Li for the implementation and experiments in
the case study.

References

[1] Battiston E., A. Chizzoni, and F. D. Cindio.
CLOWN as a testbed for concurrent object-
oriented concepts. In Corcurrent Object-
Oviented Programming and Petri Nets:
Advances in Petri Nets, pages 131-163. Lecture
Notes on Computer Science, Springer, Berlin,
2001,

[2] Battiston E., F. de Cindio, and G. Mauri. Modular
algebraic nets to specify concurrent systems.
IEEE Transactions on Software Engineering, 22
(10). 689-705, 1996.

[3]Carver R. H. and K.-C. Tai. Replay and testing for
concurrent programs. IEEE Software, 8 (3):
66-74, 1991,

[4] Carver R. H. and K.-C. Tai. Use of sequencing
constraints for specification-based testing of

concurrent programs. IEEE Transactions on
Software Engineering, 24 (6): 471-490, 1998.

[5] Chen H. Y. The design and implementation of a
prototype for data flow analysis at the method-
level of object-oriented testing. In Proceedings
of the 2002 IEEE International Conference on
Systems, Man, and Cybernetics (SMC 2002),
pages 140-145. IEEE Computer Society Press,
Los Alamitos, California, 2002,

[6] Chen H. Y., T. H. Tse, and T. Y. Chen. TACCLE:
a methodology for object-oriented software
testing at the class and cluster levels. ACM
Transactions on Software Engineering and

Methodology, 10 (1): 56-109, 2001.

[7]1 Chen H. Y. Race condition and concurrency safety
of multithreaded object-oriented programming in
Java, In Proceedings of the 2002 IEEE
International Conference on Systems, Man, and
Cybernetics (SMC 2002), pages 134-139. IEEE
Computer Society Press, Los Alamitos,
Califomia, 2002.

[8] Doong R.-K. and P. G. Frankl. The ASTQOT
approach to testing object-oriented programs,
ACM Transactions on Software Engineering and
Methodology, 3 (2): 101-130, 1994,

4833

[9]1 Kung D. C., J. Z. Gao, P. Hsia, Y. Toyoshima, and
C. Chen. A test strategy for object-oriented”
programs. In Proceedings of the 19th Annual
International ~ Computer Software and
Applications Conference (COMPSAC '95),
pages 239-244. IEEE Computer Society Press,
Los Alamitos, California, 1995.

{101 Smith M. D. and D. J. Robson. A framework for
testing object-oriented programs. Journal of
Object-Oriented Programming, 5 (3): 45— 53,
1992.

[11] Tumer C. D. and D. J. Robson. A state-based
approach to the testing of class-based programs.
Software: Concepts and Tools, 16 (3): 106-112,
1995.

[12] Zhu H. and X. He. A theory of testing high-level
Petri nets. In Proceedings of the International
Conference on Software: Theory and Practice,
16th IFIP World Computer Congress, pages
443-450. Beijing, China, 2000.

