Thisis apre-published version

In Black and White: An Integrated Approach to
Class L evel Testing of Object-Oriented Programs

HUO YAN CHEN

Jinan University

T.H. TSE, F.T. CHAN

The University of Hong Kong
and

T.Y. CHEN

The University of Melbourne

Because of the growing importance of object-oriented programming, a number of testing strategies have been proposed.
They are based either on pure black-box or white-box techniques. We propose in this paper a methodology to integrate the
black- and white-box techniques. The black-box technique is used to select test cases. The white-box technique is mainly
applied to determine whether two objects resulting from the program execution of a test case are observationally equivalent.
It is also used to select test cases in some situations.

We define the concept of a fundamental pair as a pair of equivalent terms that are formed by replacing all the variables on
both sides of an axiom by normal forms. We prove that an implementation is consistent with respect to all equivalent terms if
and only if it is consistent with respect to all fundamental pairs. In other words, the testing coverage of fundamental pairs is as
good as that of all possible term rewritings, and hence we need only concentrate on the testing of fundamental pairs. Our
strategy is based on mathematical theorems. According to the strategy, we propose an algorithm for selecting a finite set of
fundamental pairs as test cases.

Given a pair of equivalent terms as a test case, we should then determine whether the objects that result from executing the
implemented program are observationally equivalent. We prove, however, that the observational equivalence of objects
cannot be determined using a finite set of observable contexts (which are operation sequences ending with an observer
function) derived from any black-box technique. Hence, we supplement our approach with a “relevant observable context”
technique, which is a heuristic white-box technique to select a relevant finite subset of the set of observable contexts for
determining the observational equivalence. The relevant observable contexts are constructed from a Data member Relevance
Graph, which is an abstraction of the given implementation for a given specification. A semi-automatic tool has been
developed to support this technique.

Categories and Subject Descriptors: D.2.1 [Software Engineering]: Requirements/Specifications — languages; D.2.5
[Softwar e Engineering]: Testing and Debugging — test data generators; D.3.2 [Programming L anguages]: Language
Classifications — object-oriented languages

General Terms: Algorithms, Languages, Reliability

Additional Key Words and Phrases: Abstract data types, algebraic specification, object-oriented programming, software
testing methodologies, observational equivalence

© ACM, 2001. This is the authors' version of the work. It is posted here by permission of ACM for your personal use.

Not for redistribution. The definitive version was published in ACM Transactions on Software Engineering and Methodol ogy
7 (3): 250295 (1998). http://doi.acm.org/10.1145/287000.287004.

This research is supported in part by a grant of the Hong Kong Research Grants Council, a grant of the Guangdong Province Science
Foundation (#950618), and a grant of the Australian Research Council.

Authors’ addresses: Huo Yan Chen, Department of Computer Science, Jinan University, Guangzhou 510632, China. Email:
“tchy@maina.jnu.edu.cn” and “hychen@cs.hku.hk”. T.H. Tse (Contact Author), Department of Computer Science, The University of
Hong Kong, Pokfulam Road, Hong Kong. Email: “thtse@cs.hku.hk”. (Part of this research was done when the second author was an
exchange visitor at the University of Melbourne.) F.T. Chan, School of Professional and Continuing Education, The University of Hong
Kong, Pokfulam Road, Hong Kong. Email: “hrxecft@hkucc.hku.hk”. T.Y. Chen, Department of Computer Science, The University of
Melbourne, Parkville 3052, Australia. Email: “tyc@cs.mu.oz.au”.



1. INTRODUCTION

The special characteristics and properties of an object-oriented approach render resulting software
systems more reliable, maintainable, and reusable. However, an object-oriented approach also poses
new challenges to software testing as a software system is now composed of classes of objects and has
unique features not found in other programming paradigms. New testing problems arise from the
following facts: (1) Programs in an object-oriented system are not necessarily executed in a predefined
order; the sequence of invocation of methods in a class is not specified explicitly; and there are more
variations in combining methods in the same class or across different classes [1] . (2) Special testing
techniques are also required to deal with inheritance, polymorphism, overloading, message passing,
association, aggregation, and state-dependent behavior [2, 3,4, 5, 6, 7]. (3) Furthermore, it is mandatory
to derive an algorithm for determining the observational equivalence of the output objects so as to judge
the correctness of implementations. The concept of object observational equivalence reflects the
encapsulation and information hiding features of the object-oriented paradigm. In this paper, we only
consider the facts (1) and (3) in class level testing, which concerns only the interactions of methods and
data within a given class. However, inheritance, polymorphism, overloading, message passing,
association, and aggregation concern the relationships and interactions among different classes in a given
cluster, which are considered in our other paper [8]

In recent years, a number of papers on class-level testing of object-oriented programs have been
published. The techniques involved can be classified into two categories. The black-box technique
refers to program testing based on software specifications [9, 10, 11]; whereas the white-box technique
refers to that based on information from the source code of the developed systems [1, 12, 13, 14, 15, 16,
17]. Each technique has its advantages and disadvantages. For example, if part of the specification is
missing in an implementation, there is no way of revealing the problem using a pure white-box technique.
On the other hand, we shall formally prove that it is impossible to determine whether two objects are
observationally equivalent using a pure black-box technique. We therefore propose to integrate black-
and white-box techniques in our project. We do not consider program syntax errors and specification
errors in this paper.

The organization of the paper is as follows. Section 2 states the problems of test case selection,
including the reasons why we use equivalent sequences of operations rather than individual operations as
test cases, and our new selection strategy. In Section 3, we present a white-box technique, namely a
“relevant observable context” technique, to determine the observational equivalence of objects. Section
4 is devoted to comparing our approaches with related work by other researchers. In Section 5, we
conclude our current findings, summarize their limitations, and make suggestions for future work.

2. SELECTION OF TEST CASES
2.1 Background: Equivalent Termsas Test Cases
Algebraic specifications are popular in the formal specification of object-oriented programs [18, 19,

20]. An algebraic specification for a class consists of a syntax declaration and a semantic specification.
The syntax declaration lists the operations' involved, plus their domains and co-domains, corresponding

' In this paper, the word “operation” is used in a specification, while its counterpart in the implementation is called a
“method”.



to the input and output parameters of the operations. The semantic specification consists of equational
axioms that describe the behavioral properties of the operations. The following is an example of an
algebraic specification for the class of integer stacks.

Example 1

module INTSTACK is
classes Int Bool IntStack
inheriting INT
operations
new: — IntStack
_.empty: IntStack — Bool
_.push( ): IntSack Int — IntStack
_.pop: IntSack — IntStack
_.top: IntStack — Int U {NIL}
variables
S IntStack
N: Int
axioms
a,;: new.empty = true
a,: Spush(N).empty = false
a;: New.pop = new
a,: Spush(N).pop=S
as: Stop = NIL if Sempty
a,: Spush(N).top=N a

Intuitively, a term is a series of operations in an algebraic specification. For example,
new.push(1).push(2).pop is a term in the class of integer stacks above. A term is in normal form if and
only if it cannot be further transformed by any axiom in the specification. For example,
new.push(1).push(2) is in normal form but new.push(1).push(2).pop is not.

The concept of equivalent terms has been adopted in testing [9, 11, 21, 22, 23]. Two terms are said
to be equivalent if and only if they can both be transformed to the same normal form. The terms
new.push(1).push(2).pop and new.push(3).pop.push(1) are equivalent as they can both be transformed to
the normal form new.push(1). A term without variables is called a ground term. In this paper, we only
consider ground terms because in dynamic testing, actual test cases involve ground terms only.

Let u, and u, be two ground terms and S, and S, be their corresponding method sequences in a given
implementation. The test case {U,, U,} reveals an error of the implementation if U, is equivalent to U, but
S, and S, produce observationally different objects.

The idea of using pairs of equivalent terms, rather than individual operations, as test cases in
object-oriented black-box testing is justified by the following reasons:

(1) Inobject-oriented programming, a series of messages are often passed to an object, and the resulting
object is then evaluated for correctness. The concept of observational equivalence is very important
here. Consider, for example, a word processor that maintains the history of insertions and deletions



in its document file for the purpose of undo’s and redo’s before it is finally saved. A user may enter
a series of messages into the word processor, possibly with a number of wrong insertions followed
by a number of corrective deletions. Another user may make different mistakes followed by
different corrections when creating the same document. In either case, as long as they produce the
same printed version, the final document files produced by the two users should be regarded as
observationally equivalent. The concept of “equivalent terms” models this phenomenon very
naturally. A series of messages passed to the object is modeled by a sequence of operations in a term.
The objects resulting from two different series of messages would be equivalent if their observable
versions, modeled by normal forms, are identical.

(2) The conventional approach of testing the output B of an individual operation _.0p using an input A is
just a special case of the testing of equivalence. The equivalent terms in this case are A.op and B.
However, testing pairs of equivalent terms includes the checking of interactions among operations
in the terms, while testing individual operations separately does not.

Obviously, if an error occurs in a common subterm of a pair of equivalent terms, it cannot be revealed
with this pair as a test case. We can, however, find another pair of equivalent terms to reveal this error.
For example, if u, = new.push(1).push(2).pop and u, = new.push(1), then u, and U, are equivalent. The
common subterm of u, and U, is new.push(1). If _.push(1) is erroneously implemented as _.push(11),
then the error cannot be detected by the test case of equivalent terms U, and U,, but can be revealed by
another pair of equivalent terms new.push(1).top and 1.

2.2 Basic Concepts

The following are the formal definitions of the basic concepts used in this paper. Definitions 2.1, 2.2,
2.3, and 2.6 are about algebraic specification, Definitions 2.7 to 2.10 are about implementation, while
Definitions 2.4 and 2.5 are related to both.

Definition 2.1 The sets Tc of ground termsin a term algebra T are defined recursively as follows:

(a) For any constant or constant operation f: — C, fis a ground term in Tc. The length of f is defined to
be 1.

(b) Forany operation .f(_, ..., ):C,C, ... C, — C(where n>0), and for any ground terms U; in T¢j, 0 <
i <n, U.f(u, ..., Uy is a ground term in Tc. Each u; is a proper subterm of u,.f(u,, ..., Un).
Furthermore, if v is a proper subterm of U, then Vv is also a proper subterm of u,.f(u, ..., Uy). The
length of u,.f(u,, ..., Uy) is defined as

length(u,.f(u,, ..., uy)) = 1+ length(u,) + length(u,) + ... + length(uy)
In Example 1, for instance, new.push(1).push(2).pop.top is a ground term, with proper subterms

“new.push(1).push(2).pop”, “new.push(1).push(2)”, “new.push(1)”, “2”, “new”, and “1”. Their lengths
are shown in Table 1. By Definition 2.1, all ground terms are of finite lengths.



Table1 Lengths of terms

Terms Lengths
“1” 1
new

wy»

new.push(1)
new.push(1).push(2)
new.push(1).push(2).pop
new.push(1).push(2).pop.top

NN N W= =

Definition 2.2 Suppose

(a) a,;; u=uU’ is an equational axiom such that each variable occurring in U’ also appears in U.

(b) U, is a ground term containing a subterm that is a substitution instance of the left-hand side u of the
axiom.

(c) if we replace that subterm in U, by the corresponding substitution instance of the right-hand side u’,
the result is a ground term u,.

Then we say that the ground term U, can be transformed into the ground term U, using the axiom &, as a

left-to-right rewriting rule. This is denoted by the notation:

2
Uy — Uy.

In Example 1, for instance, the ground term new.push(1).push(2).pop.top can be transformed into
new.push(1).top using axiom &, as a left-to-right rewriting rule, and new.push(1).top can be transformed
further into the ground term “1” using &. These transformations are expressed as:

N A
new.push(1).push(2).pop.top — new.push(1).top — 1.

Definition 2.3 A ground term is said to be in normal form if and only if no further axiom is
applicable to it as a left-to-right rewriting rule. A specification is said to be canonical if and only if every
sequence of rewrites on the same ground term reaches a unique normal form in a finite number of steps.

Definition 2.4 Suppose A, ..., Aj, and E are classes different from class C, and D, ..., Dy are classes

that may or may not be different from class C, where i, k> 0. An operation or method f: A, ... Aj = C is
called a creator of class C. An operation or method .g(_, ..., ): CD, ... Dy — C is called a constructor
of class C if it can appear in a normal form. If an operation or method .h( , ..., ):CD,..Dx— C
cannot appear in any normal form, it is called a transformer of class C. An operation or method _.p(_, ...,
):CD, ... Dx — E is called an observer of class C.

In Example 1, for instance, the operation new is a creator, .push(N) is a constructor, .pop is a
transformer, and _.empty and _.top are observers.

Definition 2.5 Suppose C is a class of a given specification. A valid sequence of operations or
methods in C, starting from a constructor or transformer but ending in an observer, is called an
observable context on C.



The general form of an observable context OC is as follows:

oc=_f() B fi.).0bs(...)

where .fi(...), .F(...), ..., .f(...) are constructors or transformers of class C and .0bs(...) is an observer
of class C. For any object O in C, O.oc denotes the result of applying oc to O. For example, oc =
_.push(1).push(2).pop.push(4).top is an observable context on the class of integer stacks given by
Example 1. The result of applying it to new is new.push(1).push(2).pop.push(4).top = 4.

Definition 2.6 For a given canonical specification, two ground terms U, and U, are said to be
equivalent (denoted by U, ~ U,) if and only if both of them can be transformed into the same normal form
by some axioms as left-to-right rewriting rules.

The following definition is adapted from [11, 22]:

Definition 2.7 Given a canonical specification and its implementation in a class C, two objects O,
and O, in C are said to be observationally equivalent (denoted by O, = O,) if and only if the following
conditions are satisfied:

(a) When Cis a class provided by the implementation language, O, and O, are identical according to the
built-in equality in the language.

(b) When C is a user-defined class, for any observable context oc on C, O,.0C is observationally
equivalent to O,.0C in the output class.

Let O;.d; represent the value of a data member d; in an object O;. Notice that even if O,.d; # O,.d| for
some data member d; of the objects O, and O,, it does not necessarily mean that O, and O, are
observationally nonequivalent. This point reflects the encapsulation or hiding of implementation details
in the object-oriented paradigm.

For a canonical system, the observational equivalence of objects is reflexive, symmetric, and
transitive.

Definition 2.8 Given a canonical specification and its implementation, a series of methods
corresponding to the operations in a ground term is called a method sequence corresponding to the
ground term. Two such sequences S, and S, are said to be equivalent (denoted by S, = S)) if and only if
they produce observationally equivalent objects.

For a canonical system, the equivalence of method sequences is reflexive, symmetric, and transitive.

Definition 2.9 Suppose P is an implementation of a canonical specification SP. P is said to be
complete if and only if, for every operation f in SP, there exists one and only one method ny in P that
implements f.

We can regard a complete implementation as a mapping W from the specification to the
implemented class, such that W( f)=m. Let u=f.f,..fx be a ground term in the class. We write the
method sequence W( f,).W( f,)...W( fx) as ‘P(u).



Definition 2.10 A complete implementation W is said to be consistent with respect to the equivalent
ground terms u, and U, if and only if the corresponding method sequences Y(u,) = W(u,).

Obviously, given a canonical specification, if a complete implementation is not consistent with
respect to some equivalent ground terms, then there is an error in this implementation. Hence, this forms
the basis of using equivalent ground terms as test cases.

2.3 Our Strategy: Fundamental Pairsas Test Cases

Although we have seen the rationale behind the use of equivalent ground terms as test cases, the set
of all such terms for a given specification is infinite in general. Exhaustive testing is of course
impossible. How do we select a finite representative subset of all equivalent ground terms as test cases?
In this and the next sections, we shall propose a mathematically based strategy for selecting
representative equivalent ground terms as test cases. First, we define an important concept as follows.

Definition 2.11 For a given canonical specification, a pair of equivalent ground terms, formed by
replacing all the variables on both sides of an axiom by normal forms, is called a fundamental pair of
equivalent terms induced from the axiom. For the simplicity of expression, we shall refer to such a pair
as a fundamental pair in this paper.

In Example 1, the pair of equivalent ground terms new.push(1).push(2).push(3).pop ~
new.push(1).push(2) can be formed by replacing the variables Sand N in axiom &, by the normal forms
new.push(1).push(2) and “3”, respectively, and hence is a fundamental pair induced from axiom a,.
However, the pair of equivalent ground terms new.push(1).push(2).pop.push(3).pop ~ new.push(1) is not
fundamental.

When we generate fundamental pairs from an axiom, if the right side of the axiom contains some
conditions, the selected normal forms to replace variables have to satisfy these conditions.

Having defined the basic concepts, we would like to state our strategy for test case selection. We
prove that, in order to test whether a complete implementation of a canonical specification is consistent
with respect to all equivalent ground terms, we need only test fundamental pairs. That is, the testing
coverage of all fundamental pairs remains the same as that of all equivalent ground terms. In other words,
any error revealable by general equivalent ground terms can be revealed by some fundamental pairs.

Example 2 Given the specification as shown in Example 1, consider an erroneous implementation
in which the second call of pop returns a wrong value because of a flag. In this implementation, a stack is
represented by an array and has an internal Boolean flag that is set to false when a new stack is created.
The operation pop is implemented as follows?:

Spop:
if Sflag then return NIL;  /* Anerror */
else{ .. /* If Sflagis false, then pop behaves properly. The code for the correct
implementation will not be listed in full here. */
Sflag = true, }

% This example is due to [24].



This error can be revealed by the following pair of general equivalent ground terms:

w; = new.push(1).push(2).pop.push(3).pop,
W, = new.push(1);

It must also be exposed by a fundamental pair, say,

u, = new.push(1).push(2).push(3).pop,
U, = new.push(1).push(2).

Executing the corresponding implementation method sequences S, and S, of U, and u,, respectively,
we obtain the following objects as a result:

array flag /* Two data members in the implementation */
O, = ([1, 2], true)
0O, =([1,2], false)

Since O,.pop.top = NIL but O,.pop.top = 1, by Definition 2.7, O, and O, are not observationally
equivalent. Thus, —(S,=S,), but U, ~ U,. By Definition 2.10, the error is detected by u, ~ U,. d

In Example 1, for instance, we need only select test cases like the fundamental pair
new.push(1).push(2).push(3).pop ~ new.push(1).push(2), and need not consider general equivalent
ground terms like new.push(1).push(2).pop.push(3).pop ~ new.push(l). Obviously, the set of
fundamental pairs is a proper subset of the set of equivalent ground terms.

To prove Theorem 2, we need the following lemmas and Theorem 1.

Lemma 1l Ifa ground term u; is a proper subterm of ground term u, then length(u) > length(u;) > 0.
Pr oof:

The proof of Lemma 1 follows immediately from Definition 2.1. a

Lemma 2 A canonical specification cannot contain any axiom a in the following form:

a X=T
where X is a variable, T is a term, and X and T belong to the same class.
Proof:
Suppose the given specification contains a: X=T. Let U, be a term of the class.
If T contains the variable X, we denote T = T(X),
a X=T(X).

Thus, we have:



a a a
U — T(Ug) = T(T(W)) = ...

which is an infinite rewriting sequence, thus contradicting the termination property of canonical
specifications.

If T does not contain the variable X, we have:

a a a
Uu—>T—->T— ..

which is also an infinite rewriting sequence, thus contradicting the termination property of canonical
specifications. a

For instance, if Example 1 contained an axiom a,: S= Spush(N).pop, then we would obtain the
infinite rewriting sequence:

A1 Ay Qo1
new — new.push(1).pop — new.push(1).pop.push(2).pop — ...

which would contradict the terminating property of canonical specifications. Ifit contained an axiom ay,:
S=new, we would have an infinite rewriting sequence:

A A A
new — new — new — ...

which would also contradict the terminating property of canonical specifications.

Lemma 3 Suppose U is a ground term in a canonical specification. If U is not in normal form, then
there exists an axiom a which can be applied to U as a left-to-right rewriting rule such that the following
binding condition is satisfied:

All the variables involved in a are bound to normal forms.

Proof:
The basic idea of the proof is shown in Figure 1. Since U is not in normal form, according to

Definition 2.3, there exists some axiom &, that can be applied to U as a left-to-right rewriting rule. If g
satisfies the binding condition, then the conclusion holds.
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(...), where X; is bound to U,

A . ... X2 e T
U (...), where X, is bound to U,
A a: ... X3 =
Uz > (...), where X; is bound to U;

and so on.

v

Figure 1. The basic idea of the proof of Lemma 3

Otherwise, &, includes a variable X, bound to a non-normal form u,, where U, is a subterm of u. We know
that U, must be a proper subterm of U because, if U, = U, & would be of the form:

8.1: X1 = T

thus contradicting Lemma 2. According to Definition 2.3 again, there exists some other axiom &, that
can be applied to U, as a left-to-right rewriting rule. Since U, is a proper subterm of U, @, can also be
applied to U as a left-to-right rewriting rule. If &, satisfies the binding condition, then the conclusion
holds.

Otherwise, a, includes a variable X, bound to a non-normal form U,, where U, is a subterm of u,.
Similarly to the above, according to Lemma 2, U, must be a proper subterm of u,. Furthermore, U, is also
a proper subterm of U. According to Definition 2.3, there exists some other axiom &, that can be applied
to U, as a left-to-right rewriting rule. Since U, is also a proper subterm of U, &; can also be applied to U as
a left-to-right rewriting rule. If &; satisfies the binding condition, then the conclusion holds.

Otherwise, continue the process similar to the above. Since the length of u is finite, and according to
Lemma 1, we have

length(u) > length(u,) > length(u,) > ... > 0,

the process must terminate in a finite number of steps. Thus, we obtain an axiom & that can be applied to
U as a left-to-right rewriting rule and satisfies the binding condition. a

Consider, for instance, a term u = new.push(1).push(2).pop.push(3).top for the specification in
Example 1. We can apply axiom &, to U as a left-to-right rewriting rule. In this case, the variables Sand
N in &, are bound to new.push(1).push(2).pop and 3, respectively. However, new.push(1).push(2).pop is
not in normal form. We can apply axiom &, to it, such that the variables Sand N involved are bound to
the normal forms “new.push(1)” and “2”, respectively. Furthermore, since “new.push(1).push(2).pop” is
a subterm of U, we can also apply &, directly to u. Thus, we have found an axiom &, which can be applied
directly to U as a left-to-right rewriting rule such that the binding condition is satisfied.

Theorem 1 Suppose U is a ground term in a canonical specification. If uis not in normal form, then
U can be transformed into a unique normal form U* via a series of axioms &, &, ..., a:

10



a &  a &
U— U — ... > Uk = Uk = U*,

such that each g satisfies the binding condition.
Proof:

Since the given specification is canonical, according to Lemma 3, there exists some axiom @, that
can be applied to U as a left-to-right rewriting rule, transforming U into a ground term Uy:

a
u— U,

and satisfies the binding condition. If U, is in normal form, then the theorem holds.
Otherwise, according to the same lemma, there exists another axiom a,:

2
U — U,

which satisfies the binding condition. If u; is in normal form, then the theorem is satisfied.

Otherwise, continue the process similar to the above. Since the specification is canonical, according
to Definition 2.3, the process must terminate at a unique normal form, thus yielding a finite series of
axioms a,, &,, ..., ak that satisfies the theorem. d

Theorem 2 Given a canonical specification, a complete implementation is consistent with respect
to all equivalent ground terms if and only if it is consistent with respect to all fundamental pairs.’

Pr oof:

Obviously, if a complete implementation is consistent with respect to all equivalent ground terms,
then it is consistent with respect to all fundamental pairs.

Suppose a complete implementation is consistent with respect to all fundamental pairs. Let u, ~ u,
be any two equivalent ground terms. Since the implementation is complete, it can be regarded as a
mapping . Let Y(u,) =S, and ¥(u,) =S,. We wish to prove that s, =S,

By Definition 2.6, U, and U, can be transformed into the same normal form u*. Since the given
specification is canonical, according to Theorem 1, we can find a series of k axioms that transform u, to
u*:

a & & Ak K
Ul —> ulz 4 U13 - .. ulk —> U*

In spite of this theorem, we should note that an infinite set of observable contexts may be required to check the
observational equivalence of objects resulting from the fundamental pairs. This problem cannot be solved by any black-box
technique. We shall present in Section 3 a heuristic white-box technique that selects a relevant finite subset of the set of
observable contexts.

11



where all the axioms &, ..., 8 satisfy the binding condition. Let W(u;)) =S, ] =2, ..., k, and Y (u*) = s*.

u, must be of the form f,(vo).f;(v))...f.(v,). Eachvi, i =0, 1, ..., n, is a list of parameters (possibly an
empty list) of the form

Vi = (hio(Vie)-hii(Vih)...nip(Vip), hao(Vag).0oi(Var)...hag(Vag), ooy Dio(Vio)-Niei (Vi) Nes(Vis) )i

where each parameter contains only ground terms, each Vv, Vi, ..., Vis may further be expressed in a form
similar to Vi, and so on.

Since U, can be rewritten by applying @, as a rewriting rule, the left hand side of &, should match a
subterm of U,. Hence, & must be of one of the following two forms:

XHO0) Fe1 (K)o i) = XG0V Gu(Ye),  1Sj<K<n,
or
XHG)F (K1) FX) = Y01 (Y0).Ga(Ya).. .. G Yo, 1<j<k<n,

where X and Y (# X) are creators or object Variables4, X, Xi+15 ..oy Xio Y1, Ya,..., Y are lists of parameters
(possibly empty lists) containing variables or ground terms, and gy(Y;).0x(Y5)...0u(Ym) may be absent’.

Thus, u,, will be of the corresponding form
fo(Vo)-F1(V)-.. B 1 (Vi) 91 (W1 ). Ga(W ). .. Ol W) Fict s (Vi) - Fo(Vi)
or
W.G1(W).Go(Wa).... G Win)- i1 (Vi 1) - Fo(Vin),

where W, W;, W,, ..., W, are substitution instances of Y, Y,, Y,, ..., Yy, respectively. Without loss of
generality, we will only discuss the more complex case

U = Fo(Vo)-Fi(V1)-. Jici (Vi) 90 (W1 ). Qo (W ). O Win) - it (Vi1 ). Fi(Vin)

for the remaining part of this proof. Thus,

4 Since a, satisfies the binding condition and X in &, is bound to fo(Vp).f;(vy)...fjit 1(Vji 1), we need to show that any ground term
U, contains at least a normal form at the beginning. In fact, any ground term consists of a creator at its beginning followed by
constructors, transformers, or observers. According to Lemma 2, a canonical specification cannot contain any axiom of the
form “X=T”. Thus, any creator cannot be rewritten in a canonical specification, and hence is a normal form. Besides the
creator, in the ground term U,, any subterm beginning with this creator and followed only by some constructors is also a
normal form. See footnote 6. We can therefore conclude that any ground term u; contains at least some normal form at its
beginning.

> For example, the axiom X.credit(M).balance = X balance.add(M) is of the first form such that g;(Y;).gx(Y2)...0m(Ym) is
present. The axiom X.push(N).pop = X is also of the first form such that g;(Y)).0x(Y2)...0m(Ym) is absent. The axiom
X.push(N).top = N is of the second form such that Y= N and g;(Y;).0x(Y>)...0n(Ym) is absent. The axiom X.push(N).empty =
false is also of the second form such that Y is the creator false and g;(Y;).02(Y2)...gm(Ym) is absent.
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s = W( fo(Vo)-F(fi(v1))... ¥ (fn(Wn)),
S = (Vo) F(Fi(v0))... ¥ (-1 (Vj-1))- F(@i(W1). F(Ge(W2))... (G Wir))
M (Fieri (Vi) P (Fr(Vn)).

Since axiom @, satisfies the binding condition in the transformation from U, to U,,,
fO(VO)-fl(V1)~ . f]-l(\lj-l)fj(\lj)fj+l(\lj+l) . .fk(Vk) -~ f()(V()).fl(Vl). . .fj-l(\/j.l).gl(wl).QQ(Wz). . -gm(wm)

must be a fundamental pair induced from &,. According to the assumption that the implementation is
consistent with respect to all fundamental pairs, we have

P(fo(vo). ¥ (fi(v))... ¥ (fi(vid)
= ¥ (fo(v0). P(Fi(v))... ¥ (F1(%-))-F(9:(W))- F(Go(W2))... F (G Wir)) (a)

If f,(v,) is an observer, then
W( e (Vier))-.. P(F(Vn)) (b)

is an observable context. According to Definitions 2.7 and 2.8, by applying (b) to both sides of (a), we
have

W (fo(vo). P (fi(v)).. P( (Vo)
= W( (Vo). P(Fi(v)).. P (£i-1(Vj-0)). F(9i(W))). P (D(W-))... P (O Win))
M (fen (V). (W)
In other words, S= S,.
If f.(v,) is not an observer, for any observable context ocC of the given class,

W( fierr(Vicr))... P (fr(vin)).0C (c)

is still an observable context on the given class. According to Definitions 2.7 and 2.8, by applying (c) to
both sides of (a), we have

W (Vo). F( Fi(V))...W( F(v)).0C
=~ W(fo(vo))- V(£ (V1))... W (£i-1(Vj-1)- (9 (W1)). F(Go(W))... W (G Win) )
W(fier (V). P( £o(V)).0C

This means that the objects produced by S, and S, are observationally equivalent. According to
Definition 2.8, we have S, = S;,.

By the same argument, we have
S]zszz '~"'S|k'~"s*.
Therefore, S, = s*. Similarly, we can prove that s, = S*. Hence, S, = S,. d
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2.4 Algorithm GFT for Generating a Finite Number of Test Cases

In general, the axioms of an algebraic specification may contain branch conditions. An axiom may
induce an infinite number of different fundamental pairs by assigning different normal forms to its
variables. Exhaustive testing is impossible. How do we select a finite number of representative test
cases from the infinite set of fundamental pairs? We present the following Algorithm GFT to deal with
this problem. We give a related definition first.

Definition 2.12 Let nm be an implemented method. We say we apply the path-based domain
partition technique (PDP technique) to n if we:

(a) Partition the input domain of my into subdomains such that all the test points in each subdomain
cause a particular path in the implementation of nm to be executed. Here, the partition concept
follows White and Cohen [25], but the path generation algorithmis the same as the one proposed by
Jeng and Weyuker [26].

(b) Use the simplified domain-testing strategy presented by Jeng and Weyuker [26] to select some test
points from each subdomain, if the assumptions required by the strategy are satisfied.

(c) Otherwise, randomly select a test point from each subdomain.

Since the PDP technique is path-oriented, it obviously inherits the problems associated with path
testing, such as an infinite number of paths and the identification of infeasible paths. Recently, Jeng and
Weyuker [26] proposed an innovative technique for detecting domain errors. Instead of the traditional
approach of testing whether a border is correct, they test whether or not there is a displaced area. Their
new perspective has greatly improved the practicality of White and Cohen's domain-testing strategy by
removing most of the unrealistic constraints in its original model. Furthermore, although their new
technique has a lower cost, the effectiveness is comparable. They also propose a path generation
algorithm in which all the selected paths are executable, and hence infeasible paths are no longer an issue
in the implementation. In view of all the above merits, we have adopted Jeng and Weyuker's method in
our algorithm.

Algorithm GFT (Generating a Finite number of Test cases) The algorithm asks the analyst to
supply a canonical specification, and requests the designer to identify the mapping from the set of
specified operations to the set of implemented methods. According to Theorem 2, we need not produce
general equivalent ground terms as test cases. We need only construct fundamental pairs, which are
produced from each axiom in the given canonical specification. Suppose the given specification contains
n axioms a,, &, ..., an. For each axiom & (i =1, 2, ..., n), conduct the following steps:

(a) If a variable V of type T involved in & is not observable, use the syntax part of the given
specification as a grammar [27] to construct all patterns of normal forms from the creators and
constructors® of type T, such that their lengths do not exceed some positive integer k. Then replace
each occurrence of V in g; by these patterns to unfold g into several new equations, which are further
unfolded until all the variables involved in the new equations &;j are of observable types.

 We can infer from Definition 2.4 that a normal form contains only a creator and some constructors, but no transformer.
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(b)

(©)

(d)

(e)

The above positive integer K may be determined by a white-box technique, such as by referring to
the maximum sizes of arrays, or the boundary values of variables declared in the implemented code.
If the maximum sizes or the boundary values are too large for the generation of test sets of
reasonable sizes, ask the user to specify an acceptable value of k.

Suppose the right hand side of a new equation &;j obtained in step (a) contains a defined operation f.
Use the conditions of the set of axioms defining f to partition the input domain of f into subdomains.

Randomly select an element from each subdomain obtained in step (b), and use these elements to
replace all occurrences of the corresponding input variables in equation &; to obtain a group of

fundamental pairs induced from axiom &;.

If the above group of fundamental pairs reveals an error, exit from the algorithm. Otherwise go to
step (e).

Suppose the defined operation f in step (b) is implemented by method my. Apply the PDP technique
to my for selecting input data points to replace all occurrences of the corresponding variables in
equation &;j, and hence obtain another group of fundamental pairs for axiom a. a

Example 3 below is used to illustrate Algorithm GFT.

Example 3 The specification is nearly the same as Example 1, except the following additional

entries:
oper ations
_.ascending: IntStack — Bool
variables
N1 N2: Int
axioms

a,;: new.ascending = true
as: new.push(N).ascending = true
a,: Spush(N1).push(N2).ascending= N1 < N2 and Spush(N1).ascending

Suppose the following axioms in class INT define the operation “<”:

b;: (NI £N2)=true if N1==N2
b,: (N1 <N2)=true if N1 <N2
b;: (NI £N2)=false if N2 <NI1

Following Algorithm GFT, we should conduct steps (a), (b), and (c¢) for each of the axioms &, to a,. For
simplicity, however, we shall only illustrate the procedure for axiom &.
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(2)

(b)

(©)

&, includes a variable Sthat is not observable. Determine a positive integer K for S For the sake of
illustration, suppose k= 3. The patterns of normal forms of Sof lengths < 3 are as follows:

S=new,
S= new.push(NO0).

By replacing Sin &, with the above patterns, we unfold & into the following new equations:

a,;: new.push(N1).push(N2).ascending = (N1 < N2) and new.push(N1).ascending
a,,: new.push(NO).push(N1).push(N2).ascending
= (N1 £N2) and new.push(NO).push(N1).ascending

The right-hand side of &, contains an operation < defined by axioms b,, b,, and b;. Use the
conditions of b, b,, and b; to partition the input domain of the operation < into the following
subdomains:

(1) N1=N2
(2) NI1<N2
(3) N2<NI

Furthermore, we partition the input domain into the following subdomains for axiom ay,:

(1) NI =N2 and NO = NI
(2) NI =N2 and NO < NI
(3) NI =N2 and N1 <NO
(4) N1 <N2 and NO = N1
(5) NI <N2 and NO < N1
(6) NI <N2 and N1 < NO
(7) N2 <NI and NO = N1
(8) N2 <N1 and NO < N1
(9) N2 < NI and N1 <NO

Replace the variables N1, N2, and NO in the above axioms &, and &, by some integers randomly
selected from the corresponding subdomains above, thus resulting in the following fundamental
pairs induced from &, as a part of test cases:

new.push(1).push(1).ascending ~ (1 < 1) and new.push(1).ascending
new.push(1).push(2).ascending ~ (1 <£2) and new.push(1).ascending
new.push(2).push(1).ascending ~ (2 < 1) and new.push(2).ascending
new.push(2).push(2).push(2).ascending

~(2<£2) and new.push(2).push(2).ascending
new.push(1).push(2).push(2).ascending

~(2<£2) and new.push(1).push(2).ascending
new.push(3).push(2).push(2).ascending

~(2<2) and new.push(3).push(2).ascending
new.push(3).push(3).push(4).ascending

~(3<4) and new.push(3).push(3).ascending
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new.push(2).push(3).push(4).ascending
~(3<4) and new.push(2).push(3).ascending
new.push(5).push(3).push(4).ascending
~(3<4) and new.push(5).push(3).ascending
new.push(4).push(4).push(2).ascending
~ (4 £2) and new.push(4).push(4).ascending
new.push(3).push(4).push(2).ascending
~ (4 £2) and new.push(3).push(4).ascending
new.push(5).push(4).push(2).ascending
~ (4 <£2) and new.push(5).push(4).ascending a

It should be noted that if K in step (a) is not well chosen, some implementation errors may not be
revealed, as illustrated in Example 4. Thus, the selection of K is important, but difficult as indicated in
Section 2.5.2. This may warrant further investigation.

Example 4 Let us refer to the specification in Example 1 again. Suppose the implementation is as
follows, where array[100] is the top of the stack and array[1] is the bottom.

#include <iostream.h>
#define SZE 100

#define NIL 0
classintStack {
int array[SZE]; /* Only one data member */
public: ...
1
void intStack :: newStack( )
{
for (int j=1; j<=100; j++)
array[j] = NIL;
}
void intStack :: push(int i)
{
for (int j=1; j<=99; j++)
array[j] = array[j+1];
array[100] =1;
h
void intStack :: pop( )
{
for (int j=100; j>=2; ]—-)
array[j] = array[j-1];
array[1]= NIL;
h
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int intStack::top( )
{

}

return array[100];

Let u, = new.push(1).push(2)...push(100).push(101).pop

U, = new.push(1).push(2)...push(100).
Obviously, U, ~ U, is a fundamental pair. The following objects O, and O, are produced by U, and U,,
respectively:

O, =[NIL, 2, ..., 100]
O, =[1, 2, .., 100].

Since O, and O, are not observationally equivalent, this implementation contains an error. In step (a)
above, suppose for argument’s sake we have chosen k= 10 for the variable Sin axiom a,. Then the error
cannot be revealed. a

2.5 Discussionson Algorithm GFT

In this section, we discuss a number of important issues on Algorithm GFT including assumptions,
limitations, applicability, and complexity.

2.5.1 Assumptions

We have assumed in Theorem 2 and Algorithm GFT that a canonical specification and a complete
implementation are given. How restrictive are these requirements?

Intuitively, the normal form of a ground term denotes the “abstract object value” [28] of this ground
term. Two ground terms having the same normal form would have the same “abstract object value”.
Thus, according to Definition 2.3, every ground term under a canonical specification would have a
unique “abstract object value”, hence avoiding any ambiguity. In other words, if we relax the canonical
requirement for a specification, the ground terms may be ambiguous.

If an implementation is not complete, there exists some operation f, such that (1) no method
implements it or (2) two or more distinct methods implement it in the same class. Case (1) is obviously
an error, since the implemented system will fail when f, is called. Case (2), on the other hand, is
ambiguous, since the implemented system can have two distinct outcomes. In both cases, the problem
can easily be detected by comparing a checklist of all the operations in the specification against the
corresponding methods in the implementation.

To summarize, in order to avoid omissions and ambiguities, it is acceptable to require a specification
to be canonical and an implementation to be complete.

2.5.2 Limitations

It is difficult to determine the positive integer K in step (a) of Algorithm GFT. It will be helpful to
apply a white-box technique, such as referring to the maximum sizes of arrays, or the boundary values of
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variables declared in the implemented code. However, when the maximum sizes or the boundary values
are large, the sizes of the test cases may be of the order O(m¥) (where mis the number of constructors in
the class under test) and hence unreasonable. Furthermore, even when the maximum sizes or the
boundary values are not large, some of the faults on the capabilities for handling excess of the maximum
sizes or the boundary values may not be identified. This is a natural limitation of step (a). Similarly, the
PDP technique in step (e) of Algorithm GFT cannot be fully automated.

As an optional heuristic, we may supplement the algorithm by the “weak class graph” and “weak
coverage criteria” approaches proposed by [15] for selecting the normal forms in step (a) of Algorithm
GFT. (See Section 4.3 for more details.)

Alternatively, we may have to ask the user to choose K for the algorithm (similarly to [21]) when the
white-box technique fails. Thus, Algorithm GFT can be implemented as a semi-automatic CASE tool
that interacts with users when the above problems are encountered.

2.5.3 Effectiveness and Applicability Issues

In step (a) of Algorithm GFT, we replace every variable of nonobservable types by a finite number
of patterns of normal forms with limited lengths. In fact, this is a common practice in testing, and has
been formalized in [21] by means of a regularity hypothesis. The random selection of a value from each
subdomain in step (c) of Algorithm GFT and PDP technique is also a common practice in testing. It has
also been formalized in [21] by means of a uniformity hypothesis.

For example, consider a program “if X > 0 then Y = f(X) else Y = —-X”. Suppose “Y = f(X)” is a
computational error that should be corrected to “Y = g(X)”. We partition the input domain of X into two
subdomains sb, = {X | X> 0} and sh, = {X| X< 0}. Let solutionSet, = {X | X > 0 and f(X) = g(X)}.
Suppose t is some randomly selected test data from sb,. Ift € solutionSet,, the error cannot be revealed.
However, ift € (sb, \ solutionSet,), the error can be exposed. In many practical cases, we can expect the
cardinal number of the set (sh, \ solutionSet)) to be much greater than that of the solutionSet,. For
instance, in many programs, f(X) and g(X) are arithmetic expressions. In this case, the solutionSet; is
finite but the set (sh, \ solutionSet)) is infinite. This means that the probability of te (sh; \ solutionSet,) is
much greater than that of t € solutionSet;. In other words, in such cases, the probability of revealing the
error by the randomly selected t from the subdomain is much greater than that of not revealing it.

The “simplified domain-testing strategy” and its corresponding “path generation algorithm”,
adopted from [26] and used in Definition 2.12 and step (e) of Algorithm GFT of this paper, have been
shown by the original authors to be effective and applicable.

2.5.4 Complexity Issue

Algorithm GFT is similar to that used in the tools described in Sections 5 and 6 of Bouge et al. [9],
except the following differences: (1) We suggest in Algorithm GFT to use a white-box technique to
determine the positive number K in step (a), whereas Bouge et al. regard K as a part of the regularity
hypothesis. (2) In Algorithm GFT, we replace all the variables in the unfolded equations by normal
forms, while Bouge et al. replace them by ground terms.

In practice, the complexity of Algorithm GFT depends heavily on the actual number of normal
forms generated for a given positive integer K. According to Definition 2.4, a normal form contains only
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a creator and a number of constructors, but no transformer, whereas a ground term may contain all three
types of operations. In most situations, a class contains more transformers than creators and constructors.
Hence, our proposal in the algorithm to replace variables by normal forms, rather than ground terms in
general, enhances the efficiency of testing.

3. DETERMINING THE OBSERVATIONAL EQUIVALENCE OF TWO OBJECTS

Suppose the fundamental pair U, ~ U, is selected as a test case for a given specification. To apply this
test case to an implementation, we should map each operation in U, and U, to a method in the program. As
a result, this mapping generates two method sequences S, and S, in the program corresponding to U, and U,,
respectively. For a complete implementation, this mapping exists and can be indicated manually by the
implementation designer, or be derived automatically from a given interface specification. Let O, and O,
be two objects resulting from the execution of S, and S,, respectively. After executing S, and S, in the
program and obtaining results O, and O,, in order to judge whether the test case {u,, U,} reveals an
implementation error, we have to decide whether O, and O, are observationally equivalent (denoted by
O, = O,). In Section 3.1, we explain why this problem is undecidable using black-box techniques, and
indicate that we have to use a heuristic white-box technique to select a relevant finite subset of the set of
observable contexts.

3.1 Reason for Using a Heuristic White-Box Technique

According to Definition 2.7, we can use the observable contexts on class C to determine whether O,
= O,. Unfortunately, the set of all observable contexts in class C is infinite in general. How do we select
a finite subset? For the stack example (O, and O, are stacks), it intuitively seems that

(O, = 0,) & (0O,.height = O,.height) and
(O,.top = O,.top) and
(O,.pop.top = O,.pop.top) and
... and
(O,.pop'©M¥IM top ~ O,.pop 29 top) (Formula I)

Let SS= {height} U {pop'.top|i =0, 1, ..., height}. Although the subset SSof observable contexts is
finite, Formula I is unfortunately still incorrect. A counterexample’ is given in Bernot et al. [21]. The
authors then added, “we get the depressing result that the only credible alternative is to consider the set of
all observable contexts, which is infinite (and consequently impracticable).” They simply regard
Formula I as a hypothesis, known as an “oracle hypothesis™, for the class of integer stacks.

7 Example 5 in Section 3.2 is another counter-example. It concludes that the objects O, = ([1, 2], 1, 0, 0) and O, = ([1, NIL],
1, 1, 0) are not observationally equivalent, but the finite subset SSof observable contexts shown above will report that they
are observationally equivalent.

% The oracle hypothesis is an attempt by [21] to formalize the basic assumptions about the oracle problem in software testing.
According to the authors, “the oracle problem [is related with] how to decide if a program execution returns a correct result.
The solutions to this problem depend both on the kind of formal specification and program; a property required by the
specification may not be observable using the program under test. Most of the formal specification methods provide a way to
express observability. In this case, the program is assumed to satisfy the observability requirements (for instance, to decide
correctly the equality of two integers); it is [known as] an oracle hypothesis.”
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In fact, we can formally prove that the observational equivalence of two objects cannot be decided
by a black-box technique.

Theorem 3 For any given class, let AIIOCs be the set of observable contexts, CT be the set of
constructors and transformers, and OBS be the set of observers. If CT and OBS are non-empty, then
AllOCsis infinite. Furthermore, if the class has at least one pair of equivalent ground terms U, ~ U, and a
constructor or transformer f(...) € CT such that the numbers of appearances of f(...) in U, and u, are
different, then the observational equivalence of objects cannot be determined using a finite set of
observable contexts selected independently of implementations. In other words, given any finite subset
UbOCs of AlIOCs, there exist some implementation and two objects O, and O, such that

(Voc e SUbOCs) (0O,.0c = O,.0c) A (Foc, € AIOCs) (—(0O,.0¢, = O,.0¢,)) (Formula II)

That is, there exist objects that are not observationally equivalent, but appear to be so when only a finite
subset of the observational contexts are applied.

Pr oof:

Since CT and OBS are non-empty, there exist a constructor or transformer g(...) in CT and an
AllOCs that contains i g(...)’s. Hence, AllOCsis infinite.

Suppose U, contains mf(...)’s and U, contains nf(...)’s, such that 0 < n<m. Consider any given finite
subset UDOCs of AIIOCs, selected independently of implementations. We can find an oc, from this
UbOCs such that the number k of f(...)’s in oc, is maximal in SUbOCs (where k > 0). We can then
construct an implementation ‘¥ that contains an error in the (m+k+1)th call of f(...) but correct otherwise.
Let O, and O, be the objects resulting from executing the method sequences corresponding to U, and U,,
respectively. For simplicity, we write O, = ¥(u,) and O, =¥(u,). Since O,.0c, = ¥(u,).0c, contains m+k
f(...)’s and O,.oc, = ¥(Uu,).0C; contains N+k f(...)’s such that n < m, for any oce SUbOCs, there must be no
more than mtk f(...)’s in O,.0c or O,.0c. Thus, according to the construction of implementation ¥,

0O,.oc = O,.0c

for any oc in SUbOCs. By Definition 2.5, oc, must end with an observer. Let U be the result of removing
the observer from oc,. Consider u* = u.f(...). Obviously, since U* contains k+1 f(...)’s,

O,.u* = ¥(u,).u* contains mtk+1 f(...)’s, and
O,.u* = ¥(u,).u* contains n+k+1 <m+k f(...)’s,

according to the construction of implementation ¥, we have —(O,.u* = O,.u*). By Definition 2.7, there
exists an observable context 0C, such that —(O,.u*.oc, = O,.u*.0c,). Let 0c, = u*.0cC,. It follows that

—(0,.0¢, = O,.0¢).

Since u* contains k+1 f(...)’s, 0C, must contain at least k+1 f(...)’s, and hence oc, ¢ SUbOCSs but 0c, €
AllOCs. Thus we arrive at Formula II. a
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In the above proof, we realize that the number mt+k+1 is closely related to this error. In order to
reveal this error, we must catch the number m+k+1. Obviously, this can be done only by using a heuristic
white-box technique, rather than a black-box technique. This is the reason why we propose to
supplement our axiom-based black-box approach by the following heuristic white-box technique. (On
the other hand, see also Section 3.3.2 that discusses why a white-box technique cannot be a substitute for
the black-box technique.)

3.2 Relevant Observable Context Technique

The basic idea behind our heuristic technique is as follows. Suppose we want to determine whether
O, = O,. Suppose further that O, and O, have different values for the same data member d; of the
implemented class. Such different values may or may not have an effect on the observable attributes of
O, and O,. If no observable attribute is affected, d; need not be considered. If some observable attribute
is affected, di must have affected the attribute through some series of methods in the implemented class.
Such a series of methods is called a relevant observable context. We need only use the relevant
observable contexts to determine whether O, = O,. We can ignore any other observable contexts for this
decision. We shall give a formal definition for the concept of relevant observable context, and how it can
be produced by means of a Data member Relevance Graph constructed from the implemented class C.

If a relevant observable context itself contains an implementation error, by applying it to determine
the observational equivalence of objects, we may increase the chance of having the error revealed. If,
after applying the relevant observable context to objects O, and O,, we find inconsistencies in some
observable attribute, we can conclude an implementation error in S, or S,, or in the relevant observable
context itself, or both. The worst case scenario happens when the error(s) in S, and S, offset the error(s) in
the relevant observable context, so that neither can be revealed. We note, however, that the possible
offsetting of errors cannot be avoided in testing. Even if we test a single method sequence, errors in two
of the methods may happen to cancel each other. This is the well-known phenomenon of fault masking
(see, for example, Morell [1990]).

In the relevant observable context technique, we assume a program model without pointers. This
kind of program model is gaining popularity in the latest object-oriented programming languages such as
JAVA.

Definition 3.1 If a data member d, is defined or revised by a data member d, in a method munder a
condition p(..., ds, ...), we say that d, directly affectsd, in munder p(...), and that d, directly affectsd, in m
under p(...).

In Example 5 below, for instance, we say that the data member numPush directly affects the data
member total Push in the method incTop under the condition height > 0.

Definition 3.2 Given an implemented class C, its Data member Relevance Graph (DRG) is
constructed as follows. Each data member of C is represented as a bold rectangle node in the DRG. The
DRG also contains some thin rectangle nodes, which denote some constants coming from the given
program. If the data member d, directly affects the data member d, in the method m;, under a condition
p(...), then there is an arc, labeled by (p, m,), from d, to d;. (See Figure 2.) We call [d,, (p, m), d,] a
segment of the DRG, d, a start node of arc (p, m,), d, an end node of arc (p, m,), (p, M) an output arc of
d,, and (p, m;) an input arc of d,. If d, is identical to d,, the segment is said to be a cycle. Otherwise it is
said to be acyclic. Each DRG contains a special node called observed, which is the ending node of each
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arc with an observer as the second component of its label. An arc with observed as an ending node is call
an observer arc. An example of a DRG is given in Figure 3.

(pa ml)
Figure2. Nodes and arc in a DRG
[
arc, arc
arc array NIL
arc,
arcs arc
fal i |NI L|
G arc,
height observed totalPush
arc,

a@ arcg

| true| NIL arcg

S

arc,
numPush
arc,

arc
0

arc;: (height # size, push(i));

arc,: (height = 0, empty);

arc;: (height # 0, empty);

arc,: (totalPush= 3, top);

arcs: (totalPush#3 A height> 0, top);
arc,: (totalPush#3 A height =0, top);
arc,: (height > 0, pop);

arcg: (height > 0, incTop);

arcy: (true, newStack);

arc

Figure 3. DRG of integer stacks
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Definition 3.3 Suppose d, is a data member of an implemented class C, O, and O, are two given
objects of C. If

(1) O0..d, #0,.d,

(2) there is a path P from the node d, to the node observed in the DRG of class C, and

(3) the methods in the labels of the arcs in path P are op,, Op, ..., Opt, 0bS successively,
then we call op,.op,...op..0bs a relevant observable context induced from path P with respect to O, and
O,, and say that d, affects the observable attribute of O, and O,. Notice that, the concept of pathsin this
paper is the same as that in directed graphs in general, except they end at a special node observed.

Definition 3.4 Let O, be an object of the implemented class C. Suppose the data members of class
Cared,, d,, ..., dn. Inthe DRG of class C, if all the conditions in the labels of the arcs in a given path P are
satisfied by O,.d; as initial data, then the path P is said to be executable for O,. Otherwise P is said to be
unexecutable for O,.

Algorithm DOE (Determining Observational Equivalent) Suppose O, and O, are two objects
of the same implemented class, resulting from the execution of the method sequences S, and s,
respectively. The steps for deciding whether O, = O, by means of relevant observable contexts are as
follows:

(a) Ifs and s, end with an observer, then O, and O, are values of some import class. We can therefore
directly decide whether O, = O, in the import class.

(b) Otherwise, suppose O, and O, belong to the implemented class C. Construct the Data member
Relevance Graph of class C from the coding of class C.

(¢) Suppose the data members of the implemented class C are d,, d,, ..., dn. In general, the classes of d;
are imported, observable, and there are known methods to determine the equivalence of values of
the classes. Suppose further that O;.d; denotes the value of dj of O;fori=1,2,..,nandt=1, 2.

Check whether the tuples (O,.d;, O..d,, ..., O,.dy) and (O..d,, O,.d,, ..., O,.dy) are equal. If yes, we
have O, = O,, and exit from Algorithm DOE. Otherwise proceed to step (d).

(d) Suppose O, and O, have different values with respect to the data members dy;, Oy, ..., O, Where 1 <
X <% <...<X<n. In other words, suppose O,.dy; # O,.0y forj =1, 2, ..., k.

For each dy;, check whether there is a path from the node dy; to the node observed in the DRG. If not,
skip this dy. If yes, proceed as follows:

(1) Ifdyis a simple data type, traverse every acyclic executable path P once (using the original
O..d as initial data and backtracking if necessary) and obtain the relevant observable context
oc induced from P. If there are uninstantiated input variables in OC, apply the PDP technique to
select values for the input variables.

If a cycle |; is encountered when traversing an executable path for O, the user should manually

decide on a ceiling t; for the number of iterations of |;, or supply a global ceiling T allowed by
the system.
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Check whether at least one of these relevant observable contexts, say 0C, fails, that is, —(O,.0C,
= 0,.0G). If'so, we have —(O, = O,), and exit from Algorithm DOE. Otherwise we say this
has successfully passed the check, and proceed to step (3).

(2) If dy is a compound data type (such as an array or structure in C++), construct relevant
observable contexts by the following process: For each value V of the component index or
element variable of dy that satisfies O,.dy.V # O,.dy.V, select every method sequence msEl to
change the current value of the component index or element variable to V, then traverse each
executable path (not exceeding the iteration ceilings in the case of cycles, if any) for O, from the
node dy to the node observed to obtain method sequence msOb, and create a relevant
observable context oc = msEl.msOb. (If V is already the current value of the component index
or the current element variable, then msEl is empty.) The process of traversing each executable
path (not exceeding the iteration ceilings in the case of cycles, if any) for O, in this step is the
same as that in step (1). If oc contains uninstantiated input variables, the PDP technique is
applied to determine values for the input variables. If at least one of these relevant observable
contexts, say 0C,, fails, then we have —(O, = O,), and exit from Algorithm DOE. Otherwise we
say this dy has successfully passed the check, and proceed to step (3).

(3) Ifall the dy; have successfully passed the checks, then we have O, = O,, and exit from Algorithm
DOE. Otherwise continue to check the next dy; such that O,.dy # O,.d;. |

Example5 The specification is the same as Example 1, except for following additional operations
and axioms:

operations

_.incTop: IntSack — IntStack
axioms

a;: SincTop.top = if Sempty then Stop
else Stop+ 1

In the following implementation, the internal data member numPush is used to count the number of
continuous calls to _.push, and total Push is applied to record the total number of calls to _.push. For the
sake of illustration, we have embedded some errors in the implementation.

#include <iostream.h>

#define SZE 100
#define NIL 0

enum bool { false, true };
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classintStack {

/* intSack consists of 4 data members:

int array[S ZE];
int height;
int numPush;
int totalPush;
public:
void newStack( );
bool empty( );
void push(int i);
void pop( );
void incTop( );
int top( );
35
void intStack :: newStack( )
{
height = 0;
numPush = 0;
totalPush = 0;
for (int j=1; j<=100; j++)
array[j] = NIL;
}
bool intStack :: empty( )
{
if (height==0) return true,
else return false;
}
void intStack :: push(int i)
{
if (height==39ZE)
cout << "Sack isfull";
else {
height = height + 1;
array[height] =1;
numPush = numPush + 1;
h
h
void intStack :: pop( )
{
if (height>0) {
height = height — 1;
numPush = 0;
}
}

*/
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void intStack :: incTop( )

{
if (height>0) {
array[height] = array[height] + 1;
total Push = total Push + numPush; /* Error 1: This statement should be in the
method pop but has been placed here by
mistake. */
h
h
int intStack :: top( )
{
if (totalPush ==3) return NIL; /* Error 2: The condition should be totalPush==0. */
else {
if (height>0) return array[height];
else return NIL;
}
}

The fundamental pair u, = new.push(1).push(2).pop and u, = new.push(1) can be induced from

axiom a,. Let us denote their corresponding implemented method sequences as S, and S,, respectively.
Suppose the execution results of S, and S, are objects O, and O,, respectively. We would like to illustrate
how to use Algorithm DOE to determine whether O, = O,.

(2)
(b)

(©)

(d)

Since the sequences S, and S, do not end with an observer, proceed to step (b).

Construct the Data member Relevance Graph of class C from the coding of class C. The DRG is
shown in Figure 3.

The execution results are:

(array, height, numPush, total Push)
Ol :([1’2]3 1’ 0) 0)’
O,=([1, NIL], 1, 1, 0).

Check whether the tuples ([1, 2], 1, 0, 0) and ([1, NIL], 1, 1, 0) are equal. The answer is no.
O, and O, have different values on the data members array and numPush:

(1) Forarray, we follow step (d)(2) of Algorithm DOE. Here, the component index is height. The
current values of both O,.height and O,.height are 1, whereas the value of height, which
satisfies O,.array[height] # O,.array[height], is 2. From the cycle height-arc,-height in Figure
3, we see that the only method sequence msEl, which changes the value of height from 1 to 2 is
push(i). On the other hand, by traversing the executable paths for O, from the node array to the
node observed in Figure 3, we obtain the method sequences msOb, = top and msOb, =
incTop.top, corresponding to the paths array-arcs-observed and
array-arcg-array-arcs-observed, respectively. Thus, by concatenating msEl, with msOb, and
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msOb,, respectively, we obtain the relevant observable contexts push(i).top and
push(i).incTop.top. Then apply the PDP technique’ to determine i = 8, and check whether

O,.push(8).top = O,.push(8).top and
O,.push(8).incTop.top = O,.push(8).incTop.top

They are both successful.

(2) For numPush, since it is a simple data type, we follow step (d)(1) of Algorithm DOE to traverse
every executable path for O, by backtracking. Suppose the global ceiling T supplied by the user
for the number of iterations of cycles is 2.

(1) In Figure 3, the node numPush has two output arcs arc; and arc, (where arc, is a cycle).
All the conditions of arc; and arc, are satisfied by O,.height = 1. Let us consider arc; first.
Its label contains the method incTop. Execute the method and obtain O,.incTop=([2, 2], 1,
0, 0). The end node of arc; is totalPush, which has four output arcs arc,, arcs, arcs, and
arcg (where arcy is a cycle). The current state, O,.incTop = ([2, 2], 1, 0, 0), satisfies the
conditions of arc; and arc; but not those of arc, and arc,. Hence, arcs and arc; are
executable for the current state but arc, and arc, are unexecutable. Consider arc; first. The
label of arc, contains the method top. Execute the method and obtain (O,.incTop).top = 2.
The end node of arc;s is the node observed. Thus, we obtain an executable path p, =
numPush-ar c;-total Push-ar c;-observed for the given object O,. The relevant observable
context corresponding to path p, is oc, =incTop.top. Execute O,.0c, and obtain O,.0c, = 2.
Hence, oc, succeeds because O,.oc, = O,.0C,.

(i) To obtain the other executable path for O,, backtrack to the node totalPush and consider
the other executable output arc arcy (which is a cycle). The label of arcg contains the
method incTop. Execute the method and obtain (O,.incTop).incTop = ([2, 2], 1, O,
0).incTop=([3, 2], 1, 0, 0). The end node of arc; is totalPush, which has four output arcs
arc,, arc,, arcg, and arcs. The current state, O,.incTop.incTop=([3, 2], 1, 0, 0), satisfies the
conditions of arc; and arc; but not those of arc, and arc,. Hence, arcs and arc; are
executable for the current state but arc, and arc, are unexecutable. Consider arc; first. The
label of arcs contains the method top. Execute the method and obtain
(O..incTop.incTop).top=3. The end node of arc; is the node observed. Thus, we obtain an
executable path p, = numPush-arcs-total Push-(arc-total Push)'-arcs-observed for the
given object O,. The relevant observable context corresponding to path p, is oc, =
incTop.incTop.top. Execute O,.0C, and obtain O,.0c, = 3. Hence, 0C, also succeeds
because O,.0c, = O,.0C,.

(ii1) Similarly to step (ii), in order to obtain the other executable path for O,, backtrack to the
node total Push, and consider the other executable output arc arc; (which is a cycle). The
label of arc; contains the method incTop. Execute the method and obtain
(O,.incTop.incTop).incTop = ([4, 2], 1, 0, 0). The end node of arc; is total Push, which has
four output arcs arc,, arcs, arc,, and arc;. The current state, O,.incTop = ([4, 2], 1, 0, 0),
satisfies the conditions of arcs and arc; but not those of arc, and arc,. Hence, arcs and arc;
are executable for the current state but arc, and arc, are unexecutable. Consider arc; first.

9 . .. . . .
Here, as a special case, the partition only contains a unique subdomain.
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The label of arcs contains the method top. Execute the method and obtain
(O,.incTop.incTop.incTop).top = 4. The end node of arc; is the node observed. Thus, we
obtain an executable path p;, = numPush-ar cs-total Push-(ar cs-total Push)*-ar c;-obser ved
for the given object O,. The relevant observable context corresponding to path p; is 0C; =
incTop.incTop.incTop.top.  Execute O,.0c; and obtain O,.oc; = ([1, NIL], 1, 1,

0).incTop.incTop.incTop.top = NIL.  However, as evaluated above, O,.0C; =
O,.incTop.incTop.incTop.top =4. Hence, OC; fails because O,.0C; # O,.0C;. Report —(O, =
O,). Then exit from Algorithm DOE. (]

3.3 Discussionson Algorithm DOE

We discuss in this section a number of important issues on Algorithm DOE including effectiveness,
limitations, and complexity.

3.3.1 Effectiveness (1): Skipping Irrelevant Observable Contexts

By adopting Algorithms DOE, we can skip the testing of many irrelevant cases. Referring to step (d)
in Example 5, none of the method sequences of the form push(i,).push(i,).top or push(i)'.pop*.incTop.top
(where j, k=1, 2, ...) are relevant observable contexts with respect to O, and O,. Hence, we need not
consider them. In fact, none of them reveals the error.

3.3.2 Effectiveness (2): Overcoming the “Missing Path” Problem

A common drawback of white-box techniques is the failure to detect “missing paths”, which are
parts of the specification omitted from the implementation. However, even though Algorithm DOE is a
white-box technique by itself, it can help to expose some of the missing paths when integrated with a
black-box technique, such as our axiom-based approach to generate fundamental pairs as test cases. This
is the main idea behind our proposal to integrate black- and white-box techniques in program testing. In
Example 5, for instance, suppose the branch “if (height>0) return array[height]” is missing from the
code of the method top( ). Then the path “totalPush-arcs-observed” in Figure 3 will be missing. The
originally selected fundamental pair u, = new.push(1).push(2).pop and u, = new.push(1) (see the
paragraph before step (a) of Example 5) cannot reveal this error, since O,.0¢; = NIL = O,.0C; (see step (iii)
of Example 5). However, following Algorithm GFT in our axiom-based approach, this error will be
exposed by another fundamental pair new.push(8).top ~ 8 induced from axiom &, in Example 1, since
new.push(8).top = NIL # 8.

3.3.3 Limitation (1): Infinite Cycles

If a DRG contains cycles, the set of relevant observable contexts is infinite. We can, however, only
choose a finite subset as test cases. Thus some program faults may remain undetected. This is an
inherent limitation of program testing. To select such a finite subset, step (d) of Algorithm DOE uses a
positive integer t; or T to control the number of iterations of the cycles. The determination of tj or T
remains a difficult problem. In the current phase, these integers are supplied manually by user.
Alternatively, we may consider the feasibility of adding further heuristics to the algorithm. For instance,
in step (d)(2) of Example 5, we may find that the required number t; of iterations of the cycle |; =
-total Push-(ar c-total Push)"- is closely related with the number 3 in the branch condition of the method
top, which can be identified in the labels of the output arcs of the node total Push.
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3.3.4 Limitation (2): Fault Masking

A new concern may be raised on our relevant observable context technique. If an observable
context OC itself contains an error, can we determine whether O, = O,? Let U, ~ U, be two equivalent
ground terms and S, and S, be their corresponding method sequences in an implementation. There are
four possible cases:

(a) There exists some error in S, or S, such that —(O, = O,):
(1) The error in oc does not affect the decision whether O, = O,. In this case, our procedure finds
that —(O, = O,) and reports an error.
(2) The error in OC causes an erroneous decision on the observational equivalence of O, and O,. In
this case, our procedure finds that O, = O, and does not report any error.

(b) There is no error in S; and S,, and hence we should have O, = O,:
(1) The error in oc does not affect the decision whether O, = O,. In this case, our procedure finds
that O, = O, and does not report any error.
(2) The error in OC causes an erroneous decision whether O, = O,. In this case, our procedure finds
that —(O, = O,) and reports an error. In spite of the erroneous decision, the error report is
actually correct because there is an implementation error in OC.

It is well-known that program testing does not necessarily guarantee correctness [30, 31]. It is
generally considered acceptable that a test may not reveal all the errors in an implementation. If a test
reports an implementation error, we say that the test is useful. It would be unacceptable, however, if a
test reports an error that does not exist in an implementation.

In the above, the cases (a)(1) and (b)(2) are useful, while the cases (a)(2) and (b)(1) are acceptable.
Hence, our approach does not produce unacceptable cases.

3.3.5 Sze of DRG

The size of a DRG can be represented by a tuple (N, S), where N is the number of nodes in the DRG,
and Sis the number of segments. If the corresponding implementation contains D data members and M
methods, and P is the maximum number of conditions in each method, then N=D+1, and S < D*x M x
P. In the worst case, “directly affects” is a universal relation, which corresponds to S = D*x M x P. In
fact, this worst case very seldomly occurs, if ever. We expect the DRG to be rather simple in most
practical situations, since the DRG models the class level, which is a relatively low level in an
object-oriented system. The number of nodes in the DRG of a class, equivalent to the number of data
members in a given concrete class, is usually small, and “directly affects” is generally far from a
universal relation. For conventional programming, many authors have supplied statistical data to show
that simple program structures are used more often than complex structures [25, 32, 33, 34, 35]. Since
the class level is relatively low in an object-oriented system, the situation is very similar. For example,
we have analyzed statistically the source code of one of our projects entitled FOOD (Functional
Object-Oriented Design) [36]. We have reviewed 16 classes and found that the average numbers of the
data members and methods in each class were 6 and 8, respectively. We have also examined 21 classes
in another case study on bank accounts and found that the average numbers of data members and
methods in each class were 4 and 7, respectively.
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3.3.6 Executability of a Given Path for a Given Object

Note that the concept of executability of a given path for a given object defined in Definition 3.4 is
very different from the concept of feasibility of a path in other flow graph techniques [25]. An infeasible
path is normally defined as a path whose conditions cannot be satisfied by any input value, and is
well-known to be undecidable. However, since executable and unexecutable paths defined in Definition
3.4 arerelated to some object O,, they can be determined from the known values O,.d;, that is, the
values of the data members of the given object O,. Thus, unlike the concept of feasibility, the
executability of a given path for a given object as defined in this paper is decidable.

3.3.7 Complexity of Traversing Executable Paths

Referring to Algorithm DOE and Example 5, let L be the maximum length of all acyclic paths from
any node to the node observed. Let n be the maximum number of Boolean conditions in the output arcs
of any node that are true for the current values of O,.d; and O,.d;. Let T be the ceiling supplied by the user
for the number of iterations of cycles. Since the maximum number of selective branches at any node in a
path is n(T + 1), and the longest path contains L nodes, the maximum number of executable paths is (n(T
+1))". We note that, for a given DRG of the class under test, n is a variable according to the different
objects O, and O,, but L and T are constants. Hence, the complexity of traversing executable paths is
O(n"), in the worst case.

Furthermore, by the same reasoning as that of Section 3.3.5, we do not expect the constant L to be
large in most practical situations.

3.4 An Implementation of Algorithm DOE

As indicated in Section 2.5.4, Algorithm GFT is analogous to that used in the tools described in [9].
Their implementations are also similar, so that we have not included it in the present phase of our
prototyping study. Instead, we have focused our attention on the implementation of Algorithm DOE, and
implemented a prototype on a Pentium/120. In summary, it is a reformed C++ interpreter, constructed by
embedding Algorithm DOE into a C++ interpreter. The prototype consists of five modules: parser.c,
drg.c, pigeonC.h, subLib.c, and pigeonC.c. The modules pigeonC.h and subLib.c contain the definitions
of the main data structures and the interfaces to internal library functions, respectively. The module
parser.c includes a lexical analyzer and a recursive descent parser. It also performs the initialization for
drg.c and other modules. The module drg.c constructs the DRG, traverses executable paths by
backtracking, and generates and executes the corresponding relevant observable contexts for two given
objects. Finally, pigeonC.c serves as the main module of the prototype. It reads the C++ program code
for a given class under test, allocates memory for the program, prescans it, and calls and coordinates
other modules to perform the task.

Note that Algorithm DOE as specified in this paper shows only an abstract summary. It is, in fact,
refined into several sub-algorithms that call many other functions, as described in Chen et al. [37].
Readers may find the following additional notes useful:

3.4.1 Pigeon C++

The prototype has been implemented using Borland C++. It requires the program for a given class
under test is written in a subset of C++ language. We call this subset Pigeon C++, which is an extension
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of Little C [38]. In the present phase, Pigeon C++ contains the following features of C++ language:
parameterized or non-parameterized functions with local variables; recursion; if statements; do-while,
while, and for statements; return statements; integer, character, and array variables; instance variables
of classes; global variables; string constants; some standard library functions; member functions of
classes; +, —, *,/, %, <, >, <=, >=, ==, | =, unary —, unary +; and comments. As a limitation, Pigeon
C++ does not contain pointers in the present phase. The implementation of the relevant observable
context technique with pointers is much more complex and needs further investigation.

3.4.2 Construction and Traversal of a DRG

Suppose an implemented class contains K methods m;, m,, ..., m. Let d, and d, be two data members
in the implemented class. The following is a schematic summary of the tasks required for each method
m; in the construction of the DRG:

(1) Scan the code of m.

(2) Suppose c denotes a constant and p denotes a predicate. When a statement of the form “d, = ¢” or “d,
=1(..., d,, ...)” is found, put the arc_label (true, m) into the table of arc labels, and put the segment [C
or index of d,, index of arc_label (true, m), index of d,] into the list of output arcs. When a
statement such as “if (p) {...; d,=cor f(..., d,, ...); ...} is found, put the arc_label (p, m) into the
table of arc labels, and put the segment [C or index of d,, index of arc_label (p, m), index of d,] into
the list of output arcs. If p=p(..., d;, ...), d; is a data member different from d,, we should also put the
segment [index of d;, index of arc_label (p, m), index of d,] into the list of output arcs. If the
statement also contain “else {...; d,= ¢, or g(..., ds, ...); ...} ”, we must also put the arc_label (—p, m)
into the table of arc labels, and put the segment [C, or index of ds, index of arc_label (—p, m), index
of d,] into the list of output arcs.

For every such statement, the time for performing this task is bounded. Assume that it is no more
than T,. If the method m contains S, such statements, the time for handling these statements is no
more than T,.S;.

(3) Skip the other statements in the method m. The time for skipping such a statement is also bounded.
Assume that it is no more than T,. Since the method my contains (S — S;) such statements, the time
for handling these statements is no more than Tx(S — S;).

Thus, the time t for constructing the DRG of the class satisfies the following formula:
t< zi:1, k(Tl-Sil + Tz(S - Sl)) < 2‘4i:1, k(T-Sl + T(S - 51)) = Zi:1, k(T-S) =Ts

where T=max{T,, T,} and S= S+ S+ ...+ S Hence, the time t for constructing the DRG is O(S).

When traversing the executable paths, if backtracking is necessary, the algorithm traverses the
observer arcs first, followed by the acyclic output arcs, and finally the output arcs for cycles.

Further implementation details, such as the internal representations and the actual procedures for the
construction and traversal of the DRG, can be found in Chen et al. [37].
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3.4.3 Interactionswith Users

The prototype is a semi-automatic tool. In the present phase, it requires the users to supply the
following information manually:

(1) Two equivalent method sequences corresponding to a selected fundamental pair of equivalent
ground terms for the given class under test.

(2) A list of methods in the class that are observers.

(3) Instep (d) of Algorithm DOE, when there are uninstantiated input variables in the oOC just obtained,
we should apply the PDP technique to select values for the input variables. This selection may be
semi-automatic, but is only manual at present.

(4) In the traversal of an executable path in step (d), if a cycle |; is encountered, the user should supply a
ceiling t; for the number of iterations of l;, or determine a global ceiling T allowed by the system for

the number of iterations of any cycle.

If Algorithm GFT is implemented, (1) can be semi-automatic. Even then, we shall reserve the manual
interface as a supplement.

3.4.4 Empirical Results

We have experimented with Examples 4 and 5 on the prototype. The experimental result of
Example 5 (on Pentium/120), as shown in the following table, is the same as predicted.

Global ceiling Number of Number of | Total run time | Run time for the
supplied by the user | observable contexts | error-revealing for all first observable
for the number of generated by the observable observable context that
iterations of any cycle prototype contexts contexts reports the error

0 2 0 0.093407 s -
1 6 0 0.164835 s -
2 12 3 0.283516 s 0.108791 s
3 20 5 0.437363 s 0.107692 s
4 30 5 0.634066 s 0.129670 s

Here, the run time includes the time for generating the two objects under test, traversing the
executable paths for the objects in the DRG, constructing observable contexts from the executable paths,
executing the observable contexts, and reporting the detected error, if any. However, it does not include
the time for constructing the DRG. In Example 5, the time for constructing the DRG is 0.043297
seconds.

Suppose that the user indicates a global ceiling of 3 iterations. From the above table, we know there
are 20 observable contexts to be generated in total. The run time for executing all of them would be
0.437363 seconds. In fact, Algorithm DOE does not test all the 20 observable contexts. When the first
observable context reporting an error is encountered, the algorithm will exit, ignoring other observable
contexts. Hence, the actual run time is found to be 0.107692 seconds.
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Some trouble was encountered in the experiment on Example 4, since “#define SZE 100” was too
large for generating test sets of reasonable sizes. The allowable maximum size of array in the experiment
on this example is 50. After changing the SZE to 50, the experiment succeeds in reporting the error, but
the run time on Pentium/120 is 13.571429 seconds.

We also wrote a correct C++ program for the specification in Example 1, embedded common errors
into the program, such as writing height > 0 as height < 0 or height > 2, and then experimented with them
on the prototype. The experimental results showed that all such common errors could be exposed by the
prototype. As an illustration, the empirical results for the erroneous implementation with height > 2 are
listed as follows:

Global ceiling Number of Number of Total run time | Run time for the
supplied by the user observable error-revealing for all first observable
for the number of contexts generated observable observable context that
iterations of any cycle | by the prototype contexts contexts reports the error
0 5 3 0.092308 s 0.041758 s
1 14 6 0.226374 s 0.041758 s
2 24 7 0.404396 s 0.041758 s
3 34 7 0.602198 s 0.041758 s
4 44 7 0.836264 s 0.041758 s

The time for constructing the DRG of this example is 0.024835 seconds.

4. RELATED WORK

There are two ways to use algebraic specifications in software testing. One was originally presented by
Jalote [39], and extended by Frankl and Doong [11, 22, 23]. The other was initially proposed by Gannon
et al. [40], and extended by Gaudel and others [9, 10, 21].

The former considers the axioms as rewriting rules, suggests to choose test cases from all legal
combinations of operations (or terms), and derives their equivalent terms by means of the rewriting rules.
The latter selects test cases from “the set of ground instances of the axioms obtained by replacing each
variable by all ground terms of the right sort” under well-defined hypotheses [10]. Our Theorem 2
reveals an essential relationship between these two approaches.

Our approach is motivated by the ASTOOT black-box approach of Frankl and Doong and the

testing theory of Gaudel and others. For completeness, we shall also compare our approach with the
white-box dataflow-based approach of Parrish and others.
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4.1 TheWork of Frankl and Doong

In general, there are a number of advantages in Frankl and Doong’s functional approach [11, 22, 23]

to test object-oriented programs. Using algebraic specifications, it helps to solve the oracle problem. By
taking sequences of operations as test cases, instead of individual operations, this approach does not
depend on a predefined calling method but on a suite of messages passing among objects. This concept is
especially suitable for object-oriented programming. It can support an integrated set of semi-automatic
tools covering test case generation, test driver generation, test execution, and test checking.

Our approach hopefully inherits the above advantages. However, there are a few substantial

distinctions between Doong and Frankl’s approach and ours:

(1

2)

3)

Frankl and Doong define two terms U, and U, to be equivalent “if we can use the axioms as rewrite
rules to transform u, to U,” [11]. There is a problem in this definition. Consider, for example, two
terms new.push(1).push(2).pop and new.push(3).pop.push(1) for the specification of the class of
integer stacks in Example 1. They produce observationally equivalent results when implemented
correctly. However, they cannot be transformed from one to the other by left-to-right rewriting rules,
and hence are not equivalent according to this definition. As a result, Frankl and Doong’s approach
cannot derive this kind of test cases. Our Definition 2.6 avoids this problem. However, as a
supplement, Doong and Frankl’s approach allows the user to add manually generated test cases that
may remedy such kinds of situations.

Doong and Frankl’s approach requires the user to select a finite number of original (operation)
sequences from the set of terms, which is infinite in general. They offer the following tentative
guidelines to guide the selection and generation of test cases: “Use (at least some) long original
sequences, with a variety of relative frequencies of different constructors and transformers” and “If
the specification has conditional axioms (with comparison operators), choose a variety of test cases
for each original sequence, with various parameters chosen over a large range. Equivalently, choose
a variety of different paths through the ADT tree arising from each original sequence.” [11] These
guidelines are supported by two empirical case studies.

The selection domain of our “fundamental pair” strategy is much smaller than that of the set of
equivalent ground terms, but the coverage of testing fundamental pairs remains the same. Using our
strategy, two of Doong and Frankl’s tools, the compiler and simplifier, can be replaced by a
generator that induces fundamental pairs as test cases directly from the two sides of each axiom.
Our strategy is based on mathematical theorems, thus more precise.

Frankl and Doong give an “approximate check” [11] for object observational equivalence, known as
the EQN method, consisting of two techniques. One produces a recursive version of egn from
specification. The other is at the “implementation level”. The former requires the analyst to supply
a special axiom egn to the specification of each class to define equivalence of two objects in the
class. Different egn axioms are attached to different classes. The approach also requires the
designer and programmer to implement a special recursive method egn for the respective egn axiom
in each class. If one of the attached axioms for egn, or its implementation, is problematic, then the
test report may show an error even if the original class is implemented correctly. Having said that, if
we consider the egn function to be a part of the class under test, the above situation is acceptable.
The technique at the “implementation level” suggests to use white-box information about how the
data type is represented and manipulated in the implementation. “For example, knowing that a
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FIFO queue is represented as a linked list, one can traverse the two lists comparing the elements”. If
the corresponding elements of the two lists are equal, we can indeed conclude that the two queues
are observationally equivalent. If some corresponding elements of the two lists are not equal,
however, we cannot immediately conclude that the two queues are observationally not equivalent,
since the object-oriented paradigm allows encapsulation and the hiding of internal information. As
discussed by Frankl and Doong, there are some advantages and disadvantages of the two techniques.
As an option, our relevant observable context technique checks observational equivalence of objects
using a different idea, which concentrates on checking relevant observable contexts only, skipping
irrelevant observable contexts.

4.2 TheWork of Gaudel, Bernot, Bouge, Choquet, Dauchy, Fribourg, and Marre

Bernot, Gaudel, and Marre [21] have proposed a general theory for software testing based on
algebraic specifications. This theory includes several hypotheses such as a regularity hypothesis and a
uniformity hypothesis for selecting test cases, and some oracle hypotheses to constrain the oracle
problem. These hypotheses are important from a theoretical point of view, because they formalize
common test practices and express the gap between testing and correctness proving. In our approach, we
combine our strategy with the regularity hypothesis and the decomposition technique of uniform
subdomains to select a finite set of fundamental pairs as test cases.

Furthermore, the oracle hypothesis and the related counterexample in [21] have inspired us to
propose the relevant observable context technique.

An important distinction between our approach and the work of Gaudel and others is that the latter
replaces all the variables in the axioms by ground terms according to the regularity hypothesis [10],
whereas our approach replaces them by normal forms according to Theorem 2. The benefit of replacing
variables by normal forms, rather than by general ground terms, has been described in Section 2.5.4.

4.3 TheWork of Parrish, Borie, and Cordes

Parrish, Borie, and Cordes [15] proposed a white-box dataflow-based approach to testing classes.
Their approach uses a class graph, which is a collection of <N, E, D, U, I>, where N is the set of nodes, E
is the set of edges. A node represents an operation. An edge from a node A to a node B means that it is
permissible to invoke the operation B after the operation A. D denotes the set of definitions of data. U
denotes the set of uses of data. | refers to the set of infeasible subpaths. N, E, D, and U are obtained from
the class interface in the implementation. The purpose of introducing the concept of | is to allow us to
eliminate sequences that are inappropriate or impossible to test. For this purpose, the authors set up a
weak class graph and the corresponding weak coverage criteria, and added two further restrictions.
They then proved that a minimum-length sequence of operations which satisfies weak node coverage
criteria, weak branch coverage criteria, weak definition coverage criteria, or weak use coverage criteria
could be found in polynomial time. Hence, the approach can be automated efficiently. However, as
admitted by the authors, these weak criteria and the two additional restrictions substantially weaken the
degree of testing demanded, and reduce the significance of their results.

We can compare Parrish’s class graph approach and our DRG approach as follows:
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(a) Both of these two approaches are white-box techniques.

(b) The class graph approach only deals with syntax problems. However, the DRG approach is used to
determine whether two given objects are observational equivalent, which is a semantics problem.

(c) Inaclass graph, a node represents an operation and an edge (0p,, 0Op,) denotes that the concatenation
of two operations, 0p,.0p,, is legal in syntax. On the other hand, in a DRG, a node represents a data
member and an arc (d,, d,) denotes that the data member d, directly affects data member d,.

(d) In DRGs, the counterpart to the weak branch coverage criteria in the class graph approach ensures
each cycle is traversed only once. In general, this is very insufficient for the purpose of deciding
whether two given objects are observationally equivalent. See Example 5 and the table in Section
3.4.4.

(e) Asindicated by [15], the class graph approach can also be based on the syntax section of algebraic
specifications. Hence, this approach can be considered as an optional technique to select normal
forms in step (a) of Algorithm GFT without a choice on the positive integer k.

5. CONCLUSION

In this paper, we define a fundamental pair as a pair of equivalent ground terms formed by replacing
all the variables on both sides of an axiom by normal forms. We prove that a complete implementation of
a canonical specification is consistent with respect to all equivalent ground terms if and only if it is
consistent with respect to all fundamental pairs. In other words, the testing coverage of fundamental
pairs as good as that of all equivalent ground terms, and hence we need only concentrate on the testing of
fundamental pairs. Our strategy is based on mathematical theorems. Combining this strategy with the
regularity hypothesis and the decomposition technique of uniform subdomains, we construct an
algorithm for selecting a finite set of fundamental pairs as test cases.

On the other hand, we prove that the observational equivalence of objects cannot be determined
using a finite set of observable contexts derived from any black-box technique. Instead, we propose a
relevant observable context approach, which is a heuristic white-box technique, and have implemented a
prototype for it.

Many authors have indicated that program testing cannot thoroughly expose all the errors in the
program under consideration [30, 31]. In this sense, testing in general is an incomplete and undecidable
problem. Our approach cannot avoid this inherent limitation of testing. We decompose the testing
problem into several sub-tasks, separate the decidable sub-tasks from the undecidable or difficult ones,
and put them into a unified methodological framework via two algorithms. The undecidable or difficult
sub-tasks are analyzed separately.

As future work, we shall investigate into the selection of nonequivalent terms as test cases, and the
testing of interactions among groups of cooperating classes at the cluster level. We shall also consider
the following problems: Is it feasible to abstract heuristic information from program code to alleviate the
problems of deciding on the length of normal forms in step (a) of Algorithm GFT, and determining the
number of iterations of cycles in step (d) of Algorithm DOE? How do we extend Pigeon C++ and its
implementation with the relevant observable context technique to include aliasing and pointers? How do
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we use compiler techniques instead of interpreter techniques to improve the efficiency of the prototype?
How can we make the prototype more practical and user-friendly?
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