<table>
<thead>
<tr>
<th>Title</th>
<th>Kinetics of thermal oxidation of 6H silicon carbide in oxygen plus trichloroethylene</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Yang, BL; Lin, LM; Lo, HB; Lai, PT; Chan, CL</td>
</tr>
<tr>
<td>Citation</td>
<td>Journal Of The Electrochemical Society, 2005, v. 152 n. 6, p. G441-G444</td>
</tr>
<tr>
<td>Issued Date</td>
<td>2005</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/48386</td>
</tr>
<tr>
<td>Rights</td>
<td>Journal of Electrochemical Society. Copyright © Electrochemical Society, Inc.; This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.; Reproduced with permission from Journal of Electrochemical Society, 2005, v. 152 n. 6, p. G441-G444. Copyright 2005, The Electrochemical Society. Permission is not needed if figures and/or tables from one ECS publication will be reused in another forthcoming ECS publication</td>
</tr>
</tbody>
</table>
In recent years, SiC has been an attractive wide-bandgap semiconductor material for high-temperature, high-frequency, and high-power applications. SiC-based metal oxide semiconductor field-effect transistors (MOSFETS) and other MOS-related structures are promising devices for these purposes. Because the high-quality gate insulator plays a critical role in MOSFETS, many researchers have studied the kinetics of SiC oxidation and the effects of oxidation method on the performance of SiC oxide films. The methods of wet oxidation, dry oxidation, NO oxidation, and NH₃ nitridation, commonly used for silicon, have been investigated for SiC. However, nitric/hydroxylamine (TCE) oxidation is also a popular method for oxidizing silicon and has been shown to improve the performance and electrical properties of the oxide film.

The TCE oxidation often appears to be more effective for SiC, although preliminary work demonstrated that it can also enhance the quality of the SiO₂/SiC interfacial oxide and reduce the thermal budget. Therefore, this work focuses on the behaviors and kinetics of SiC thermal oxidation in the presence of TCE.

Experimental

The n-type (001) Si-face 6H-SiC wafers used in this investigation were purchased from Cree Inc. The wafers had a 5 μm epitaxial layer grown on a heavily doped substrate. The doping concentration of the epitaxial layer was 4 × 10^{17} cm^{-3}. The wafers were cleaned using the conventional RCA method followed by a 1 min dip in 5% HF solution and then loaded into an oxidation furnace. The samples were divided into three temperature groups: (1000, 1100, and 1150°C). The samples of each temperature group were oxidized in dry O₂ and TCE for 30, 90, 150, 210, and 330 min, respectively. The ratio of TCE to dry O₂ was 0.001, 0.01, 0.05, 0.1, and 0.2. The TCE vapor was added to the oxidizing ambient by a gas controller, which consisted of a dry oxygen switch and a dry nitrogen switch. The amount of TCE was controlled by varying the flow rate of the dry oxygen through a bubbler filled with purified nitrogen to ensure steady oxidation conditions. After the wafers were oxidized, their oxide thicknesses and refractive indices were measured by a variable angle spectroscopic ellipsometer series ellipsoid of J. A. Woollam Co., Inc. with an error of 0.5% for the oxide thicknesses.

Table I shows the refractive indices of the samples at a wavelength of 546 nm. The refractive indices agree with the theoretical

\[n^2 = \frac{2}{1 + 1.33} \]

\[n = \sqrt{\frac{2}{1 + 1.33}} \]

where n is the oxide thickness and t the oxidation time. The quantity r accounts for the presence of an oxide layer before the oxidation, and A and B are constants.

For short oxidation times, Eq. 1 can be approximated by

\[x = B/A \times (1 + t) \]

B/A is called the linear rate constant and is proportional to the chemical reaction rate at the wafer surface. The oxide growth rate is constant and independent of the oxide thickness because the process is limited by the surface reaction of SiC only. For long oxidation times, the oxide thickness is approximately governed by

\[x = B t \]

where B is called the parabolic rate constant. Because the diffusion of oxidizing species through the oxide layer becomes the limiting process, the growth rate is controlled by the oxide thickness.

Figure 1 shows the dependence of oxide thickness on oxidation time for different TCE ratios, 1000, 1100, and 1150°C. For the same temperature and time, the oxide thickness for oxidation with TCE is much larger than that without TCE. Moreover, for different TCE ratios, the oxidation rate is enhanced by different extents. This is discussed later. However, the thermal oxidations with different TCE ratios all have a similar behavior to that of dry oxygen oxidation, and thus the oxide growth of SiC in TCE and dry O₂ also shows the linear-parabolic oxidation law given in Eq. 1.

Assuming that the rate constants obey Arrhenius's law, B/A and B can be expressed as

\[\frac{B/A}{C_1} = \exp(-E_{A}/RT) \]

where C_1 and C_2 are pre-exponential constants. C_1 depends on the oxidation ambient and substrate orientation, whereas C_2 depends only on the ambient. E_{A} is the Boltzmann constant, E_{A} and E_{B} are the activation energies for B/A and B, respectively.
Table I. Refractive indices of samples at wavelength of 540 nm.

<table>
<thead>
<tr>
<th>Oxidation temperature (°C)</th>
<th>Refractive index for different oxidation times</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(TCE/N₂)O₂ 30 min 90 min 150 min 210 min 330 min</td>
</tr>
<tr>
<td>1000</td>
<td>0 1.46 1.48 1.48 1.48 1.48</td>
</tr>
<tr>
<td>1100</td>
<td>0 1.48 1.46 1.47 1.47 1.47</td>
</tr>
<tr>
<td>1150</td>
<td>0 1.48 1.47 1.47 1.47 1.47</td>
</tr>
<tr>
<td></td>
<td>0.2 1.48 1.46 1.46 1.46 1.46</td>
</tr>
</tbody>
</table>

Göltz et al. pointed out that for the Si-face thermal oxidation in pure dry O₂ ambient, after an initial accelerated oxidation, the oxide growth follows a linear law for up to 300 h in the temperature range of 1050-1200°C. Therefore, assuming that the oxidation of all the samples follows the linear law in this investigation, E₁/₂ can be extracted from the slope of the Arrhenius plot ln(B/A) vs. 1/T. For the oxidation in pure dry O₂, E₁/₂ is 1.02 eV, which is consistent with the result reported in Ref. 23. E₁/₂ for oxidation with a TCE ratio in the range of 0.001-0.2 is 1.04-1.05 eV. Although E₁/₂ is slightly increased by TCE, B/A is increased due to the larger value of C¹ induced by TCE.

Effects of TCE ratio on oxidation rate.—Figure 2 shows the dependence of the oxide thickness on the TCE ratio for different oxidation temperatures and times in SiC oxidation. When the TCE ratio is less than 0.05, the oxide thickness increases quickly with the ratio. For larger TCE ratios, it tends to saturate.

To clearly analyze the effect of TCE ratio on the oxidation of SiC, the oxidation rates of all the samples for different temperatures and times are calculated and plotted in Fig. 3. The oxidation rate strongly depends on the TCE ratio, in addition to oxidation temperature and time. For the shorter oxidation time (30 min), the oxidation rate increases quickly with the TCE ratio, and becomes slower for larger ratios. For longer oxidation times (150 and 330 min), the oxidation rate increases with the TCE ratio for a ratio less than 0.05 and tends to saturate gradually for ratios larger than 0.05. Furthermore, observe that, under the same temperature, the oxidation rate for the shorter oxidation time is higher than that for the longer oxidation time, supporting the linear-parabolic oxidation law.

The increase of oxidation rate induced by TCE depends on the TCE ratio, oxidation temperature, and time. Based on the experimental data, it is calculated to be between 2.7 and 67% for a TCE ratio of 0.001-0.2 and a temperature of 1000-1150°C. Therefore, to obtain a higher oxidation rate, the TCE ratio for SiC thermal oxidation should be within 0.01-0.1 for 1000-1150°C. However, the effects of TCE ratio on the electrical properties of the oxide films are another concern, and must be considered in determining the optimal oxidation conditions.

Oxidation model.—The process of SiC thermal oxidation can be divided into two steps. First, the oxidation of the SiC surface occurs through the insertion of an oxygen atom into the chemical bond of a SiC molecule. This oxygen insertion creates an Si — O — C species, which then splits into a CO molecule and an Si atom with a dangling bond. The CO molecule then diffuses through the oxide to the oxide surface and reacts with an oxygen atom, creating CO₂. Second, the Si atom reacts with oxygen atoms, which are at the SiC surface in the initial oxidation or diffuse through the oxide to the oxide-SiC interface, forming SiO₂. These two processes can be summarized by the following reactions:

SiC + O → CO + Si + O₂

Because the SiC thermal oxidation must go through the first step, and the bond breakage to extract CO from the SiC subsurface is slow, SiC oxidation is slower than Si oxidation under the same process conditions. The fact that SiC oxidation finally involves an Si oxidation step provides an explanation for SiC oxidation also observing the linear-parabolic oxidation law as Si oxidation.

For the TCE oxidation in this work, TCE with a chemical composition of C₂H₅Cl₂ can react with O₂.
Figure 2. Dependence of oxide thickness on TCE ratio and temperature for (a) 30, (b) 150, and (c) 330 min.

4C₂H₅Cl₃ + 9O₂ → 8CO₂ + 2H₂O + 6Cl₂ [8]

2H₂O + 2Cl₂ ⇄ 4HCl + O₂ [9]

It has been reported that in the silicon thermal oxidation with TCE, the by-products H₂O and Cl₂ can increase the silicon oxidation rate. The addition of water from 0 to 2000 ppm to the dry O₂ ambient can significantly enhance the oxidation rate. Also, for an additive chlorine concentration of 0.16-0.87%, a relatively large increase in the oxidation rate has been observed. Therefore, one can suggest that in the SiC oxidation with TCE, the by-products (H₂O and Cl₂) of the reaction between TCE and O₂ can also speed up the second step of the oxidation process. As a result, Fig. 3 shows that the oxidation rate with TCE is higher than that with pure dry O₂. Because the equilibrium concentrations of H₂O and Cl₂ in the TCE/O₂ system depend on the system temperature and TCE ratio, the increase of oxidation rate varies with the TCE ratio, oxidation temperature, and time. However, the SiC oxidation with TCE is a complex chemical process; thus, its detailed physical mechanisms for the oxidation kinetics still require further investigations.

Conclusion

The behaviors of TCE thermal oxidation of 6H-SiC have been investigated. Experimental results show that the oxide growth under different TCE ratios follows the linear-parabolic oxidation law as in silicon oxidation. The oxidation rate with TCE is much higher than that with dry O₂ only and depends strongly on the TCE ratio, in addition to oxidation temperature and time. The increase of oxidation rate induced by TCE is between 2.7 and 67% for a TCE ratio of 0.001-0.2 and a temperature of 1000-1150°C. In general, the oxidation rate increases quickly with the TCE ratio for TCE ratio less than 0.05, and then slowly saturates for larger ratios. The activation energy Eₐ of the oxidation with TCE ratio in the range of 0.001-0.2 is 1.04-1.05 eV. Moreover, a two-step model is proposed for the TCE oxidation of SiC. The model points out that the by-products (H₂O and Cl₂) of the reaction between TCE and O₂ can speed up the thermal oxidation; thus, the oxidation rate strongly depends on the TCE ratio.

Acknowledgments

This work is financially supported by the RGC of HKSAR, China (project no. HKU 7059/02E).

Hong Kong University assisted in meeting the publication costs of this article.

References