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ABSTRACT

The energies and resonance widths of single doped quantum wells consisting of Al-
GahAs/GaAs with rectangular and annealing induced diffusion modified shapes are calcu-
lated under an, uniform electric field using the stabilization method. The electronic struc-
ture is calculated without an electric field in the finite temperature density functional
theory with exchange-correlation potential treated in the local density approximation.
Our scheme for solving the Schrédinger and Poisson equations is based on the Fourier
series method. The electric field is added to the self-consistent potential and energies are
obtained as a function of the combined width of the well and barriers. This yields us
the stabilization graph from which the energies and resonance widths at different field
stremgths are extracted using the Fermi Golden rule.

INTRODUCTION

There has been growing interest in using quantum wells (QWs) for optoelectronic
device applications such as quantum well lasers, infrared detectors, wave guides and mod-
ulation doped field effect transistorsh 2. The details of the electronic structures of the
subband levels under the uniform electric field are necessary to understand the device per-
formance. In an undoped sample the electronic structure of the subbands are described
in the single particle picture where electron wave functions and the energy levels are com-
pletely decided by the barrier height and the well width. In a modulation doped QW
the electrons flow from the barrier region into the well to bring the system to equilib-
rium. As a result of the higher density of electrons in the well, the Coulomb interaction
between electrons becomes very important needing a complete many-body approach to
this problem. In this case the subband energies and wave functions are dependent on the
two-dimensional electron density and temperature.

Density functional theory (DFT) is a popular scheme for solving many-body prob-
lem. In this method the ground-state property of interacting electrons is determined by
its charge density®. The many-body effects are taken in the exchange-correlation poten-
tial treated in the local density approximation (LDA). The single particle energies and
wavefunctions are calculated using self-consistent Kohn-Sham equations®. This method
has been applied to get energies and wave functions in the modulation doped rectangular
QW?. However, the effect of the electric field on the electron subband energies and wave
functions has not been addressed. A suitable method of extracting the mean tunneling
times of the electrons under the applied electric field is not yet formulated. This paper
attempts to use Fourier series technique® for the calculation of the energies, wave functions
and mean tunneling lifetimes in the modulation doped rectangular and annealing induced
diffusion modified QWs. For simplicity the conduction band shift due to the strain effect,
nonparabolicity, depolarisation and exciton shifts! are not considered in this work.

THEORY

The self-consistent Kohn-Sham equation for calculating the energy E, and wave func-
tion ¥, (z) within the effective mass approximation in the Rydberg unit (h=1, me=0.5
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and e®=2) is given by
——~*——~——-—————+Ve”(z)+eF~ U,(z) = E,¥n(z) (1)

The effective potential (V.;y) is given by
Vers(2) = Vow (2) + Vu(z) + Vxe(2) 2)

where Vow, Vi and Vx¢ are the quantum confined potential, the Hartree potential and
the exchange-correlation potential respectively. The Hartree potential is obtained from
the Poisson equation

2 () Vi (2) = amen(2) (3)
where ¢,(z) is the relative dielectric constant along the z-direction and p(z) = [n(z) —

N3 (2)] with n(z) and N (#) as the carrier density and the ionised dopant density respec-
tively. The carrier charge density at some finite temperature is given as
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where p is the chemical potential. Integrating Eqn. (3) twice we obtain the Hartree

potential as
2 ‘ dz’ : " "
Vi(z) = 4re = p(z")dz (5)
—o0 br -0

The boundary condition in this equation is that Vy(too) = 0. The zero temperature
exchange-correlation potential (V$.) in the LDA using parametrised form of Hedin and

Lundqvist® is given by

9 1% 1 0.7734 21
0 ) —
VXC(&) = -2 [Zﬁ] - [1 + 21 Ts (1 + —7'_>:’ Ry (6)

s s

where ry = [3/4%(18(z)n(z)]1/37 ao(z) = e (z)/mzi(z) and Ry = m}(z)/e(z) with m} =
m” /mg The temperature is incorporated into the V. (z) through”
Vxelz ) ‘/,XO'C(Z)v v <£0.15 (7)

EARY A V3a(z) [1+(a1r +byrs F e e (@il 407 + )] 0.15 < v < 12 k
where v = kgT/u, a;=-0.00388, b;=0.04544, ¢;=-0.443, a]=1.5460, b7=0.7023,
e =2.04258 and d =1.80518. The chemical potential(y) is obtained from the charge neu-
trality and depletion approximation conditions?.

We have adopted the Fourier series method to solve the Kohn-Sham equation to
obtain energies and envelope functions. Since the envelope function ¥,(z) is a continuous
function of z, it can be expanded into a truncated Fourier series of the form

(z) ch exp(]—ﬂiz> (8)
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where j = v/—1 and d is the total length obtained by combining the width of the QW and
barriers. Similarly Vesf(z) and 1/m*(z) and eF'z are expanded in terms of the Fourier
Series with coefficients V.zs(k), m(k) and f(k) respectively. In terms of these coefficients
the Eqn.(1) is derived as

2 2
> [—% (%) m(k —4)ik 4+ Vess(k — i) + f(k — )| Ca(i) = EnCnl(k) (9)

i

The calculation of the chemical potential under the applied electric field is a complex
problem to solve. It involves detailed knowledge of the field induced drift current and the
tunneling cusrent at the applied bias. For simplicity we have solved the DFT without
electric field to obtain the quantum confined well shape and have then applied electric
field on the well to study the Stark shift and resonance width.

The calculation of the energy shift and resonance width in a rectangular QW under
uniform electric field by the stabilization method was developed by Borondo and Sanchez-
Dehesa®. In the QW the energy levels calculated and plotted as a function of d show
avoided crossings between stable and unstable eigenvalues at some points. The stable
eigenvalues correspond to the energies representing the resonance position and the unstable
eigenvalues correspond to the discretized continuum states. As an example, in Fig. 1 we
present the stabilisation graph (SG) for a rectangular well at 100 kV/cm.
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This graph presents avoided crossings between stable and unstable eigenvalues at
different d. for both ground state and first excited state energy levels. In the standard
Fermi-golden-rule-type formnula the resonance width (T)®° is given by

[ = 2rp(E, )V} (10)

where the interaction term V, is taken to be half the energy splitting at the pseudo-crossing
(d.) of the SG and p(E,) is the density of the continuum states. If Ey is the discretized
continuum eigenvalue interacting with the stable one, a good approximation for p(LEn)
- 8.9

is 5

En+1 - En—l
To demonstrate its potentiality of the SG technique. We have applied it to two different
types of well structures, namely the rectangular and the diffusion modified QW structures.

p(En) = (11)



RESULTS AND DISCUSSIONS
I. Rectangular Single Quantum Well
The potential profile for a rectangular QW is given by

v ={o" |11 a2

where Vo = Borj(Ey(z) — E4(0)) with Ey(z) and F,(0) the band gaps of Al,Ga;_,As
and GaAs respectively. Bosy 1s the band offset usually taken to be 0.7 and L is the width
of the rectangular QW. The expressions for E,(z) and m*(z) have been given in our
earlier work®. The width of the well is taken to be 1004 and z = 0.3 which corresponds
to the barrier height of 295.6 meV. This well contains three bound states corresponding
to energies of 32.07 meV, 126.51 meV and 267.88 meV. The barrier is doped with Si
donors with binding energy 20 meV and concentration 2.5x10*%m™3. We have taken five
eiteration to get full convergence in energy eigenvalues. The effective potential V.; with
and without the effect of the manybody terms is shown in Fig. 2. The chemical potential
is found to be 107 meV. The concentration of the ionised donors corresponding to this
chémical potential is found to be 9.3x10%cm=3. The energy levels are 54.59 meV and
133.44 meV.
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The effect of the electric field on the energy levels with their resonance widths are
given in Table 1.

Table I

Comparison of the energies and resonance widths with and without doping in a single

rectangular QW. Energies with and without doping are denoted as EXY and EY respec-
tively. Similarly the resonance widths with and without doping are denoted as I'¥) and

() respectively.

F E™) T g (@
(kV/em) (eV) (eV) (eV) (eV)

[ 50 0.03167 1.252x10722 0.05248 1.308x10°13
100 0.02718 1.934x10~11 0.04631 1.482x10~8
150 0.02010 2.869x10™7 0.03708 1.502x107°
200 0.01075 1.278x1075 0.02581 3.653x1073
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From this table it is clear that energy levels and resonance widths are increased in
the doped well compared to the undoped well. This happens because the barrier height is
lowered as a result of the modulation doping in the rectangular QW.

II. Diffusion Modified Quantum Well

When the rectangular QW is subject to annealing above 800°C, intermixing starts at
the heterojunction and the formation of the Ga vacancy induces Al atoms to diffuse into
the GaAs layer from the AlGaAs '°. The interdiffusion process is therefore characterized by
the Al diffusion length (Ly = +/Dt) which can be obtained from the diffusion constant (D)
at the annealing temperature and the annealing time (¢). Taking the diffusion constant to
be isotropic, the position dependent Al concentration from the diffusion equation is found

aSlO’ll
w(z):x{l—%{erf <L4sz“’> terf <L4_Lj>H (13)

where er f is the error function’? and L is the width of the rectangular QW. The potential
profile is expressed as

V(2) = Boss [Eg(w(z)) = Eg(w(0))] (14)

We have taken z = 0.3, L=100A. The binding energy and concentration of Si dopants
are the same in this case as in the rectangular QW. The diffusion length Lg=20A. The
chemical potential and the concentration of ionised donors calculated in the doped QW
are found to be 52 meV and 4.17x10' c¢m™3 respectively. The potential profiles with and

without doping are shown in Fig. 3.
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The modulation doping has increased the effective width of the well and decreased
the barrier height. The well before doping contains two energy levels at 55.63 meV and
160.46 meV. Since the barrier height is decreased in the doped well there is a single level
in the well at 60.89 meV. The ground state energies and resonance widths for different
field intensities are presented in Table II.
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Table II
Comparison of the energies and resonance widths for a single diffusion modified quan-
tum well with and without doping. The notations are the same as in Table L

F (w) T(w) Q) T
(kV/cm) (eV) (eV) (eV) (eV)

25 0.028176 2.214x10~ 1 0.060518 8.754x10713
50 0.027180 1.934x10713 0.059392 1.928x107 1!
i) 0.020100 2.869x10°7 0.057545 6.639%x1078

As in the rectangular QW the energy levels and resonance widths are increased in
the doped well compared to the undoped well. This happens because the barrier height is
lowered as a result of the modulation doping.

CONCLUSION

In the present work we have extended the Fourier series method to calculate both
the ground state quasi-bound energy levels with their resonance widths in the rectangular
and diffusion modified modulation doped QWs. Although we have studied only two types
of QW “structures, this method can be applied to single, double and multiple QWs with
arbitrary potential profiles. However, we would like to mention that this method cannot
be used to study energies and lifetimes in QWs under a high electric field as the SG in
this case cannot be obtained. We have not addressed the nature of quasi-Fermi level in
the presence of the applied electric field in this work. The absorption coefficient in doped
QWs under an applied electric field needs the temperature dependence of the Fermi level,
wavefunctions, energies and mean tunneling lifetimes. Therefore our present work will be
useful in calculating the absorption coeflicients accurately in QW structures.
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