
Distributed and Scalable XML Document Processing Architecture
for E-Commerce Systems

David Cheung, S.D. Lee, Thomas Lee, William Song, C.J. Tan

E-Business Technology Institute,
The University of Hong Kong,

Hong Kong

{dcheung, sdlee, ytlee, wsong, ctan}@eti.hku.hk

Abstract
XML has become a very important emerging standard
for E-commerce because of its flexibility and
universality. Many software designers are actively
developing new systems to handle information in XML
formats. We propose a generic architecture for
processing XML. We have designed an XML processing
system using the latest technologies such as XML, XSLT,
HTTP and Java Servlets. Our design is very generic,
flexible, scalable, extensible and also suitable for
distributed network environments. A main application of
the architecture and the system is to support data
exchange in electronic commerce systems.

1 Introduction

Extensible Markup Language (XML) [1] is a highly
flexible format for storing and exchanging data. It has
recently received much attention from Web application
developers, especially for E-commerce applications [3].
Because XML is a machine-architecture independent
format, it facilitates the exchange of data between
corporations, which are probably using very different
internal formats for the data. As a recommendation of
the World-Wide-Web Consortium (W3C) [3], XML is
an open standard, which means that any developer can
support XML in their products. So, a corporation using
XML for data storage and exchange is not locked into a
particular software vendor which uses proprietary
formats for data storage and interchange. It can easily
exchange data with any other corporation using XML.
Whom, it can partner with, is no longer selected by the
software vendor implementing the proprietary formats.

To enjoy the advantages brought about by XML, a
system capable of handling XML files and messages is
needed. Currently, many software vendors are actively
adding XML capabilities, of varying degrees, to their
products. A common approach is to add specially
designed modules or enhancements to existing, well-
established systems. The program code so developed is

usually highly specialized, and hence difficult to reuse in other
systems or even other parts of the system. In this paper, we
take a different approach. We have designed a generic XML
processing architecture. The heart of the architecture is a
Document Integrator which determines how input XML
documents are processed. The processing is based on high-
level scripts written by the application programmers. Based on
the scripts, the Integrator processes an XML document by
passing it to different Transformation Modules. Each such
module is designed for handling a special type of task. It
processes the XML passed to it by the Integrator, and then
returns a result document, also in XML format, to the
Integrator. The Integrator then processes the resulting
document, and invokes other Modules as necessary. Finally,
the Integrator returns the final result to the caller as an XML
document.

Under this architecture, the capabilities of the XML
processing system can be extended by designing new
Transformation Modules. Existing Modules and the
Document Integrator needs no modification. Thus the design
is flexible and extensible.

2 Design objectives

Our design architecture aims at achieving the following
objectives:
1. Generality—The system could be easily adapted for the

most common XML processing requirements without
major modifications.

2. Modularization—Each module is responsible for
providing one category of capabilities. This facilitates
project management and software maintenance.

3. Distribution—The system is divided into various loosely-
coupled modules. The different modules can then be run
on different computers to improve processing power.

4. Extensibility—New capabilities can be introduced by
adding new modules. The core parts of the system dos
not need modification when new capabilities are added.

5. Flexibility—Processing logic is specified in script-like
file instead of being hard-coded.

6. Reliability.
7. Robustness.

0-7695-0610-0/00 $10.00 � 2000 IEEE

3 System Architecture

The architecture of our Generic XML Document
Processing System is depicted in the following diagram.

The system contains a Document Integrator as well as
server Transformation Modules (TM).

3.1 The Document Integrator (DI)

The Document Integrator is the core of this
architecture. It is responsible for receiving input XML
data from the application program. Upon receiving an
XML document, which may come from a disk file or
from a network connection, the DI processes the input
document according to script files written by the
application programmer. According the logic described
in the script file, the DI communicates with various
Transformation Modules (TM), passing to them
appropriate XML documents. The documents returned
from the TM’s are also XML documents. The DI may
store them temporarily for further processing. It may
pass these temporary XML files to other TM’s if
necessary. After collecting all the results from the TM’s,
the DI combines the results by means of XSLT (see
below) and then returns the final result to the application
program.

The major role of DI is to act as a bridge between the
application program and the TM’s, as well as to pass
data among the TM’s. It thus acts as a document
switchbox. The actual processing of XML documents
are delegated to the various TM’s. However, the DI has
to be able to massage the data in XML documents in
order to pass them among the TM’s. This means it has
to transform XML documents frequently. Of course, the
task of such a transformation could be delegated to an
appropriate TM. However, for efficiency, we decide to

add this capability to the DI. This is accomplished by
including XSLT (see below) in the DI.

3.1.1 XML Transformation (XSLT). XML Stylesheet
Language Transformation [2] specifies a stylesheet language,

based on XML, which can be used to describe rules for
convert one XML document to another. The language is
expressive enough for describing all the transformations
required in the DI of our system. Therefore, we adopt XSLT
in our DI system for manipulating the input and intermediate
XML files. Concatenation and merging of several
intermediate work files (in XML format) can be achieved by
creating a temporary “master” XML file which consists of one
root element1 with the intermediate files as child nodes
immediately below the root node. This master file can then be
manipulated with an XSL engine to produce the merged
result, which is a new XML file.

3.2 Transformation Modules (TM)

Each Transformation Module is responsible for handling
one category of tasks. A TM typically receives XML
documents from the DI and then processes it according to the
logic built into the TM (which may be configurable by means
of TM specific script programs). The results of the processing
are then encapsulated as an XML document, which is returned
to the DI. The exact formats of the input and returned XML
documents are up to the TM, although they must be
applications of XML.

It is up to the system implementers to determine how a TM
would process an incoming XML document. Below, we have
identified some functionalities frequently needed and suggest
how they can be handled using TM’s.

1 Refer to the XML specification[1] for the definition of
“element”.

Document Integrator

TM1 TM2 TMn

Application

Ext. Prog. A Ext. Prog. B

XML
Document
Processing

System

external
programs

high-level
application

XML document flow

Other data flow

0-7695-0610-0/00 $10.00 � 2000 IEEE

3.2.1. Database Access TM (DATM). DATM is an
instance of TM, which provides access to ordinary
relational databases. The input XML document contains
information specifying which tables and fields of which
database on which database server are to be accessed. In
case of database inserts and updates, the input XML also
contains the data to be used for these operations. The
DATM inserts new records or updates existing records in
the database appropriately. The DATM may returns an
XML document to the DI to indicate whether the
operator was successful, and possibly the cause of error
in case of failure. In case of database query, the query is
specified in the input XML document. The DATM
queries the database server, and returns the query result
to the DI, after converting it to some XML format.

It is up to the particular implementation of DATM to
design the formats of the input and returned XML
documents. For example, it is possible to directly
include SQL statements in the input to specify the
database operation. Query results can be formatted into
XML according to hard-coded logic in the DATM, or
according to the specification of DATM-specific script
files.

3.2.2. Message Generating TM (MGTM). An MGTM
interprets the input XML document as a message.
According to the message headers (or other appropriate
logic), it sends the message out. It returns an XML

document to the DI to indicate whether the message was
sent successfully. An MGTM may send out a message
via various media, such as e-mail, fax, Usenet
newsgroup posting, pager message, a print job or even a
mobile phone short message. Since the outgoing
message must conform to the message format of the
desired medium, an MGTM must be able to convert the
incoming XML message to the format of the target
medium before sending it out. The method of sending
out the message is also dependent on the medium type.
Most probably, an MGTM has to send out the message

via external programs or external network connects, using
external (non-XML) formats.

3.2.3. EDI Gateway TM (EDIGTM). Many corporations are
using EDI to efficiently exchange messages. An EDIGTM
accepts input XML documents as invoice, purchase order, or
any kind of EDI message. It then converts the document
contents into EDI format and sends it out using EDI channels.
This acts as a gateway for outgoing messages between our
XML Document Processing System and EDI systems.

3.2.4. Logging TM (LogTM). Activities can be logged by
implementing a TM, which writes any submitted XML file
onto the file system. Then, script files can be modified to
select suitable contents from the input or intermediate XML
documents and send them to a LogTM.

3.3 Document flow

The actual means by which the DI processes an input XML
is driven by the script files written by the application
programmer. The processing logic is not hardcoded. The DI
only provides the capabilities (with the help of TM’s) for the
application programmer to manipulate the input XML file and
any intermediately generated XML files.

The following diagram illustrates an example on how the DI
processes the XML files.

In this example, the DI first receives XML message 1 from
the application program. This message contains two data
items (shown in the diagram as different solid shapes). DI
consults its scripts and decides that it should first send the first
data item to TM1, encapsulated in message 2. TM1 receives
the message, and interacts (message (3)) with external
program A. Then, it returns message 4 to DI, containing data
in a new XML document. (As a concrete example, imaging
XML message 2 to be containing an SQL query, TM1 be a
DATM, interactions (3) be appropriate relational database
operations and message 4 be the query results encapsulated as

Document Integrator

TM1 TM2 TM3

Application

Ext. Prog. A Ext. Prog. B

1

2

4

(3)

5

6

7

(8)

9

10

0-7695-0610-0/00 $10.00 � 2000 IEEE

an XML document.) While TM1 is processing message
2, DI may concurrently send document 5 (which contains
the second data item from message 1) to TM3 for
processing. Thus TM3 can operate in parallel with TM1.
TM3 returns document 6 as its result. (A concrete
example: TM3 could be a module which validates web
“certificate”.) Now, DI sends document 7, which is a
combination of the data in documents 4 and 6, to TM2
for further processing. TM2 invokes external program B
to perform its job, and returns its result as message 9.
After receiving message 9, DI further uses its XSLT
engine to reformat the XML document to produce
document 10, which is returned to the application.

It should be reminded that the above is just an example
of the workflow of the XML Document Processing
System. The actual processing logic is programmable by
means of writing script files.

4 Implementation

We are implementing the architecture as described
above. We chose Java [4] as the programming language
because of its platform-independence and richness of
libraries for handling XML and network connections.
Both DI and the TM’s are implemented as Java Servlets
[5]. The communication between the application
program and DI is done via the HTTP protocol.
Similarly, DI and each TM communicate using the
HTTP protocol.

4.1 Implementation of DI

Our implementation of DI is conceptually analogous to
the make utility (generally available on UNIX
platforms). It requires a script file as input. This file
describes rules on how to handle the input XML
documents, based on the message types. It resembles a
Makefile for the make utility. A makefile contains
a list of targets. A target may depend on other targets.
Therefore, before a target is made, make must have
made the depending targets of that target. The DI uses
the same idea. The script file for the DI instructs the DI
how to handle the input XML document by creating a
set of intermediate XML documents. To do that, it
composes each intermediate document (analogous to

‘target’ in a Makefile) accordingly. The scripting language
is illustrated below. It should be noted that the language is an
application of XML. Therefore, a script file is itself an XML
file.

A script file is a XML document which contains the
descriptions on how to make (or generate) a list of XML
Documents (i.e. X0…n-1). The following tags are defined:

<DOC id=”#name” action=”action” href=”URL”>
…
</DOC>

This defines a rule section describing how a document is
composed. It has the following attributes.

Within a <DOC>…</DOC> element, the following tags
can be used to specify how the DI would compose the
document to be sent (in the case of action=”submit”) to
a TM or transformed using XSLT (in the case of
action=”tranform”).

<INCLUDE href=”#name”/>

<INLINE>…</INLINE>

<WAITFOR href=”#name”/>

<INFO>…</INFO>

The <INCLUDE> tag specifies an XML segment to be
inserted to the temporarily constructed XML file as a subtree
of XML elements. If the href attribute is specified, the
temporary XML document identified by name will be
inserted. Note that this implies a dependency—the document
identified by name must have already been composed before
this current document (with a name specified by the current
<DOC> element) is constructed. After examining all rules
The DI can thus determines the sequence of operations
required to construct the final result document. The
application programmer thus only needs to declare the set of
rules for composing the result and intermediate documents.
The DI will figure out what to do.

The <INLINE> tag simply inserts the XML segment to be
inserted. Note that a property of XML is that elements must
be properly nested. So, the segment between
<INLINE>…</INLINE> must be well-formed XML.

id=”name” name is a unique identifier of the document. The input
document that enters the DC has the name “input”.

action=”submit”
href=”URL”

The composed document will be submitted to URL, where a
servlet implementing a TM is ready to receive and process
the document.

action=”transform”
href=”URL”

The composed document will be transformed (internally by
DI) by applying the XSL file located by URL.

action=”return” The composed document will be returned to the caller

0-7695-0610-0/00 $10.00 � 2000 IEEE

The <WAITFOR> tag specifies that before the current
document is made, the DI must have made the document
name first. Multiple declaration of this tag is allowed. It
is similar to the <INCLUDE> tag except the content of
the waited document will not be inserted into the
working document.

The <INFO> tag gives human-readable comments,
which is not processed by the DI2.

The following example illustrates how a script file can
be written with the above tags to specify how the DI
should process the input XML document.

<DOC id="descriptions" action="submit"
href="http://myDATM.eti.hku.hk/servle
ts/myDATM">

 <INFO>fetch item descriptions from
database</INFO>

 <INCLUDE doc="#input"/>
 <INLINE>
 <DATABASE name=”catalog”/>
 <TABLE name=”description”/>
 </INLINE>
</DOC>

<DOC id="price" action="submit"
href="http://myDATM.eti.hku.hk/servle
ts/myDATM?query=price">

 <INFO>fetch price from
database</INFO>

 <INCLUDE doc="#input"/>
 <INLINE>
 <DATABASE name=”catalog”/>
 <TABLE name=”description”/>
 </INLINE>
</DOC>

<DOC id=”merged_list”
transform=”http://xsllib.eti.hku.hk/l
ib/merge.xsl”>

 <INFO>merge model no., description
and price information</INFO>

 <INCLUDE doc=”#input”/>
 <INCLUDE doc=”#description”/>
 <INCLUDE doc=”#price”/>
</DOC>

<DOC id="send_result" action="submit"
href="http://MGTM.eti.hku.hk/servlet/
MGTM">

 <INFO> </INFO>
 <INCLUDE doc="#merged_list"/>
</DOC>

<DOC id="output" action="return">
 <INFO>reports whether the mail has

been sent correctly</INFO>
 <INCLUDE doc="#send_mail "/>
</DOC>

2 Except that this comment may be inserted into log files
for tracing and debugging.

Suppose the application now sends the DI a query:

<PRODUCT_QUERY>
 <MODEL>IBM-300GL</MODEL>
 <MODEL>IBM Intellistation</MODEL>
</PRODUCT_QUERY>

Then, DI determines from the root element3 that this
document has a type of “PRODUCT_QUERY”. Then, it will
fetch a suitable script file for this document type. Suppose the
script file is the one shown above, then according to the rules
specified, the DI would perform the following operations:

• Send the input document to the TM servlet at the URL
http://myDATM.eti.hku.hk/servlets/myDATM, and store
the returned result (an XML document) as document
“descriptions”. The TM is supposed to be a DATM,
which queries a database and returns the query result after
formatting it into XML. The database name and table
name are passed by DI to TM as specified in the script
file. TM receives the file:

<DOC>
 <PRODUCT_QUERY>
 <MODEL>IBM-300GL</MODEL>
 <MODEL>IBM Intellistation</MODEL>
 </PRODUCT_QUERY>
 <DATABASE name=”catalog”/>
 <TABLE name=”description”/>
 </DOC>

• At the same time, DI sends the input document to the TM
servlet (which in this case happens to be the same one as
the above) to query another table of (possibly) another
database. The returned document is stored and named
“price”. Note that this step is independent of step 1,
and hence can be performed concurrently with it.

• Next, DI concatenates the input XML document and the
result documents from steps 1 and 2 and then applies
XSLT to transform it into a new document, named
“merged_list”. The XSLT is done according to the
XSL file located at URL
“http://xsllib.eti.hku.hk/lib/merge.xsl”.

• The merge result (“merge_list”) is then passed to the
servlet at URL
“http://MGTM.eti.hku.hk/servlet/MGTM”
for processing, and the returned result is an XML
document named “send_result”. This servlet is
supposed to send the document out as e-mail using an
external program (or via SMTP).

• Finally, DI returns the document “send_result” to
the application program.

4.2 Integration with Web server and WAP server

3 An XML requirement is that each document contains exactly
one root element.

0-7695-0610-0/00 $10.00 � 2000 IEEE

There are several possibilities for integrating our XML
Document Processing System with web servers
providing various web services. Firstly, a web server
can be an application using our system. As such, it
accepts queries from users, generated with web forms,
and then formats the query into an XML document and
sends this XML document to the DI. The DI then does
the processing according to the pre-written script file.
The script file returns the results to the web server,
which then presents it to the user as the web query result.
Note the document returned to the web server by our DI
is an XML file, but the web server may need to reformat
it so that it can be displayed properly to the client.
Nevertheless, this reformatting may be performed using
our DI. We can program our DI so that it applies a
suitable XSL file to the result just before it returns it to
the web server. This XSL file should transform the
XML result into a form suitable for presentation. It
should use XHTML for this presentation, as XHTML is
just an application of XML. In a similar manner, WAP
(Wireless Application Protocol) servers can be integrated
with our XML Document Processing System by acting
as an application in this architecture. With WAP
services, the whole system becomes accessible from
mobile phones or any other WAP devices.

The other possibility of integration comes from our use
of the HTTP protocol between DI and TM’s. In the
above, we have been saying that TM’s be implemented
as Java servlets. But actually, this need not be the case.
As long as it speaks the HTTP protocol, understands the
XML documents sent from the DI and returns XML
documents to the DI, it can function as a TM. So, a TM
can also be implemented as a CGI program on any web
server. It may also be a standalone program that accepts
HTTP connections and processes the files as expected.

5 Discussions

5.1 Distribution

High distribution is a goal of this design. This
architecture is highly distributive. Since the DI and TM’s
communicate through HTTP, there is essentially no
restriction of location and platform of the servers where
DI and TM’s run. However, the servers must support
TCP/IP and should not be blocked by any firewall.

5.2 Portability

We highly suggest that the DI and TM’s be written in
Java, so that they are platform independent. However, if
a TM needs to interact with other systems (e.g. database,
external servers), then the platform-independence will be
determined by these other systems. There may be some
cases in which TM’s require native code or platform-
dependent code to interact with native applications such

as EDI gateways. Natively coded TM’s will affect portability.

5.3 Performance

Performance is concern in this architecture. The response
time may be slow for a query that requires multiple data
retrievals from other servers. This architecture attempts to
address this issue by allowing parallel data retrieval whenever
possible. The DI has intelligence to discover such potentials
from the rules of the script file. Since HTTP is not the most
efficient communication protocol, performance may be
improved by replacing HTTP with Remote Method Invocation
(RMI).

6 Conclusions

In this paper, we identified the need to process XML
documents in E-commerce systems. We argue that instead of
designing dedicated programs to handle each kind of XML
document for each specific application, we could design a
generic architecture for handling XML documents. The
architecture is designed to be generic and flexible. It uses a
Document Integrator (DI) to control the process flow, but
delegates most capabilities to various Transformation
Modules (TM). For efficiency concerns, the DI is designed to
have the capabilities of merging and transforming XML
documents with XSLT. We have discussed on how to
implement the DI and TM’s with a simple example.
However, since the design is flexible and highly extensible,
we believe the architecture is suitable for many E-commerce
systems.

7 References

[1] Tim Bray, Jean Paoli, C.M. Sperberg-McQueen, Extensible
Markup Language (XML) 1.0, 10-February-1998,
“http://www.w3.org/TR/1998/REC-xml-
19980210”.

[2] James Clark, XSL Transformations (XSLT) Version 1.0, 16
November 1999, “http://www.w3.org/TR/1999/REC-
xslt-19991116”.

[3] Dan Connolly, XML Homepage on W3C website, April 1997,
“http://www.w3c.org/XML”.

[4] Sun Microsystems, Java Homepage,
“http://java.sun.com/products/servlet/”.

[5] Sun Microsystems, Java Servlet API Homepage,
“http://java.sun.com/products/servlet/”.

[6] W3C, World Wide Web Consortium (W3C) Homepage,
“http://www.w3c.org/”.

0-7695-0610-0/00 $10.00 � 2000 IEEE

