<table>
<thead>
<tr>
<th>Title</th>
<th>Langerhans cell histiocytosis (histiocytosis X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Lam, KY</td>
</tr>
<tr>
<td>Citation</td>
<td>Postgraduate Medical Journal, 1997, v. 73, n. 861, p. 391-394</td>
</tr>
<tr>
<td>Issued Date</td>
<td>1997</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/46953</td>
</tr>
<tr>
<td>Rights</td>
<td>Postgraduate Medical Journal. Copyright © B M J Publishing Group.; This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.</td>
</tr>
</tbody>
</table>
Classic diseases revisited

Langerhans cell histiocytosis
(histiocytosis X)

King-Yin Lam

In 1953, Lichtenstein introduced the unifying term ‘histiocytosis X’ to embrace several previous eponyms, including eosinophilic granuloma, Letterer-Siwe disease and Hand-Schuller-Christian disease. In 1987, a more prominent designation, Langerhans cell histiocytosis (LCH), was recommended to replace histiocytosis X. The term is more appropriate as it reflects the fact that the Langerhans cell is the main cell involved in these several diseases. The Langerhans cell is a subtype of histiocyte first described by Dr Paul Langerhans in 1868. LCH is a rare disease arising from pathological proliferation of Langerhans histiocytes.

Histiocytes are formed in the bone marrow from a pluripotent self-renewing haemopoietic stem cell. They consist of two groups, namely mononuclear phagocytes (ordinary histiocytes) and antigen-presenting histiocytes. The former group includes the migratory blood monocyte and the fixed tissue macrophage (such as the hepatic Kuffer cell, pulmonary alveolar macrophage, brain microglia and splenic sinusoidal histiocyte). The latter group has a dendritic morphology which comprises the lymph nodal interdigitating reticulum cell and dendritic reticulum cell, the lymphoid dendritic cells of the blood and the Langerhans cell. The Langerhans cell is normally found in the skin. It can also occasionally be identified in many tissues such as in the bronchi, oral mucosa, esophagus, thymus, etc. They are the most potent antigen-presenting cells in the body.

In 1987, the Histioyte Society proposed three main classes as the working classification for histiocytoses, which gained widespread acceptance until 1994, when Pritchard and Broadbent put forward a modified version of the classification, dividing histiocytoses into four main classes (box 1). Pathogenesis

The nature of LCH is not completely understood, despite numerous studies of the disease in recent years. Various factors, e.g. viruses, the immune system (including lymphocytes and cytokines), cellular adhesion molecules, hereditary as well as neoplastic mechanisms, working alone or in combination, have been considered by different groups of workers to explain the pathogenesis of the disease (box 2).

The disease has been suspected to be due to an aberrant immunity precipitated by certain viruses. Both LCH and viral infections are prevalent among young people. However, meticulous investigations employing ultrastructural, serological and molecular (in-situ hybridisation, polymerase chain reaction) means have still failed to demonstrate any of the many common viruses in patients with LCH. One could therefore argue that other less common viruses may be the cause of LCH. Recently, herpes virus type 6 has been found in lesions of LCH but these findings have been seriously questioned by other investigators.

Cytokines are protein hormones produced by cells of the immune and inflammatory systems. Their principal functions are to mediate and regulate cells in the above-mentioned systems. Various cytokines have already been demonstrated in LCH lesions using immunoassays, in-situ hybridisation and reverse transcription polymerase chain reaction. The patterns of cytokines detected are consistent with local activation of T lymphocytes and other inflammatory cells. In addition, abnormalities of T helper and suppressor ratios of the lymphocyte subpopulation have been documented. These findings merely illustrate the pathogenesis of LCH at a particular point in time but do not explain the diverse and changing presentation of patients with the disease. Cellular adhesion molecules mediate cell—cell and cell—matrix adhesion and play important roles in many cell functions. Several articles have indicated the expression of cellular adhesion molecules in specimens from patients with LCH. It can be concluded that the abnormal cells in LCH not only share
characteristics with normal Langerhans cells, but also have additional abnormal
expression of cellular adhesion molecules. These features may contribute to
migration of the Langerhans cells to abnormal sites, to an arrested state of
activation and/or differentiation, and to the abnormal persistence and
proliferation of these cells. The underlying stimulus causing this aberrant
expression of cellular adhesion molecules is currently unknown.

The role of heredity in the transmission of LCH is also unknown. Katz
and colleagues have reported LCH in monozygotic twins. There have been no
reports of cases in which only one twin has LCH. The rare occurrence of
familial LCH might suggest that a genetic mechanism is not likely to be crucial
in triggering the onset of LCH.

One of the striking breakthroughs in the investigation of LCH is the recent
demonstration of monoclonality in the disease. Clonality was demonstrated
using X-linked polymorphic DNA probes by Willman and colleagues in female
patients with either multifocal or solitary LCH. Yu et al reported similar
findings in tissues enriched by flow sorting of CD1a positive cells.
Furthermore, aberrant immunophenotypes (such as expression of CD68,
lyosomes, CD2, CD3, CD14, placental alkaline phosphatase, peanut agglutinin
antigen) and proliferative markers (Ki-67, PCNA, Ki-S1 and DNA aneuploidy)
have been detected in LCH. These imply that LCH is more likely to be a
clonal neoplastic disease than a reactive one, with highly variable biological
behaviour and clinical severity.

The aberrant immunophenotypes and proliferative markers are by no means
specific markers of malignancy. Monoclonality is necessary but not sufficient to
predict neoplasia. Whether a group of clonal cells exhibits benign or malignant
behaviour depends upon additional factors like tissue micro-environment, host
responses and constellation of genetic mutations. It is also worth noting that
there is no evidence of clonal T-cell receptor gene rearrangements in cells
involved in LCH. The definite proof of neoplastic aetiology must await
the identification of potential somatic genetic mutations by the powerful
cytogenetic and molecular techniques now available.

Clinical presentation

LCH can occur in patients of any age, with a peak incidence between one and
three years old. So far, limited data are available regarding the epidemiology of
LCH because of its relatively low incidence. Nevertheless, epidemiologic
investigations have already been undertaken in many different localities. It is
anticipated that the prospective outcome of these studies will aid our
understanding of the pathogenesis of this disorder. From available informa-
tion, LCH seems to be more common in males and there is no definite
evidence of a racial difference in incidence.

The presentation of LCH is different in different age groups (box 3). Paraneoplastic
syndrome (progressive spinocerebellar degeneration) has been
often reported in patients with LCH. Death may be related to severe insufficiency of
several organs or complications of treatment.

Almost any organ in the body can be involved with multifocal LCH (box 4). Rarer sites like the female genital tract and central nervous system
(including the eye) may also be occasionally infiltrated by LCH. In adults,
there is a higher incidence of lung involvement. The proposed explanation for
this is the association of pulmonary LCH with an abnormal response to
smoking.

Recent advances in the treatment of LCH have seen improvements in
morbidity and mortality. Some patients have even become pregnant. A review
of the literature reveals that the symptoms and signs of patients with LCH were
either worsened or had a transient remission during pregnancy. All the
pregnancies nevertheless resulted in live births.

Owing to the possibility of systematic manifestations, the minimum
investigations in suspected cases of LCH include a complete history and
physical examination, blood count, liver function tests, chest X-rays and
skeletal survey. Special investigations like bone marrow aspirate, enhanced
computed tomography/magnetic resonance imaging, urine osmolality after
water deprivation, etc, should also be employed if indicated after preliminary
clinical assessments.
Pathology

Routine diagnosis is usually made on the basis of histological examination and the demonstration of S-100 by immunohistochemistry in biopsied materials, although some groups have made the diagnosis on fine-needle aspiration specimens. On microscopic examination, the disease shows a collection of Langerhans cells intermixed with eosinophils and other inflammatory cells. The nuclei of the Langerhans cells are often lobulated with a ‘coffee bean’ appearance (figure 1). Nevertheless, histological findings of LCH cannot predict the outcome of the disease.

A definite diagnosis of LCH necessitates either the detection of Birbeck’s granules (Langerhans cell granules) by electron microscopy or the finding of CD1a expression by immunohistochemistry in the tumour cells (box 5). The finding of Birbeck’s granules is more specific because they are found only in Langerhans cells. However, their identification is time-consuming and heavily dependent on tissue preservation and the experience of the pathologist.

Birbeck’s granules are cytoplasmic granules which may be rod-, flask- or tennis-racket-shaped (figure 2). They are usually regarded as a special type of endocytotic structure (which probably engulfs antigenic materials). However, there is also a belief that the granules arise from the Golgi apparatus and will eventually migrate to the cell membrane (i.e., they probably have a secretory function).

CD1a has only been found in the cortical thymocyte and the Langerhans cell. In the past, the demonstration of CD1a (using the murine OKT6 monoclonal antibody) needed to be done on fresh/frozen tissues but recently, a mouse monoclonal antibody (Mab O10) has been found to recognise a formalin-resistant epitope of CD1a after microwave pretreatment of the de-paraflinized slides.

Association with tumours

Neoplasms occur in patients with LCH more frequently than would be expected by chance alone (box 5). The subject was extensively investigated by Eglet et al who presented four such cases and reviewed 87 previously published cases. Neoplasms were detected in 3.5% of their patients with LCH. The intimate and simultaneous association of LCH with some tumours suggests that the process leading to the association may be a reactive one. On the other hand, the long latency between the appearance of the other tumours and LCH implies a therapy-related process.

More than half of the published cases have described and suggested an association between LCH and lymphoid malignancies (lymphomas and leukaemia). Amongst these, Hodgkin’s lymphoma is more common than non-Hodgkin’s lymphoma, whilst acute non-lymphoblastic leukaemia is the most common type of leukaemia. Other tumours reported to be associated with LCH include carcinomas (lung, thyroid, breast, liver, skin [basal cell carcinoma] and stomach), sarcomas (chondrosarcoma and osteosarcoma), tumours of central nervous system (astrocytoma, glioblastoma, medulloblastoma, ependymoma, retinoblastoma), apudoma and hepatoma. It is also worth noting that coexistence of various tumours, eg, osteosarcoma, lymphoma or medulloblastoma, and LCH may occur in the same patient, as described by Camargo et al. Recently, the author and colleagues have reported a unique case of LCH in a 35-year-old woman 15 years after the diagnosis of ovarian dysgerminoma.

Treatment

The optimal treatment for patients with LCH remains problematic. Difficulties lie primarily in the absence of controlled studies (due to the rarity of the disease) and the previous lack of standardised diagnostic criteria. The obscure understanding of the pathogenesis of LCH and the heterogeneity of clinical presentation have also precluded a definite treatment. Nevertheless, lately, systemic approaches have been made to the management of patients with LCH and an international randomised co-operative treatment trial has started. These, together with the development of new forms of therapies, should lead to a better outcome for patients with LCH.

In patients with LCH, the aim of treatment is to relieve clinical symptoms and signs and prevent complications. Current treatment strategies depend on the presentation of the disease. For single system disease, the lesion can be left alone after confirmation of diagnosis by biopsy, although local treatment may be necessary in certain circumstances to prevent dysfunction or deformity. This
may include surgical excision, local application of corticosteroids, nitrogen mustard and low-dose radiotherapy. On the other hand, there are two approaches for multisystem LCH: conservative minimal therapy or intensive chemotherapy. Both forms of treatment are the former approach involves close follow-up with short-term treatment to relieve signs and symptoms or disease progression. The latter approach involves rapid initiation of intensive chemotherapy. Recent findings suggest that combination chemotherapy is beneficial and that etoposide (VP-16) is a useful new monotherapy. In addition, the effectiveness of other experimental therapies (e.g., cyclosporin, thalidomide, transplantsations and monoclonal antibody) is being studied. 35–40

The author would like to thank Dr. A. Chan for the photos and Miss. Boney Lam for help in preparing to the manuscript.

