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Abstract

Discrete linear repetitive processes are a distinct class of
2D linear systems with applications in areas ranging from
long-wall coal cutting through to iterative learning control
schemes. The main feature which makes them distinct from
other classes of 2D linear systems is that information propa-
gation in one of the two distinct directions enly occurs over a
finite duration. In this paper we give an LMI based interpre-
tation of stability for the sub-class of so-called discrete lin-
ear repetitive processes, both open loop and closed loop un-
der a well defined practically relevant centrol law, and then
apply this theory to solve currently open problems relating
to Tobustness and stability margins for these processes. Also
it is shown that the LMI approach to the computation of the
stability margins for these processes can be combined with
the recently developed concept of a pole for them to link
these margins to expected performance - a key feature which
is missing from the analysis of stability margins currently
available in the 2D systems literature.

1 Introduction

The essential unique characteristic of a repetitive, or multi-
pass, process is a series of sweeps, termed passes, through
a set of dynamics defined over a fixed finite duration known
as the pass length. On each pass an output, termed the pass
profile, is produced which acts as a forcing function on, and
hence contributes to, the dynamics of the next pass profile.
This, in turn, leads to the unique control problem for these
processes in that the output sequence of pass profiles gen-
erated can contain oscillations that increase in amplitude in
the pass 1o pass direction.

To introduce a formal definition, let & < == denote the pass
length (assumed constant). Then in a repetitive process the
pass profile yi(p), 0 < p < 0, generated on pass k acts as a
forcing function on, and hence contributes to, the next pass
profile yr41(p), 0 S p L0, k> 0.

Physical examples of repetitive processes include long-wall
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coal cutting and metal rolling operations [I]. Also in re-
cent years applications have arisen where adopting a repeti-
tive process setting for analysis has distinct advantages over
alternatives. Examples of these so-called algorithmic ap-
plications of repetitive processes include classes of itera-
tive learning control (ILC) schemes [2] and iterative algo-
rithms for solving nonlinear dynamic optimal control prob-
lems based on the maximum pringiple [3].

Attempts to control these processes using standard (or 1D)
systemns theory/algorithms fail (except in a few very restric-
tive special cases) precisely because such an approach ig-
nores their inherent 2D systems structure, i.e. information
propagation occurs from pass to pass and along a given pass.
In seeking a rigorous foundation on which to develop a con-
trol theory for these processes it is natural to attempt to
exploit structural links which exist between, in particular,
the sub-class of so-called discrete linear repetitive processes
and 2D linear systems described by the extensively studied
Roesser [4] or Fornasini Marchesini [3} state space models.
Discrete linear repetitive processes are distinct from such
2D linear systems in the sense that information propagation
in one of the two separate directions (along the pass) only
occurs over a finite duration.

A rigorous stability theory for linear repetitive processes has
been developed. This theory [6] is based on an abstract
model in a Banach space setting which includes all such pro-
cesses as special cases. Also the results of applying this the-
ory to a wide range of cases have been reported, including
the processes considered here. This has resulted in stability
tests that can be implemented by direct application of well
known 1D linear systems tests.

Despite this progress, there remains much work to be done
for these processes before a ‘mature’ control systems the-
ory for them can be achieved. In this paper, we give an LMI
based interpretation of stability for the processes considered,
both open loop and closed loop under a well defined practi-
cally relevant control law, and then apply this theory to solve
currently open problems relating to robustness and stability
margins for them. Also it is shown that the LMI approach to
the computation of the stability margins for these processes
can be combined with the recently developed concept of a
pole for them to link these margins to expected performance
- akey feature which is missing from the analysis of stability
margins currently available in the 2D systems literature see,
for example, [8]. We begin in the next section by giving the



necessary background results.

2 Background

Following Rogers and Owens [6] the state-space model of
a discrete non-unit memory linear repetitive process has the
following formover0 < p <o, k>0

ar{p+1) = Axe1(p) + Bug {p) + Boyilp)
w+1{P} = Cxx1(p) + Dury1(p) + Doyi(p)
143

Here on pass &, x;(p) is the # % 1 state vector, y,(p} is the
m % 1 vector pass profile, and u (p) is the r % 1 vector of con-
- trel inputs. To complete the process description, it is neces-
sary to specify the ‘initial conditions’ - termed the boundary
conditions here, i_e. the state initial vector on each pass and
the initial pass profile. Here we assume these to be of the
form x41(0) = 0, k > 0, and yo(p) = f(p), where f(p) is
an m x 1 vector whose entries are known functions of p.

The the abstract model based stability theory for linear con-
stant pass length repetitive processes can be found in {6].
This consists of two distinct concepts termed asymptotic sta-
bility and stability along the pass respectively. Of these, the
former is a necessary condition for the latter which, in effect,
demands that bounded input sequences produce bounded
sequences of pass profiles independent of the pass length.
(Here bounded is defined in terms of the norm on the under-
lying functicn space.)

In the case of processes defined by (1) (with the assumed
boundary conditions}, several equivalent sets of necessary
and sufficient conditions for stability along the pass have
been reported (see, for example, [6]) but here it is the fol-
lowing set which is required.

Theorem 1 Suppose that the pair {C,A} is observable and
the pair {A, Bo} is controllable. Then discrete linear repeti-
tive processes defined by (1) are stable along the pass if, and
only if, the 2D characteristic polynomial

_ L-21A —ubBo
C(z1,22) 1= det [ —C hh—znly ] @
satisfies
Clar,22) #0.Y (z1,2) € T @)
where 3
U'={(z,2):|al<1]al<1} @

Note that ¢3) in this theorem gives the necessary conditions
r{Dg) < 1 and r(A) < 1 which (given their relative simplic-
ity) should be tested before proceeding further with any sta-
bility analysis.

3 LMI1 based stability analysis and controller design

In this work, a crucial result is the following whose proof is
well known.

Lemma 1 Given constant matrices W, L, V of appropriate
dimensions where W =WT and V =VT > 0, then

W+LTVL <0 (5)
if, and only if,
woLr
[ L oy ]<0 (6)
or, equivalently,
vt L
[ T ow ] <90 Q)

The matrix W + LTVL is known as the Schur complement
of V.

Now define the following matrices from the state space
model (1).

-~ A By -~ 0 0
A= , Ap=
! [ 0 o ] 2 [ c Do ] @)
Then from [7] we have the following sufficient condition for
stability along the pass of processes defined by (1).

Theorem 2 Suppose that the controllability and observ-
ability assumptions of Theorem 1 hold. Then discrete linear
repetitive processes defined by { 1) are stable along the pass
if 3 matrices P = PT > 0 and @ = Q7 > 0 satisfying the
Jollowing LMI

[Z{PK,+Q~P

ATP}Tz
ATPA,

A';-PZZ_Q:|<O &)

In terms of the design of control schemes for discrete linear
repetitive processes, most work has been done in the ILC
area. Here it has become clear that a very power class of
control laws comes from using feedback action on the cur-
rent pass augmented by feedforward action from the previ-
ous pass. Here we consider a control law of the form over
0<p<a,kz0

»{p)

This results in the following sufficient condition for closed
loop stability along the pass

ur+1(p) = Kixe1{p) + Kayi(p) = K[ %i+1(p) ] (10

Celz1,22) #0,Y(z1,22) € U (1)
where
1,, —ZlAA “Z]ﬁo

Celz1,22) = det -
(a,20) [ -22C  In—nDp

] (12)

where A= A+ BKy, By = By + BK2, C = C+ DKy, Dy =
Do+ DK3.

Now introduce the matrices

é1=[g],§z=[g] (3)

Then again from [7] we have the following result.
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Theorem 3 Suppose that a discrete linear repetitive pro-
cess defined by (1) is subjected to a control law of the form
(10). Then (assuming the controllability and observability
assumptions of Theorem 1 hold closed-loop) the resulting
closed-loop system is stable along the pass if 3 marrices
Y=YT>0,Z=27 >0, and N such that

Z-Y 0 Wp;
0 -Z Wy | <O (14
WL oWy Y

where
Wi =YAT + NTBT, Wy =YA] + NTBS
Also a seabilizing K for the control law {10} is given by

K=nNy! (15)

Proof: The proof is based on first interpreting (9) for the
process state space model obtained from applying the con-
trol taw. Then applying the Schur complement, the congru-
ence transform defined by diag(P~!, P~!, P~!), and finally
the substitutions

y=p', z=p"0P! (16)

yields the condition stated in the theorem. =

4 Robustness

In this section, we develop an LMI approach to stability
analysis in the presence of uncertainty in the process defi-
nition. In particular, introduce the so-called augmented pro-
cess and input matrices respectively as

<IJ=[ ],‘I’

Then here we treat the case when these matrices are subject
to additive perturbations defined as follows

B
D

A B
C Dy

am

®, = O+AD (18)
¥, ¥+ AT (19
where
_ | A4 ABp _| AB
AD = AC  ADo ,A‘I”—[ AD] (20)

Also we assume that the uncertainties here have the follow-
ing typical structure

Hy

Py @n

[ A® A‘I’]=[ ]F{E; E; ]

where the matrices on the right-hand side are of compatible
dimensions and also FTF < I.
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Now introduce the following matrices.

= [ A ABy = _| 0 0
A=1% o ] M’z‘[Ac ADO]
. L 22)
m-lg] oclo
Then we can write A® and AY in the form
AD = AD,+AD; =M FE +FE  (23)
AY = A9, +AY,=HFE +ILFE,  (24)
where
. [®m]1 5, JO

The LMI sufficient condition for stability along the pass
given in Theorem 2 is equivalent to the existence of matrices
P=PT>0and @= Q" > 0such that

ATPA+ (0 <0

|

and we now have the following resuit.

(26)
where

P-0
0

=[4 A0 A

Theorem 4 Discrete linear repetitive processes of the form
(1) with the uncertainty structure defined above is stable
along the pass if 3P = PT > 0, @ = Q7 > 0 suckh that

(A+8PE) PA+HEE)+0<0 (28
where
A=[8 ), F=heF Ei=hoE (29

where & denotes the matrix Kronecker product.

Also it can be shown that, for any choiceof @, 3P = PT >0
such that (28) holds if, and only if, 3 a scalar € > 0 such that

[ —PlyelAT A

AT S lT E1 + Q
Now we have the following result which gives a sufficient
condition expressed in terms of an LMI, for stability along
the pass under the uncertainty structure defined above.

] <0 (30

Theorem 5 Discrete linear repetitive processes of the form
defined by (1) with the uncertainty structure defined above
are stable along the pass if 3Y = Y7 > 0and Z =27 >0
such that the following LMI holds

-y AY Ay &ff, e 0 0
YA] Z-y 0 © 0 YE o
YAT o -z o o o YE
e o 0 — 0 0 o [<0 3
eHl 0. 0 o0 - 0 0
0O EY 0 0 6 -—& 0
0 o0 EY 0 0 0 —&




It is also possible to derive a solution of the stabilization
problem under the uncertainty structure considered here.
This can again be found in [7). .

5 Stability Margins

In the design of discrete linear repetitive processes it is also
clearly of interest to determine if a stable along the pass ex-
ample can retain this property in presence of process param-
eter variations. As for 2D discrete linear systems described
by the Roesser and Fornasini Marchesini state space models
(see, for example, [8]) the stability margin for discrete linear
repetitive processes has been defined [6] as the shortest dis-
tance between a singularity of the process and the stability
along the pass limit which is the boundary of the unit bidisc
(T%). Hence, the stability margin is a measure of the degree
to which the process will remain stable under variations.

The so-called generalized stability margin for discrete linear
repetitive processes of the form (1) is defined as follows.

Definition 1 The generalized stability margin oy for dis-
crete linear repetitive processes of the form defined by (1)
is defined as the largest bidisc in which the 2D characteris-
tic polynomial of {2) satisfies :

Cla2,22) #0in Ugy (32)
where
oy = {(z0,22) : Jua| < (1 - o), |ea| S 14+ B} (33)
and0<B<L L.
Note that when B = 0,1, and 0.5 respectively, the set ﬁf,ﬂ

here reduces to
—2

Us, = {(zz):lal i+0y,]ni<1}  (34)
ﬁiz = {lz,z2) € L || <1+ 02} (35)
Ui = {(z1,z2): lz| €14 0,|z2| <1+0} (36)

introduced and studied in, for example, [8] for 2D discrete
linear systems described by the Roesser state space model.
{Note that 055 = 26 in (36).) In particular, {1 — B)op and
Bay give the stability margins corresponding to z; and z3 re-
spectively, i.e. along the pass and pass-to-pass respectively.
We will also need the following easily proven lemma in what
follows.

Lemma 2 Givenq; € R, g; > 0,i= 1,2 such that

= [ I, — 121411

_ —d1 21412
Clzi,z2) =det “Garahn ] #0 (37

by — G272
where G = (1 +q1) and G, = (1 +q2), in U, then

L, -ZAn  —zjAn ]
£0 (38)

C(z'hzrz) =det [ Iny ~ 2hA%

. =2
inU,, where

=2

T,={(@%) |4 <1+q,i=1,2} (39)

Theorem 6 For a given & such that 0 < 6. < 1, a lower
bound for the generalized stability margin Gg is given by the
solution of the following quasi-convex optimization prob-
lem:

Maximize og subject o P=PT >0,0=07 > 0,05 >0
and the LMI

Q—FP 0 Rp3
(])r -2 R | <0 40
R; Rl -P

where

Riz= (14 (1 - 8)0a)A] P, Ras = (1 +&0g) ALP

Proof: This is immediate on applying Lemma 1 with

-P 0
W=[QO —Q]’ V=p (41)
and N
L=[ (1+01)PA; (1+062)PA; | (42)
and then making use of Lemma 2. n

It is now possible to consider coniroller design with pre-
scribed lower bound on the stability margins 0, and o2. Here
we denote such bounds by o] and o3 respectively and we
have the following result.

Theorem 7 Discrete linear repetitive processes are stable
aleng the pass under control laws of the form (10) with pre-
scribed lower bounds on the stability margins o}, o3, corre-
sponding 10 2| and 73 respectively, if Amatrices Y = YT >0,
Z=2T > 0,and N, such that

Z-Y 0 Rp
0 —Z Ry |<o0 (43)
R, R, -v

where

=
i
[

(1+63) (}'Z{+NT§'{)

e
o
I

(1+c3) (Y.Z{§+NT§§)

are feasible. Then a stabilizing K for the control law (10) is
given by
K=Nr"! (44)

Proof: The proof of this resuilt is immediate from a similar
argument to that used in establishing Theorem 3. Hence the
details are omitted here. =
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One major defect of this (and all other currently available
see, for example, [8]) stability margins for 2D linear sys-
tems/discrete linear repetitive processes is (unlike the clas-
sical gain and phase margins for 1D linear systems) the lack
of a link to the trajectories (or dynamic response) of the sys-
tem/process. In the next section, we speciatize some resuits
from [9], which uses a behavioural setting to develop a tra-
jectory based characterization for the poles of nD linear sys-
tems, to produce the first results on this key aspect for dis-
crele linear repetitive processes.

6 Poles and Relative Stahility

Since the state in pass 0 plays no role, it is convenient to re-
label the state trajectories xz+1 (¢} — xx(2) (keeping of course
the same interpretation). The repetitive process (1), with
D = 0 for simplicity, is now described by the kernel repre-
sentation

(

where here z; and z; denote the shift operators along the pass
and from pass-to-pass respectively, i.e. x;(t) as follows:

I.—z71A
-z2C

-B
0

-018p
Iy —22Dg

0, @5

x(p) = axnlip+1), xlp) = pualp) 46

The components of the solutions of the system can be con-
sidered as functions from N? to R, though for purposes of
interpretation they are cut off in one dimension at the pass
length ..

The poles of the system are essentially the 2D frequencies
which can arise in the state and output when the input van-
ishes. The behavior of all trajectories with i« = 0 is described

by the matrix

and applying Theorem/Definition 4.4 from [9] we can for-
mally define a pole as a point where (47} loses rank. In
other words, the poles are given by the set

= {(a1,a2) € ? | Clar,a2) = 0},

where C(z1,2z) is the polynomial given in (2). The set V' is
called the pole variety of the system.

In— 214
-zC

—z18p

I — 2200 “n

(48)

Since in this case the pole variety is given by the vanishing
of a single 2D non-unit polynomial, it is guaranteed 1o be
a one-dimensional geometric set in 2D complex space, that
is, a union of curves. In particular, the pole variety cannot
be a finite set. Note also that the pole variety is a complex
variety, even though the entries of the matrices A, By, C and
Dy are real. This is essential in order to capture the full
exponential-type dynamics of the system.

Poles can be interpreted in terms of exponential trajecto-
ries [9], which in the case of repetitive processes have a
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clear physncal interpretation. Take therefore a point (a1 =
Le®1 gy = 1) € C2. Then (a;,4;) is 2 pole of the system
1t] and only 1f there exists an ‘exponcential trajectory” in the
system having the form

Hp) = sl cos(®rp+6)

+ x(z,o(;li-)"(%)"sin(elp+9k) (49)
o) = ()P cos(osp+ok)

+ ygo(;ll-)P(%)"sm(e}p+ek) {(50)
w(p) = 0 61

where x}g, x5 € B", y&s,v5, € B™.

In the case of a pole (a1,42) € I, it is straightforward
to construct such a trajectory. Take a; and a; to be real
numbers satisfying C(aj,a;) = 0. There must then exist
xp0 € B*, yo0 € R™ (at least one of which is not the zero
vector) satisfying

(

Now extend (x00,¥00) to a system trajectory by

In —mA
«aZC

—a1 By
Im —a2Dy

X00
Yoo

) =0 (52)

x(p) = Jmo(i)"(i)‘l (53)
W) = o) (54)
W(p) = 0 (55)

It is easy to check that (53)-(55) is indeed a solution of the
gystem.

Returning to the general case (49)(51), we see thatif |az| =
r < 1 then we have a non-zero exponential (or sinusoidal)
state-output trajectory in the system, which tends towards
infinity as the pass number increases (but may remain sta-
ble along any given pass). Conversely, if |az] = r > 1 for
all poles {@1,a2}, then no trajectory tends to infinity for a
given value of p as the pass number increases, but there may
be ftrajectories tending to infinity along the pass. Thus we
again run up against the distinction between asymptotic sta-
bility and stabjlity along the pass. In order to avoid having
trajectories of the form (49)—(51) which are unstable either
along the pass or in the 4-direction, we also need to avoid
poles (aj,az) with |a;| < 1. Equivalently, with zero input
there should be no exponential/ sinusoidal state-output tra-
jectories which tend to infinity either in the pass-to-pass di-
rection or along the pass.

Given these results, suppose that the example under consid-
eration is stable along the pass. Suppose also that the LMI
based sufficient condition of Theorem 2 holds and the stabil-
ity margins have been computed from Thecrem 6. Then the
analysis of this section gives information of the form of the



trajectories which can arise in this example. Current work is
aiming to place a full interpretation on what this means for
onward analysis and controller design for these processes. -

7 Conclusions

Discrete linear repetitive processes aris¢ in a number of ar-
eas of practical and theoretic interest. Their essential unique
characteristic means that they cannot be studied and con-
trolled using either existing 1D linear systems theory or that
for 2D discrete linear systems described by the well known
and extensively studied Roesser and Fornasini Marchesini
state space models. Instead, a distinct systems theory must
be developed for them.

Previous work has established a rigorous stability theory for
linear repetitive processes based on an abstract model in a
Banach space setting which includes all such examples as
special cases. Application of this theory to discrete linear
repetitive processes has resulted in stability tests which can
be implemented by direct application (suitably medified in
some cases) of 1D linear systems tests. Even the ‘Nyquist-
like’ tests which can be applied here, however, do not sup-
ply useful indicators as to expected performance either open
loop or closed loop under suitable control action, e.g. the
equivalents of gain and phase margins in the single-input
single-output case.

Recently, the LMI approach has emerged as a potentially
very powerful tool for, in particular, the design of control
schemes for discrete linear repetitive processes. In this paper
we have started from an LMI based interpretation of stability
for them and then uscd this setting to solve currently open
problems relating to robustness and stability margins. Also
it is shown that this approach to these processes provides
a (potentially very powerful) method of extracting informa-
tion as to expected performance by means of the recently
developed concept of a pole for nD linear systems (special-
ized to the processes considered here). (This feature is not
present in the LMI approach to the analysis of other classes
of 2D linear systems.) Finally, some numerical case studies
(and associated simulation studies) on the application of the
results of this paper can be found in [10].

References

[1] Edwards, J. B.: ‘Stability problems in the control of
multipass processes’, 1974, Proceedings of The Institution
of Electrical Engincers, 121(11), pp. 1425-1431.

{2] Amann, N.,Owens, D. H., and Rogers, E.: ‘Predictive
optimal iterative learning control’, International Journal of
Control, 1998, 69(2), pp. 203-206.

{3] Roberts, P. D.: ‘Stability analysis of iterative optimal
control algorithms modelled as linear repetitive processes’,
2000, Proceedings of The Institution of Electrical Engineers,
Part D, 147(3), pp. 229-238.

4462

[4] Roesser, R. P.: ‘A discrete state space model for linear
image processing’, 1975, IEEE Transactions on Automatic
Control, AC-20(1), pp. 1-10.

[5] Fornasini, E., and Marchesini, G.: ‘Doubly-indexed
dynamical systems: state space models and structural prop-
erties’, 1978, Mathematical Systems Theory, 12, pp. 59-72,
1978.

[6] Rogers, E., and Owens, D. H. ‘Stability Analysis
for Linear Repetitive Processes”, (Springer-Verlag: Berlin,
1992}, Lecture Notes in Control and Information Sciences
Series, Vol 175.

[71 Rogers, E., Galkowski, K., and Owens, D. H.: *‘Con-
trol Systems Theory and Applications for Linear Repetitive
Processes’, (Springer-Verlag: Berlin 2002), Lecture Notes
in Control and Information Sciences Series, to appear.

[8] Agathoklis, P. ‘Lower bounds for the stability mar-
gin of discrete two-dimensional systems based on the two-
dimensional Lyapunov equation’, 1988, IEEE Transactions
on Circuits and Systems, 35, pp. 745-749.

[9] Wood, J. Oberst, U., Rogers, E., and Owens, D.
H.: A behavioural approach to the pole structure of one-
dimensional and multidimensionat linear systems, 2000,
SIAM Journal on Control and Optimization, 38(2), pp. 627-
661.

[10] Paske, W., Sulikowski, B., Galkowski, K., Rogers, E.,
and Owens, D. H.: *Numerical studies for LMI based con-
trol of differential and discrete linear repetitive processes’,
Technical Report, Untversity of Zielona Gora, Poland, 2001.
(Available via the 3rd author.)



