
Self-tuning Neurofuzzy Control for Nonlinear Systems with Offset

C. W. Chain, X. J. Liu, and W. K. Yeung
Department of Mechanical Engineering

The 1Jniversity of Hong Kong
Pokfulam Road, Hong Kong, China

E-mail: mechan@hkucc.hku.hk

Abstract
A self-tuning neurofuzzy controller with an ability to
remove offsets is derived in this paper based on the
self-tuning integrating controller derived for the local
linear model. The training target for the proposed
controllers is derived, and they can be trained by the
simplified recursive least squares (I U S) methold with
a computing time that is linear instead of geometric in
the number of weights in the network. Further, the
simplified RLS method not only has the same
convergence property as the RLS method, it also has a
better ability in tracking varying parameters. The
performance of the self-tuning neurofuzzy controller
is illustrated by examples involving both linear and
nonlinear systems.

Keywords: Self-tuning controllers, integrating
controllers, nonlinear controllers, neurofuzzy
networks.

1. Introduction
The development of nonlinear controllers based on
neural networks has attracted considerable interest
recently. The main motivation to use neural networks
for the implementation of nonlinear controllers is their
ability to approximate both linear and nonlinear
systems with arbitrary accuracy, and to be trained
from experimental data [l, 21. In general, neural
network based controllers are implemented using one
or two networks. In the indirect method, two neural
networks are usually used, one trained offline to
model the system or the inverse of the system, and the
other trained offline or online to implememt the
controller [3]. In [4], neural network based controllers
involving a conventional feedback controller is
proposed. The neural networks are trained by the
feedback-error-learning method either to mirnic the
inverse of the system, or a nonlinear regulatm. An
adaptive model reference control scheme based on
neural networks is presented in [5]. The neural
network controller is trained such that the output of
the system follows the output of a given reference
model. Single layer neural networks are used in these
schemes, and are trained by the slow gradient method.

NeurofUzzy networks have a number of attractive
properties to be used in implementing nonlinear

controllers. Similar to other neural networks, they can
approximate nonlinear functions with arbitrary
accuracy [12]. They have compact supports, and are
linear-in-weights networks. The latter property
enables the weights of neurofuzzy networks to be
estimated using welldeveloped linear parameter
estimation methods. To estimate these weights on-
line, recursive least squares (RLS) method can be
used. However, updating these weights on-line can be
time consuming, as the number of weights increases
geometrically as the complexity of the network
increases. To reduce the computing time, a simplified
RLS method is proposed in [6]. From the compact
property of neurofiuzy networks, it is shown that
there are a large number of zeros in the transformed
input of the network. Consequently, it is proposed in
[6] to simplify the U S method with only elements of
the covariance matrix associated with non-zero
elements of the transformed input are updated,
yielding a computing time linear instead of geometric
in the number of weights. It is further shown that the
convergence of the simplified IUS method is the
same as the RLS method.

Since neurofuzzy networks can be interpreted as a
network that consists of local models with a smooth
transition between them [8], neurofuzzy controllers
can be designed by adopting the same design for local
linear controllers. As self-tuning controllers are simple
to implement and can be trained on-line [9], they are
chosen in [7] to be the local linear controllers to
develop the self-tuning neurofuzzy controllers. The
self-tuning neurofUzzy controllers derived in [9] are
based on the generalized minimum variance control
law. In this paper, self-tuning integrating controllers
that have the ability to remove offset in the nonlinear
system [101 are considered.

The structure of this paper is as follows. In Section 2,
a brief description of the integrating controllers is
presented, followed by the derivation of the
neurofuzzy controllers and its training target in
Section 3. In Section 4, the on-line training of the
controllers is presented. The implementation and the
performance of the self-tuning controllers are
illustrated by two simulation examples, one involving
a linear system, and the other, a nonlinear system, as

0-7803-7078-3/0U$l0~00 (C)uw)l IEEE. Page: 1021

presented in Section 5 .

2. Integrating Controllers for Local Linear Models
A nonlinear system with fmite dimension can be
described by [111,
Y O) = f!N - 11, y(t - 2),- ,y(t - n),

(1) u(t - k), u(r - k - l),- --, u(t - k - m)]
where { # (I)) , Nt)) are the input and output
respectively; A.) is an unknown smooth nonlinear
function; n, m, and k are respectively the orders, and
the time delay of the system, which are assumed
known. As A.) is a smooth fhction, a local linear
model can be obtained ftom the linear term of the
Taylor series expansion off(.). A simple, yet effective
approach to control nonlinear systems is to switch
between local linear controllers designed at specified
operating points. The main advantage of this approach
is that only linear controller design techniques are
involved. However, the drawback is that the control
during the transition from one local model to another
may not always be smooth. In contrast, much
smoother transition can be obtained from neurofuzzy
networks, as they are able to approximate smooth
nonlinear fhctions with arbitrary accuracy [12]. For
this reason, neurofuzzy networks are chosen here to
implement the nonlinear controllers, which is
discussed in details in the following section. A brief
description of the integrating controller is presented in
this section, and the reader is referred to [IO] for
further details.

Let the im local linear models be given by
(2)

where e(r) is a white noise with zero mean and a
variance of d; i ' , the backward-shift operator; k, the
delay; A = 1 - if, the differencing operator, and

A'(z-')y(t) = ~ - ~ B ' (z - ') u (t) + C'(z-')e(t)/A

A'(z-1) = 1+ a;.-' +e.. + Qz-",

B ' (z - ') = ~ + q r z - ' + - - . + b ~ z - " ; b; # O
Rearranging (2) gives,

x (z - ') y (t) = z-kB'(z-l)Au(t) +C'(z-')e(r) (3)

where Z(Z- ') = A'(z-')A and
Au(t)=u(I)-u(t-1). As the control in (3) is in
incremental form, an integrator is being introduced
into the system for removing offsets. The integrating
controller is obtained by minimizing the following
cost function.

J = (I + k)] (4)

('(t + k) = P'y(r + k) + Q'u(f) - R'r(t) (5)
where &t) is the auxiliary output given by

P', Q' and R' are polynomials in i' and r(t) is the set

point. The integrating controller is derived by
splitting B(t+k) into two terms, one of which is set
to zero by the integral control A@, whilst the
other contains the white noise (e(t+l), . . ., e(t+k)).
This is achieved by using the Diophantine equation,

(6)
where E and Gi are polynomials in z-' with orders k-1
and ny respectively,

P'C' = E'&' + z-kG'

E'(z-')=l+e;z-' + . . . + , i k-1 Z-(t-')

G'(z-') = g: + g:,z-' + --. + g:,z-"y

nu = max(n, np + n, - k)
From (2) and (6), /(t) can be rewritten as,

1
@'(I + k) = --[G'y(r) + c'Qiu(r) - CiRir(t)

C' (7)
+ B'E'Au(t)] + E'e(t + k)

As the fmt term on the right hand side of (7) is
uncorrelated with the term containing e(f+k), &t) is
minimized by setting this term to zero, giving

(8)
Let Q' = e' A, (8) can be rewritten as

(9)

C'Q'u(t) + B'E'Au(r) + G'y(i) - CiRir(t) = 0

(C'Q''+B'E')Au(r) + G'y(t) - CiRir(z) = 0

or F'Au(2) + G'y(r) + H'r(t) = 0 (1 0)
where F' = C'Q''+B'E' , and H i = -C'R' . From
(1 O), the integrating controller is

~ u (t) = -F(z-')&(t) - $(z- ')y (t) - P'(z- l)r(t)
(11)

where

F ' (Z - l) = p (z - l) , f o ' -l=%$z-l
j-1

"Y

j = O
e (z - ') = G ' (~ - ') / f o ' = c&-'

n, -
j = O

B'(f-1) = fp(z-')/&j = Chi'z-1

fo' is the leading constant of Fi(z-') and n,,,n& are
the orders of the system.

3. Neurofuzzy Controllers Based on Local

A nonlinear controller based on the linear integrating
controller (1 1) can be expressed as follows,

Au& 1),-- A&- nd,)]

Integrating Controllers

(12)

where the notations are defined previously. The
nonlinear controller (12) is to be implemented by a
neurofuzzy network, and under certain conditions, it is

Au(t). ffy(0, a-., y(t - n,), r(r);.-, r(t - n,),

0-7803-7078-3/Ol/$lO~~ (C)U)ol IEEE. Page: 1022

a linear-in-weights network [SI, as given below.

where B = [4, 4, . . ., BPIT is the weight vector, x(t)
= Wt), ..., y(: - ny), r(t), ..., r(t - nJ, Au(t - l), ...,
Au(t - n h)] , the input vector and u(x(i)), the
transformed input vector. The dimension of .n(t), n,
is given by

and the number of weights, p . in the network is

Au(t) = aT(x(t))e (13)

n = ny +n, +n,, +2 ’ (14)

p=(Ry+pY)“’+‘(R, +p,)flr’+l(Rh +ph)”, (15)
where p,, p,, pau are the respective order of the basis
functions for fit), r(t) and Au(t), and R,, R, and R&,
the respective number of inner knots. The transformed
input, a,(x(t)), is the tensor products of the unjivariate
B-spline basis functions pAi (x k (t)) ,

From (1 3), the auxiliary output q5 (r+k) becomes
+ (t + k) = [A u (t) - ~ ~ (~ (t)) f ?] + E e (t + k) (17)

Rearranging (1 7) yields,
(18)

As the mean of e(t) is zero, and likewise, the mean of
Ee(t+k) is also zero. As e(?) is assumed to be a white
noise, Ee(t+k) is uncorrelated with the other tems on
the right-hand side of (18). The training target of the
neurofuzzy controller, denoted by dt), can be derived
fiom (18) as

(19)
where q5 (t+k) is computed by (5) for a given P(z?),
Mi’), and R(z-’).

J (~ (t)) 6 = Au(t) - 4(t + k) + Ee(t + k)

I&) = du(t - k) - b(t)

4. On-line Training of the Neurofuzzy Cootirollers
On-line training of the neurohzzy controller (13)
involves updating 0 recursively at each srunpling
interval. The RLS estimate of O(t) is given by I:lO],
s(t) = e(t - 1) +

P(t - l)a(x(t - k))[v(t) - aT(x(t - k))6’(t - - l)]
1 + UT (n(r - R))P(t - l)a(x(t - R))

P(t) = P(t - 1)-

P(t - l)a(x(t - k))ar(x(t - k))P(t - 1)
1 + uT (x(t - k))P(t - 1)a(x(t - k))

(20)
where P(t) is the covariance matrix at t. From the
compact support property of neurofUzzy networks [SI,
the number of nonzero elements in u(x(t)) is

(21) n,+l “ ,+I nbr
P’=Py Pr PAU

As an example, the neurohzzy network shown in Fig.
2 consists of two inputs h i f i e d by second order
basis functions, i.e., ny = n, = n b = 0, and pu = p, = 2.
Let the number of inner knots for y be chosen to be 5,
and that for w be chosen to be 4. From (15) and (2 l), p
and p’ are 42 and 4 respectively. From Fig. 2, only the
basis functions associated with the four squares
surrounding “1” are non-zero, when the knots y2 and
w2 are activated. Similar results are obtained for knots
b2, w3}, b3, w2}, and b3, w3}, showing that, in this
example, two inner knots of each variable are
activated each time. For the “x” shown in Fig. 2, the
knots Cy2, y3} in y and {w2, w3} in w are activated. As
the activated regions overlap each other, only nine
squares are activated, as shown in Fig. 2. For
convenience, let the non-zero elements, denoted by
al(x(t)), be arranged at the top of u(x(t)),

(22)
where 0 is a column zero vector of dimension (p - p’).
Let &t) and P(t) be similarly rearranged,

a(x(t)) = [UT (x (t)) oT I T

From (22) and (23), (20) can be rewritten as,
e, (ti - e, (t - I) =

0-7803-7&78-3/0l/$10.00 (C)u)Ol IEEE Page: 1023

activated, and the choice of the initial choice of the
covariance matrix, P(O), be a diagonal matrix. Then
P,2(0) = P2/(0) = 0, and P22(0) = W, where A is a
constant, and I, a unit matrix. From (25), PI2(t), Pz,(t),
and P&), and hence &(t) remain unchanged fiom
their initial values. Further, they do not affect the
estimate of the weights associated with basis functions
that have been activated. It implies that the input
domain, or the number of inner knots, of the input
variables can be expanded at any time without re-
computing both P(r) and qt). In other words, the
structure of the neurofuzzy controllers can be
expanded without re-training if the lUS method is
used with P(0) set to a diagonal matrix. "hiis unique
property of neurofuzzy networks does not generally
apply to other neural networks.

4.1 Simplified Recursive Least Squares Method
As the number of weights p given by (1 5) can be quite
large, updating B on-line may be quite time
consuming. To reduce computing time, the IUS
method can be simplified using the local change
property of neurofUzzy networks discussed earlier.
Instead of updating the whole P(t), only PI&), P12(t)
and P21(t) are updated, as indicated by the shaded
areas in Fig. 3. In this case, only p'(p@'-1)/2)
elements of P(t) are computed instead of p(pcl)/2
elements in the RLS method, and the computing time
is now linear in the number of weights. The saving in
computing time is significant, especially if p is much
larger thanp'. Rearranging (25b) gives,

P22 0) - P22(t - 1)
=- p2] (t - l)q (x(r - k))ar (x(t - k))q2(r - 1) (26)

1 + a:(x(t - k)) ~ , I (t - ~) a ~ (x(t - k))
From (26), the update of PZ2(t) involves subtracting a
positive definite matrix &om PE(t-l). Consequently, if
P&) is not updated, it is equivalent to adding a
positive definite matrix to it. As the right hand side of
(26) approaches zero as time tends to infinity [6],
adding a positive definite sub-matrix to P(t) at each
sampling interval is effectively adding a positive
definite matrix to P(t) over the whole training period.
Since it is well known that adding a positive definite
matrix to P(t) does not alter the convergence of the
RLS estimate [121, the simplified IUS method has the
same convergence property as the RLS method. A
further advantage of adding a positive definite matrix
to the covariance matrix is that its ability to track
varying parameters is enhanced [7].

4.2 On-line training procedure
The on-line training of the self-tuning neurofUzzy
controllers can be summarized below.

(1) Select (i) the number of input variables, i.e., n and
m, the delay k in eqn. 1, (ii) the order of the basis
functions, the range and the number of inner
knots for each input variable, (iii) P(z"), Q(z-')
and R(z-') in the generalized system output given
by (5).

(2) Initialize RO), say to 0.1, and P(O), say to 1001.
(3) Measure the output of the system f i t) , and update

qf) by (24), and P(t) by (25a).
(4) Compute the control u(t) by (1 3).
(5) Repeat steps (3) and (4).

5. Simulation Examples
Two examples, one involving a linear system, and the
other, a nonlinear system are presented. As expected,
the performance of the self-tuning neurofuzzy
controller is similar to the self-tuning controller in the
linear case, but is superior to the self-tuning controller
in the nonlinear case.

Example 1 Linear system
Consider the following linear system,

~ (t) = 1 Sy(t - 1) - 0.7y(t - 2) + ~ (t - 1)
(27)

where e(t) is a normally distributed noise with zero
mean and a standard deviation of 1. Let P= 1, R=l and
Q=O, then &) becomes

P(Q = Y (0 -4 - 1) (28)
Assuming (27) is known, the integrating controller
obtained from (1 1) is,

(29)

As the parameters in system (27) are assumed to be
unknown, the controller parameters in (29) are
estimated recursively on-line by the IUS method
given by (20) with RO) = 0.1, and P(0) = 1001. The
set point fir) is a triangular wave given by

02rem(t I1 00) if 0 S rem(t f 100) < 50
10-0.2rem(t/lOO) if 50 I rem(t/lOO) < 100

(30)

r(t) =

The system output using the integrating controller is
shown in Fig. 4. The self-tuning neurofuzzy controller
(1 3) is implemented with x(t) given by

As (27) is linear, two triangular basis functions are
selected for each input, giving p,, = p, = p. = 2, and Ry
= R, = R,,,, = 0. From (1 9, the number of weights of
the neurofuzzy network, p, is 32. The range ofy(r) and
r(t) is chosen to be between -5 and 10, whilst that for
Au(?) is between -5 and 5. The initial weights q0) are
set to 0.1, and the initial covariance matrix, P(O), to
1001. The system output for the neurofiuzy controller

+ 0.5u(t - 2) + e(t) /A

du(t) = -[2.5y(t) - 2.2y(t - 1) + 0.7y(t - 2) +
O.Sdu(r - 1) - r (f)]

{

x(t) = [y(t),y(t -1),~(~-2),r(t) ,Au(~-l)l (31)

0-7803-7078-3/0U$l0.00 (C)u)ol IEEE. Page: 1024

is shown in Fig. 5 . From the accumulated cost
functions shown in Fig. 6, the performance of the self-
tuning integrating controller and the self-tuning
neurofUzzy controller are similar.

Example 2 Nonlinear System
Consider the following nonlinear model,

y(t) = 0.3y(t - 1) + 0.6y(t - 2) +[u(t - 1)]“3 + ,e(t)/d

where e(t) is zero mean with a variance of 1 . Again,
the generalized output Kr) is

The set point is the square wave given by

The integrating control law is

(32)

O (0 = r (t) - r(t - 1) (33)

r(t)=7.5+2.5sign(cos(2nt/lOO)) (34)

jbAu(t) - &y(t) - &y(t - 1) - &y(t - 2) -r(t) = 0
(35)

Using the same initial values as in Example 1 , the
output using the self-tuning integrating controller is
shown in Fig. 7. Large oscillations after step changes
are observed.

The simulation is repeated using the n e w o w
controller (13) implemented with x(t) given by

The training target of the neurofuzzy controller is

Triangular basis functions is used for each input,
giving py = pr = 2, and Ry = R, = 1. The range of y(t)
and r(t) are selected to be between 3 and 12!. The
number of weights of the neurofuzzy network: is 81.
The output using the self-tuning neurofuzzy controller
is shown in Fig. 8, and is less oscillatory, and much
better than that using the self-tuning inteigrating
controller.

m = [y(t),y(t - 1),y(t - 2) , W l

y(r) = du(t - 1) - &t)

(36)

(37)

6. Conclusion
A self-tuning neurofuzzy controller with the ability to
eliminate offsets is derived based on self-tuning
integrating controllers for the local linear model. It is
shown that the proposed controllers can be traixled on-
line using the simplified RLS method. Not olnly the
computing time can be significantly reducied, the
simplified RLS method also has a better parameter
tracking ability. This is because updating the
covariance matrix in the RLS method partially has the
effect of adding a positive defmite matrix to the
covariance matrix. The implementation and the
performance of the self-tuning neurofuzzy controllers
are illustrated by simulation examples involving both
a linear and a nonlinear system. As expected, the
performance of the self-tuning n e u r o w controller
for the linear system is similar to that of the self-

tuning controller, but is superior to the self-tuing
controller for the nonlinear system.

References
K. J. Hunt, D. Sbarbaro, R. Zbikowski and P. J.
Gawthrop, “Neural Networks for Control Systems
- A Survey,” Automatica, 28 (6), 1992, pp. 1083-
1 1 12.
F. L. Lewis, “Nonlinear Network Structures for
Feedback Control,” Asian J. of Control, 1(4),

K. S. ‘Narendra and K. Parthasarathy,
“Identification and Control for Dynamic Systems
Using Neural Networks,” IEEE Trans. on Neural
Networks, I , 1990, pp. 4-27.
H. Gomi and M. Kawato, ‘Weural network control
for a closed-loop system using feedback-error-
learning for neural control of nonlinear systems,”
Neural Network, 6, 1993, pp. 933-946.
M. Yuan, A. N. Poo, and G. S . Hong, “Direct
neural control system: Nonlinear extension of
adaptive control,” IEE Proc.-Conk Theory Appl.,

C. W. Chan, K. C. Cheung, and W. K. Yeung, “A
computation-efficient on-line training algorithm
for neurofuzzy networks,” Int. J. Sys. Sciences,

W. K. Yeung, C. W. Chan, and K. C. Cheung,
“Self-tuning control for nonlinear systems based
on neurofuzzy networks,” UKACC Int. Con$ on
Control, Cambridge, UK, 4-7 Sept. 2000.
M. Brown, and C. J. Harris, Neurofuzy Adaptive
Modelling and Control, Prentice Hall, 1994.
D. W. Clarke, and P. J. Gawthrop, ‘Self-tuning
controller,’ Proc. IEE. 122,1975, PP. 929-934.

1999, pp. 205-228.

142(6), 1995, pp. 661-667.

31,2000, pp. 297-306.

[lo] D. W. Clarke, and P. S. Tu&, “Self-tuning
control of offset: a unified approach,” Proc. IEE,
Pr. D, 132,1985, pp.100-110.

[1 I] S. A. Billings, and W. S. F. Voon, “Piecewise
linear identification of non-linear systems,” Int. J.
Control, &(I), 1987, pp. 215-235.

[12] Kosko B., Neural Networks And F u y @stems,
Prentice-Hall, 1992.

0-7803-7078-3/OU$lO.W (C)zoOl IEEE Page: 1025

B-spline
basis function

Fig. 1 Neurofuzzy controller . .

\I ...
5

I
W

Fig. 2 Local change property of neurofuzzy networks

Fig. 3 Updating P in (a) RLS method and
(b) SRLS method

151

10

5
0

-5

-101
0 200 400 600 800 1000

Fig. 4 Output from self-tuning integrating controller

10

5

0

-5

-lo: 200 400 600 800 10bo
Fig. 5 Output fkom self-tuning neurofuzzy controller

15001 1

1000 i

:00-'400 500 600 700 800 900 Id00
Fig. 6 Accumulated cost functions for self-tuning
integrating controller (solid line) and self-tuning

neurofuzzy controller (dashed line)

10

5

o: 100 200 300 400 5;O
Fig. 7 Output using self-tuning integrating controller

for nonlinear system

15 I

10

5

"0 100 200 300 400 500
Fig. 8 Output using the self-tuning neurofuzzy

integrating controller

Page: 1026

