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Abstract

A self-tuning neurofuzzy controller with an ability to
remove offsets is derived in this paper based on the
self-tuning integrating controller derived for the local
linear model. The training target for the proposed
controllers is derived, and they can be trained by the
simplified recursive least squares (RLS) method with
a computing time that is linear instead of geometric in
the number of weights in the network. Further, the
simplified RLS method not only has the same
convergence property as the RLS method, it also has a
better ability in tracking varying parameters. The
performance of the self-tuning neurofuzzy controller
is illustrated by examples involving both linear and
nonlinear systems.

Keywords: Self-tuning controllers, integrating
controllers, nonlinear  controllers, neurofuzzy
networks.

1. Introduction

The development of nonlinear controllers based on
neural networks has attracted considerable interest
recently. The main motivation to use neural networks
for the implementation of nonlinear controllers is their
ability to approximate both linear and nonlinear
systems with arbitrary accuracy, and to be trained
from experimental data [1, 2]. In general, neural
network based controllers are implemented using one
or two networks. In the indirect method, two neural
networks are usually used, one trained offline to
model the system or the inverse of the system, and the
other trained offline or online to implement the
controller [3]. In [4], neural network based controllers
involving a conventional feedback controller is
proposed. The neural networks are trained by the
feedback-error-learning method either to mimic the
inverse of the system, or a nonlinear regulator. An
adaptive model reference control scheme based on
neural networks is presented in [5]. The neural
network controller is trained such that the output of
the system follows the output of a given reference
model. Single layer neural networks are used in these
schemes, and are trained by the slow gradient method.

Neurofuzzy networks have a number of attractive
properties to be used in implementing nonlinear
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controllers. Similar to other neural networks, they can
approximate nonlinear functions with arbitrary
accuracy [12]. They have compact supports, and are
linear-in-weights networks., The latter property
enables the weights of neurofuzzy networks to be
estimated using well-developed linear parameter
estimation methods. To estimate these weights on-
line, recursive least squares (RLS) method can be
used. However, updating these weights on-line can be
time consuming, as the number of weights increases
geometrically as the complexity of the network
increases. To reduce the computing time, a simplified
RLS method is proposed in [6]. From the compact
property of neurofuzzy networks, it is shown that
there are a large number of zeros in the transformed
input of the network. Consequently, it is proposed in
(6] to simplify the RLS method with only elements of
the covariance matrix associated with non-zero
elements of the transformed input are updated,
yielding a computing time linear instead of geometric
in the number of weights. It is further shown that the
convergence of the simplified RLS method is the
same as the RLS method.

Since neurofuzzy networks can be interpreted as a
network that consists of local models with a smooth

transition between them [81, neurofuzzy controllers .

can be designed by adopting the same design for local
linear controllers. As self-tuning controliers are simple
to implement and can be trained on-line [9], they are
chosen in [7] to be the local linear controllers to
develop the self-tuning neurofuzzy controllers. The
self-tuning neurofuzzy controllers derived in [9] are
based on the generalized minimum variance control
law. In this paper, self-tuning integrating controllers
that have the ability to remove offset in the nonlinear
system [10] are considered.

The structure of this paper is as follows. In Section 2,

a brief description of the integrating controllers is
presented, followed by the derivation of the
neurofuzzy controllers and its training target in
Section 3. In Section 4, the on-line training of the
controllers is presented. The implementation and the
performance of the self-tuning controllers are
illustrated by two simulation examples, one involving
a linear system, and the other, a nonlinear system, as
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presented in Section 5.

2. Integrating Controllers for Local Linear Models
A nonlinear system with finite dimension can be
described by [11],

YOy = Iy -1, y(t=2),--, y(t —n), o

u(t —k),u(t—k—1),---,u(t — k-~ m)]

where {u(f)}, {Af)} are the input and output
respectively; A.) is an unknown smooth nonlinear
function; n, m, and k are respectively the orders, and
the time delay of the system, which are assumed
known. As A.) is a smooth function, a local linear
model can be obtained from the linear term of the
Taylor series expansion of £.). A simple, yet effective
approach to control nonlinear systems is to switch
between local linear controllers designed at specified
operating points. The main advantage of this approach
is that only linear controller design techniques are
involved. However, the drawback is that the control
during the transition from one local model to another
may not always be smooth. In contrast, much
smoother transition can be obtained from neurofuzzy
networks, as they are able to approximate smooth
nonlinear functions with arbitrary accuracy [12]. For
this reason, neurofuzzy networks are chosen here to
implement the nonlinear controllers, which is
discussed in details in the following section. A brief
description of the integrating controller is presented in

this section, and the reader is referred to [10] for
further details.

Let the i* local linear models be given by

A YO =z*B' @) +C'z Ve)/A ()
where e(f) is a white noise with zero mean and a
variance of ¢o%; z”/, the backward-shift operator; %, the
delay; A =1 - z”, the differencing operator, and
A H=1+dz"'+ - +diz™",

Bz )y=b,+bz +wblz™; )20

Rearranging (2) gives,
Ay =B HAu)+Ci iz Net)  (3)
where A NH=4E"A and

Aut)=u(t)—u(t-1). As the control in (3) is in
incremental form, an integrator is being introduced
into the system for removing offsets. The integrating
controller is obtained by minimizing the following
cost function.

J=E[¢" @+ k)] @
where #(t) is the auxiliary output given by
¢ (t+k)= Pyt +k)+ Q'u(t) - R'r(?) )

P, 0’ and R’ are polynomials in z” and r(t) is the set
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point. The integrating controller is derived by
splitting @(++k) into two terms, one of which is set
to zero by the integral control Au(f), whilst the
other contains the white noise {e(r+1), ..., e(t+k)}.
This is achieved by using the Diophantine equation,
P'C' =E'AM' + 274G’ ©)
where £’ and G' are polynomials in z”' with orders -1
and n, respectively,
E'(z")=1+ez7" + 46z

n

G'z")=go+g 2"+ g2
n, =max(n,n, + n, - k)
From (2) and (6), ¢(t) can be rewritten as,
) 1 . . o
+ k) =—[GC'y@)+C'Q'u®)-C'R'r(t
g(t+k) C,[ Y0+ C'Qu) ® D
+B'E'Au@®)]+ E'e(t + k)
As the first term on the right hand side of (7) is
uncorrelated with the term containing e(t+k), #(t) is
minimized by setting this term to zero, giving
C'Qu)+ B EAu(t)+ G y(t)-C'Rir())=0  (8)
Let & = 0'A, (8) can be rewritten as
(C'Q"+B' ENAu(t) + G'y(t)-C'R'r(#) = 0 )
or F'Au@®)+G'y(t)+ H'r(t)=0 10)
where F'=C'Q"+B'E', and H'=-C'R'. From
(10), the integrating controller is
Au(t)=~F'(z"au()-G')y()) - H' (z”)r()
a1n

where

fi(z-l) =Fi(2-l)/f: __l=jz"‘l ‘;‘z-l

n,o
G'(zM=G'@EN fi=Yg)"

j=0
H@EY=H @YY fi= "z’f;;'z"
J=0

/4 is the leading constant of F'(z™') and n,,n,, are
the orders of the system.

3. Neurofuzzy Controllers Based on Local
Integrating Controllers

A nonlinear controller based on the linear integrating

controller (11) can be expressed as follows,
Au(t= fly®), -, y(t-n,), 1@, r(t-n,), 12)

Au(t-1),---Au(t-n,,)]

where the notations are defined previously. The

nonlinear controller (12) is to be implemented by a

neurofuzzy network, and under certain conditions, it is
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a linear-in-weights network [8], as given below.

Au(r) = d¥ (x(1))0 a3)
where 8=[8,, &, ..., 6,]" is the weight vector, x(t)
= [y(t), R }’(1 = ny)’ r(t), sesy r(l = nr)9 Au(t = l)a sery
Au(t - nA,,)]T, the input vector and a(x(f)), the
transformed input vector. The dimension of x(?), n,
is given by

n=n,+n, +n,, +2

. (14)

and the number of weights, p, in the network is
1

P=R, +p)"" (R, + p, )" Ry, + pa)™ (1)
where p,, p,, pa. are the respective order of the basis
functions for y(¢), r(f) and Au(?), and R, R, and Ry,
the respective number of inner knots. The transformed
input, a,(x(?)), is the tensor products of the univariate
B-spline basis functions u 4 (x (1)),

A 0) =TT (e )
=1

From (13), the auxiliary output ¢ (++k) becomes

Bt + k) = [Au(t) - a” (x(£))8]+ Ee(t + k) )
Rearranging (17) yields,

a’ (x(£)6 = Au(r) - ¢t + k) + Ee(t + k) 18)
As the mean of e(f) is zero, and likewise, the mean of
Ee(t+k) is also zero. As e(7) is assumed to be a white
noise, Ee(r+k) is uncorrelated with the other terms on
the right-hand side of (18). The training target of the
neurofuzzy controller, denoted by y(#), can be derived
from (18) as

w(t) = Au(t ~ k) - 4(1) 19
where ¢ (++£) is computed by (5) for a given P(z”),
O(z"), and R(z™).

4. On-line Training of the Neurofuzzy Controllers
On-line training of the neurofuzzy controller (13)
involves updating & recursively at each sampling
interval. The RLS estimate of &(f) is given by [10],
oM =6( -+ ]
P(t = Da(x(t - k) (O) - a” (x(t = k)6 - 1]
1+a" (x(t-k))P(t-)a(x(t-k))

P(@t)=P(t-1)~

P(t = Da(x(t - k)a" (x(t - k)Pt ~1)

1+a” (x(t — k) P(t - Da(x(t - k))

(20
where P(f) is the covariance matrix at ¢. From the
compact support property of neurofuzzy networks [8],
the number of nonzero elements in a(x(?)) is

y n, +1 n,+1
p=p’

P pa @n
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As an example, the neurofuzzy network shown in Fig.
2 consists of two inputs fuzzified by second order
basis functions, i.e., n, = n, = n4, =0, and p,= p,= 2.
Let the number of inner knots for y be chosen to be 5,
and that for w be chosen to be 4. From (15) and (21), p
and p’ are 42 and 4 respectively. From Fig. 2, only the
basis functions associated with the four squares
surrounding “1” are non-zero, when the knots y, and
w, are activated. Similar results are obtained for knots
{2 w3}, {vs, wz}, and {y;, w;}, showing that, in this
example, two inner knots of each variable are
activated each time. For the “x” shown in Fig. 2, the
knots {y,, y;} in y and {w,, w;} in w are activated. As
the activated regions overlap each other, only nine
squares are activated, as shown in Fig. 2. For
convenience, let the non-zero elements, denoted by
a(x(1)), be arranged at the top of a(x(?)),

a(x(0)) =[a] (<)) 0"Y 2)
where 0 is a column zero vector of dimension (p - p').
Let &¢) and P(f) be similarly rearranged,

o =16] @) 65 )

_[B:® R (23)

ro=[30 720)

From (22) and (23), (20) can be rewritten as,
G()-6,¢-n=
Pyt —Day(x(t—k))~
B, (t=Day (x(t = k)a] (x(t= k)P, (¢ = Da, (x(t - k)) [6(¢)
1+a] (= k)P, (¢ - D)ay (1~ k)

(24a)
0,)-0,t-1=
Py(t-Da,(x(t-k)-
Py (¢ =Day (x(t = k))a] (x(t = k)P, (¢t —Day(x(t - k)) [5()
L+ af (x(t~ k)P, (¢ = Day (x(¢ — k)

(24b)
By(t)=Py(t-1)-
By (¢ =Day(x(t - k))a] (x(t - k)P, (- 1)
1+a] (x(t= k)R, (t - Day (x(t -~ k)
By(t)= Py () r (259)
=Py(t-1)-
By (t=1)ay(x(t - k))a] (x(t = k)Pt 1)
1+ a,T (x(t = k)P, (t = Va,(x(t —k))

Py(t) = Pyt ~1)-
Py (t = Day(x(t — k))af (x(¢ — k)R, (2 - 1)
1+a] (x(t = k)P, (¢ — Day (x(¢ — k)

(25b)
where £(1) = () - a] (x(1 - k)8, (¢ —1). Let 6(?) be
the weights of all basis functions that have not been
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activated, and the choice of the initial choice of the
covariance matrix, P(0), be a diagonal matrix. Then
P1{0) = P, (0) = 0, and P,0) = Al, where 1 is a
constant, and /, a unit matrix. From (25), P,(?), P2(t),
and P;y(t), and hence 6(7) remain unchanged from
their initial values. Further, they do not affect the
estimate of the weights associated with basis functions
that have been activated. It implies that the input
domain, or the number of inner knots, of the input
variables can be expanded at any time without re-
computing both P(#) and &%). In other words, the
structure of the neurofuzzy controllers can be
expanded without re-training if the RLS method is
used with P(0) set to a diagonal matrix. This unique
property of neurofuzzy networks does not generally
apply to other neural networks.

4.1 Simplified Recursive Least Squares Method
As the number of weights p given by (15) can be quite
large, updating @ on-line may be quite time
consuming. To reduce computing time, the RLS
method can be simplified using the local change
property of neurofuzzy networks discussed earlier.
Instead of updating the whole P(#), only Py(), P10
and P,i(¢f) are updated, as indicated by the shaded
areas in Fig. 3. In this case, only p'(p-(p’-1)/2)
elements of P(f) are computed instead of p(p+1)/2
elements in the RLS method, and the computing time
is now linear in the number of weights. The saving in
computing time is significant, especially if p is much
larger than p'. Rearranging (25b) gives,
Py (@) - Pp(t-1)
__ Pt -Da (- kol (x(t -E)Pye=1) (26)
L+ af (x(t = K)A ¢~ Day(x(t = k)

From (26), the update of Px(f) involves subtracting a
positive definite matrix from Py (#-1). Consequently, if
Px(f) is not updated, it is equivalent to adding a
positive definite matrix to it. As the right hand side of
(26) approaches zero as time tends to infinity [6],
adding a positive definite sub-matrix to P(t) at each
sampling interval is effectively adding a positive
definite matrix to P(t) over the whole training period.
Since it is well known that adding a positive definite
matrix to P(f) does not alter the convergence of the
RLS estimate [12], the simplified RLS method has the
same convergence property as the RLS method. A
further advantage of adding a positive definite matrix
to the covariance matrix is that its ability to track
varying parameters is enhanced [7].

4.2 On-line training procedure
The on-line training of the self-tuning neurofuzzy
controllers can be summarized below.

0-7803-7078-3/01/$10.00 (C)2001 IEEE.

(1) Select (i) the number of input variables, i.e., » and
m, the delay & in eqn. 1, (ii) the order of the basis
functions, the range and the number of inner
knots for each input variable, (iii) P(z"), Q")
and R(z”) in the generalized system output given
by (5).

(2) Initialize &0), say to 0.1, and P(0), say to 100/.

(3) Measure the output of the system )(f), and update
&) by (24), and P(¢) by (25a).

(4) Compute the control u(z) by (13).

(5) Repeat steps (3) and (4).

5. Simulation Examples

Two examples, one involving a linear system, and the
other, a nonlinear system are presented. As expected,
the performance of the self-tuning neurofuzzy
controller is similar to the self-tuning controller in the
linear case, but is superior to the self-tuning controller
in the nonlinear case. .

Example 1 Linear system
Consider the following linear system,
YO =15y¢-1)-07p(t-2)+u(t-1)
+0.5u(t - 2) + e(r)/A
where e(t) is a normally distributed noise with zero
mean and a standard deviation of 1. Let P=1, R=1 and
Q=0, then ¢(r) becomes
¢)=y(t)-r-1) (28)
Assuming (27) is known, the integrating controller
obtained from (11) is,
Au(ty=—[2.5p(8) - 229t - 1) + 0.7y(t = 2) + 29)
0.54u(t - 1) ~ r(®)]
As the parameters in system (27) are assumed to be
unknown, the controller parameters in (29) are
estimated recursively on-line by the RLS method
given by (20) with 40) = 0.1, and P(0) = 100/. The
set point /(?) is a triangular wave given by
)= { 02rem(t/100)  if 0<rem(t/100) <50
10-0.2rem(t/100) if 50 < rem(t/100) <100
(30)
The system output using the integrating controller is
shown in Fig. 4. The self-tuning neurofuzzy controller
(13) is implemented with x(t) given by
x() =[y(t), y(¢ ~1), y(t = 2),r (1), Au(t - 1)] €2
As (27) is linear, two triangular basis functions are
selected for each input, giving p,= p,= p,= 2, and R,
= R, = Ry, = 0. From (15), the number of weights of
the neurofuzzy network, p, is 32. The range of y(7) and
r(t) is chosen to be between —5 and 10, whilst that for
Au(?) is between —5 and 5. The initial weights &0) are
set to 0.1, and the initial covariance matrix, P(0), to
1001. The system output for the neurofuzzy controller

27
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is shown in Fig. 5. From the accumulated cost
functions shown in Fig. 6, the performance of the self-
tuning integrating controller and the self-tuning
neurofuzzy controller are similar.

Example 2 Nonlinear System
Consider the following nonlinear model, }
YO =03yt ~1)+0.6y(t —2) +[u(t - DI'"> +e(r)/ 4
(32)
where e(f) is zero mean with a variance of 1. Again,
the generalized output &(f) is '

$@)=y()~r@-1) 33)
The set point is the square wave given by
r()=7.5+2.5sign(cos(2n#/100)) (34)
The integrating control law is
JoAu()— goy(O)- g1yt 1) -8yt -2)-r(®) =0
(35)

Using the same initial values as in Example 1, the
output using the self-tuning integrating controller is
shown in Fig. 7. Large oscillations after step changes
are observed. :

The simulation is repeated using the neurofuzzy
controlier (13) implemented with x(t) given by

x(0) = (@), y(t - 1), y(t - 2),r ()] (36)
The training target of the neurofuzzy controller is
y() = du(t-1) - ¢() 37N

Triangular basis functions is used for each input,
giving p,= p,= 2, and R, = R, = 1. The range of y(1)
and r(r) are selected to be between 3 and 12. The
number of weights of the neurofuzzy network is 81.
The output using the self-tuning neurofuzzy controller
is shown in Fig. 8, and is less oscillatory, and much
better than that using the self-tuning integrating
controller.

6. Conclusion

A self-tuning neurofuzzy controller with the ability to
eliminate offsets is derived based on self-tuning
integrating controllers for the local linear model. It is
shown that the proposed controllers can be trained on-
line using the simplified RLS method. Not only the
computing time can be significantly reduced, the
simplified RLS method also has a better parameter
tracking ability. This is because updating the
covariance matrix in the RLS method partially has the
effect of adding a positive definite matrix to the
covariance matrix. The implementation and the
performance of the self-tuning neurofuzzy controllers
are illustrated by simulation examples involving both
a linear and a nonlinear system. As expected, the
performance of the self-tuning neurofuzzy controller
for the linear system is similar to that of the self-
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tuning controller, but is superior to the seif-tuing
controller for the nonlinear system.
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