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ABSTRACT

Kink-pair generation in three-fold screw dislocations in the bec lattice is investigated within
the framework of the generalised Peierls-Nabarro model. Using a piece-wise plane strain
approximation, the apparent activation energy is predicted to vary with stress in a parabolic
manner which is in good agreement with experimental findings.

INTRODUCTION

Most of the current understanding of the behaviour of screw dislocation cores in the bcc
lattice is by and large derived from atomistic simulation studies performed in the last three
decades or so. These atomistic investigations lead to the current perception that i) 2<111> screw
dislocation cores are in general three-fold dissociated with intrinsically high Peierls stress of the
order of 10 p, p being the shear modulus, ii) their slip behaviour violates Schmid’s law, iii) their
motion at zero-temperature may follow a path along {101} or a zig-zag path averaging along a
twinning or anti-twinning {112} plane, and iv) their motion can be affected by non-glide stress
components. At finite temperatures, motion of screw dislocations does not happen in a plane-
strain manner but is effected by the generation and nucleation of kink-pairs, and at low
deformation temperatures, it is the nucleation of these kink-pairs that forms the rate determining
step for slip. The application of atomistic simulation to the investigation of kink-pair generation,
however, has so far been very limited, as kink problems are essentially 3-D problems in which the
number of atoms to be handled may be too large. In this respect, the most frequently used research
tool is still the continuum approach involving the line tension approximation and the
phenomenological concept of Peierls potential [1]. The Peierls potential, being the energy
potential of the dislocation with respect to its “position”, is purely phenomenological because the
constraint that must be applied to keep the dislocation at a general non-equilibrium position
cannot be clearly defined. Also, the introduction of an inner cut-off radius in the line tension
disconnects the whole approach from the vast body of literature on the core behaviour of the
dislocation.

In the light of these difficulties, the present work aims at developing a semi-continuum model
which combines certain elements of the atomistic and continuum picture of the dislocation kink-
pair problem. The model is essentially an extension to the Peierls-Nabarro model, in which the
dislocation core is envisaged as comprising of linear elastic regions connected to one another
along certain surfaces over which a non-linear misfit force law acts. The misfit force law is
readily established as the y-surface, which can be calculated using atomistic means for specific
materials. With the introduction of the misfit surfaces, the elastic field of the dislocation no longer
carries any singularities and so the introduction of the dubious inner cut-off is not necessary.

THEORY

The bec lattice obeys three-fold rotational symmetry about <111> and in the generalised P-N
model [2,3], a screw dislocation along this direction is considered to be composed of three 120°
elastic wedges with the wedge boundaries along three {101} planes as shown in Fig. 1. The
wedges are strained into an anti-plane strain manner so that when they are welded together at the
far field, the long-range field of the screw dislocation is established there. At the centre of the
dislocation, the total Burgers vector content is partitioned amongst the misfit displacements of the
adjacent wedge faces as shown in Fig. 1. The interaction between adjacent wedge faces is
characterised by a non-linear force law y[®], where @ is the misfit displacement. The total energy
per unit length E,,; of the dislocation is therefore composed of three parts: i) the strain energies of
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the wedges, ii) the misfit energy of the three cuts, and iii) the work done by the applied stress 7,.

Each of these energy terms is a functional of the boundary displacement functions ;. defined for
each wedge relative to the position of the wedge tip. E,, can therefore be expressed as [4]:
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in which the double integral terms represent the strain energy, the yterms the misfit energy and
the 7, terms the work done against the applied stress 7,. In this equation, b is the Burgers vector,
Ay the fractional Burgers vector content of the ilj cut, and x the angle between the maximum
resolved shear stress plane and the 213 cut in Fig. 1. At equilibrium without an applied stress, the
core should adopt the symmetrical three-fold configuration for which Ay, = Ag, = '/3, and when
the core becomes planar along, say, the 213 cut under thermal agitation or a large enough 7,, Ay, =
Az; = 0. The atomic force law y[®] can be calculated for specific materials using atomistic
simulation [5]. The static core configuration under any predefined stress level can then be
obtained by minimising E, in eqn. (1) with respect to u;; and Ay; using a variational technique.
For example, the Peierls stress, i.e. the stress required to constrict the three-fold core to the planar
configuration, estimated by a Frenkel force law is ~ 0.04 ¢t when y = 0° [6], which is in good
agreement with typical values calculated by atomistic simulation or measured by experiments.

At finite temperatures, the dislocation will not move as a rigid line but will have to go through
a saddle configuration in the form of a kink-pair illustrated schematically in Fig. 2. In this
configuration, the dislocation core changes continuously from the fully dissociated state into the
fully recombined state through a kink, and then back to the fully dissociated state through another

Fig. 1 - Three-fold Screw Dislocation Core Fig. 2 - Double Kink Configuration
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kink with opposite sign as shown in Fig. 2. The geometry represents a 3-D elasticity problem and
the mathematics can be greatly simplified by invoking the piecewise anti-plane strain
approximation, in which we assume that for each section perpendicular to the dislocation line, the
local degree of recombination can be characterised by a generalised coordinate ¢, whose value
varies from o ~ O for the fully dissociated state to o, ~ 1 for the fully recombined state. The kink
shape is then marked by the function o(n), where 7 is the spatial coordinate along the dislocation
line. The section at 77 is assumed to have a screw direction displacement field 4° in cylindrical
coordinates given by

u%(r,0,m) = u’(r,6) + o(m) fr,6), 2

where u”(r,9) is the screw direction displacement of the stress free, 3-fold symmetrical anti-plane
strain state, and f{r,6) is the displacement change on going from the w*(r,0) reference state to the
fully recombined planar state. In eqn. (2) are implied two approximations. The first is a
linearisation approximation, in which the saddle path the core configuration moves along is
approximated by the “straight line” joining the starting three-fold and ending two-fold states. The
second is the piecewise anti-plane strain approximation as discussed above, which is valid only at
the high stress (or low temperature) regime during which the rate-determining step involves kink-
pair nucleation. If kink-pair separation is instead the rate-determining step as in the case of the
low stress (or high temperature) regime, the two opposite kinks are well-formed and sharp. In this
situation, the long-range elastic interaction between the two opposite kinks will dominate and the
classical treatment using Volterra fields will be more valid [7].

With the assumptions spelt out in eqn. (2), the different energy contributions of the double
kink configuration can be calculated as follows.

i) Self energy E,.;r - Using the stress-free, symmetrical three-fold dissociated state as the reference,
the energy change of a partially recombined core given by eqn. (1) may be expressed as OE;; =
OE,. s - T,V', where SE,. comprises of the strain and misfit energy changes, and the 7, term in
which V‘ais the activation volume represents the work done change. It has been shown beforehand
[2,3] that the energy per unit length of the equilibrium planar state is higher than the three-fold
dissociated state by an amount AE ~ 0.03 ub’. AE constitutes the energy barrier that must be
overcome before the ground state three-fold configuration can be transformed into the mobile
planar state, and in the absence of thermal agitation, this is solely overcome by an applied stress
equal to the zero-temperature Peierls stress. Thus in the double kink configuration shown in Fig.
2, a slab situated within the fully recombined planar segment (with ¢ ~ 1) would have energy per
unit length AE higher than one situated well within a ground state segment (with ¢ ~ 0), and so it
seems reasonable to associate the self-energy OE,.s of a partially recombined slab with the
corresponding ¢ value by a piecewise parabolic relationship:

AEQPc for 0sasc
6Eself(a) = { ) €))
AE - AE(a-1)/(1-¢) forcsaxl

where ¢ is a constant between 0 and 1. Detailed consideration of the strain and misfit energy terms
in eqn. (1) using a Rayleigh-Ritz approach to be published elsewhere [4] shows that the lowest
energy path can be well approximated by eqn. (3) with ¢ set to 0.2 and AE to 0.03 ub®. With these
prescriptions, the total self-energy of the double kink configuration Ej is then given by

Ewy = [6E,, (@)dn . @
4]

ii) Interaction_energy Ei, - Provided that o(n) is slowly varying, the interaction energy Ein
between the slabs is given by
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where E is the Young's modulus, and du,(r,6) is the displacement change in polar coordinates of
the interior of wedge i when the core goes from the initial three-fold configuration to a general
configuration specified by o under the anti-plane strain condition. From eqn. (2), ou,(r.6) =
a(n) fi(r,0), so that eqn. (5) can be rewritten as

B = | Lef

0

where p=3 [ tfrorrarae ©)

i=1 wedge i

EPdn (5a)

P can be calculated numerically from eqn. (6) [4] but physically, VP is simply the root-mean-
squared change in the displacement on going from the three-fold to the planar configuration
multiplied by an effective size of the core, and so v P is of the order of b°.

iii) Work-done E,, by the applied stress T, - The work done term in eqn. (1) as the symmetrical
three-fold core recombines into the planar state, within Eshelby’s superposition spirit, is equal to
the summation over the cuts ilj of the products of the stress component acted on each cut and the
area change of the cut dA;; during the recombination. The work done for a partially recombined
section d7, within the linearisation approximation, is thus given by:

1,dV" =17, cos(120° — x)a(1)8A,,dn + T, cos Y(M)6A,,dn + T, cos(120° + x)a (A, dn,
but because 841, = dA3; <0 (= -Ay, say) and dAx; > 0 (= Ay, say), this equals to
7,dV" = (M), cos X (04, + A, )dn

=a(m)t, cosy A'dn

where A" = A;+A, is approximately constant with respect to orientation. Obviously, A” is of the
order of a few b%. For one half of the kink-pair configuration, the total work done is therefore

E, =tA cosy Jammdn . %)
0

The total energy H of the whole kink-pair is
H=2x [ {[0Eul(@) - SEl0)] - T, A" cos x (ot o) + EPG™/2} dn  (8)
0

where o marks the static anti-plane strain configuration under 7, and is given by ¢ = TaA*cos;(

c/Q2AE).
PREDICTIONS

Orientation Dependence of Peierls Stress

The zero-temperature Peierls stress 1, is the value of 7, when ¢, = ¢ in the anti-plane strain
condition, and is given by
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2AE 9
T = A cos x ©)
Since AE ~ 0.03 ub” and A is of the order of a few b*, within the allowable range +30° for ¥, 7, ~
10° M, which is the order of magnitude observed experimentally. From eqn. (9), 1, is orientation
dependent, showing a minimum at y = 0° and maximum at y = +30°. Such a 7,-) relationship is
indeed what is observed in Fe and Mo [8]. The magnitude of variation in 7, from y = 0° to £30°
estimated by eqn. (9) is ~ 10~ 1, which is again in very good agreement with experimental results
for Fe and Mo. Generally speaking, for bee metals which exhibit this type of 7,- x relationship,
the slip plane would always be {101} irrespective of the stress orientation ¥, and this is indeed
what is assumed to happen in the present model. In the atomistic simulation performed by Vitek
and co-workers [9], this corresponds to the behaviour of the J, potential which yields the widest
dissociation on {101} planes. If dissociation is of limited extent on {101} planes, there is a
general tendency for the core to glide on a {112} plane, and the selection of twinning or anti-
twinning {112} is dependent on the stress orientation. The associated 17,-y relationship would
exhibit a maximum at the y value at which the slip plane changes from twinning to anti-twinning
{112}, and in general, 7, for twinning slip is lower than that for anti-twinning slip. This
twinning/anti-twinning asymmetry in the slip behaviour of bce materials like Ta, Li-Mg, AgMg
and f-CuZn is not predicted by the present model simply because the detailed atomic arrangement
along the screw direction is not modelled here.

Critical Kink Shape

At finite temperatures, the critical kink shape can be obtained by extremising H in eqn. (8)
with respect to o). The predicted critical kink height, defined here as o, = (0), is found to be

G =(lc +1)-t [ VIc +1-01, (10)

where = 7,/T, is a normalised stress. The critical kink height therefore decreases as the applied
stress ¢ increases, and this is in qualitative agreement with atomistic calculations [7]. The kink
separation may be defined to be the separation 2 x 7, between the two points 71 = 7], at which
o(£1,) = ¢ (see Fig. 2), and

Ne = J(A=c)EP/(2AE) tan"[—,/c/(l—c)]. an

The critical kink separation is therefore stress independent, again in qualitative agreement with
atomistic simulation [7].

Activation Energy

The minimised value of H from eqn. (8) is found to be

H = (1-1? [J2(AE)CEP + 2AEn, /(1-¢)] . (12)

The apparent activation energy is therefore predicted to vary parabolically with the applied shear
stress r. Fig. 3 shows the experimental data of activation energy vs stress for potassium and high
purity iron. It can be seen that the experimental data for both Fe and K fall on the same
relationship \/(H/,ub3) = (0.30 £ 0.03) x (1-1), where ¢t = 7, /7,. Furthermore, for the case of Fe,
this relationship also holds for two different tensile orientations as indicated. The Table shows the
experimental values of v (H(Ta=0)/,ub3) for a few other bce metals, which indicate clearly that the
parameter falls in a narrow range around 0.30 % 0.03. The constancy of the relationship v/ (H/uba)
= 0.3 x (1-t) is a strong verification for the present model, which predicts the same relation as
expressed in eqn. (12) if one takes the expected values AE ~ 0.03 ub*, ¢~ 0.2 and EP ~ 0.1 ub*.
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Fig. 3 also shows the atomistic simulation results for K by Duesbury {7], which significantly
overestimate the kink energy at the intermediate to large stress regime.

Activation Energy (H
\ pb?

O
0.30%0 5
0.25 Fig. 3 - Activation Energy vs
0.3 Normalised Applied Stress
0.15 [Ref. for K: Basinski,
: Duesbury and Murty
0.1 D Potassium (1981); for Fe: Aono,
o A Kuramoto and Kitajima
0.05 °A} Jron (1981).]
0.2 0.4 0.6 0.8 1
Normalized stress (t)
Table - Experimental Values of Zero-stress Activation Energies
Cr Ta \Y% Mo w Nb
VH(T=0)/ub* 0.25-0.30  0.28-0.31 0.34 0.30 0.28 0.30
References « experimental data quoted in Dorn and Rajnak (1964) - Conrad and
Hayes (1963)
CONCLUSIONS

The movement of 1/2<111> screw dislocations in Fe-like bce metals can be modelled within
the framework of the generalised Peierls-Nabarro model. The apparent activation energy is
predicted to vary with stress in a parabolic manner, in good agreement with experimental findings
for iron and potassium.
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