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Consider a nonlinear system 3 described by equations of
the form

z=f(z) + g1 (x)wo + ng‘ (2)us

1
z= [h’{(m) Uy v uq]T (2)

where £ € X C R" with 0 € R™ is the state; u; € R™
local control; y; € RP* local measurement; wo and w;’s
square-integrable disturbances; and z regulated regualted
output. The functions f(z), g1(z), h1(x), g2:(x) and hy;(z)

(i=1,---,q) are all known and smooth in X with f(0) =0,
h1(0) = 0 and h9;(0) =0 (i = 1,--+,q). For convenience,
we denote
w="lf - uf), y=[ oyl
we = [wg -+ wgl", g2(2) =[g21(x) - g2q()]
ho(z) = [hay(z) -+ hi,(2)]".

Decentralized H., Controller Design (DHCD) Prob-
lem: Given the system 3 of (1)-(3) and a positive constant
7, find controllers of the following form

Li=as(&) + bi(&)ys, & € R™
u;=ci(&), i=1,---,q

(4)
(5)

such that the resulting closed-loop system is locally asymp-
totically stable, and has an L gain < 7.

For some fundamental notions and results of nonlinear Ho,
control theory, the reader is referred to [4] or [12].

For X of (1)-(3) and smooth positive definite function V :
R™ — Ry (with its Jacobian matrix V;(z)), denote

ai (2)=1/(27")g] ()Vi (z) (6)
as(z) = —(1/2)g3 @)V (@) = [ahi(z) --- ody(@)]" (1)
a2(¢ )=[am (1) 0‘22(52) 062q(§q)]T € R? (8)
91(6) = diaglgl (61) g1 (&2) -+ g1 (&))" (9)
ha(€) = diag[h, (€1) h3a(2) -+ ha (€T (10)
fo=[hne - Rl (11)
where ¢ = [¢] ¢F - €717 with & € R, and
Fi(€) = (&) + g1(&)an (&) + g2 (&) aa (&) — 92(&)@2((0)
12
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Let L;(&) €

R™?i and the unknown observer gain be

L(§) = diag[L1(&1) La(&) -+ Lq(&)). (13)

Theorem 1: Consider the system X of (1)-(3) and a posi-
tive constant «. Suppose the following conditions hold.

(i) The pair {f, h1} is locally detectable.

(ii) There exists a C* positive definite function V (), locally
defined in a neighborhood of z = 0 and vanishing at z = 0,
which satisfies the Hamilton-Jacobi inequality

H(z, V) 2

Vaf(2) + hi (@)l (2) +7"af (2)aa ()

—aj (z)on(z) <0 (14)

where V, is the Jacobian matrix of V().

(iii) There exist n x p; matrix-valued functions L;(§;) (i =
1, -+, q) such that the following Hamilton-Jacobi inequality
admits a C® positive definite solution Q(£) that is locally
defined in a neighborhood of £ = 0 and vanishing at £ =0

Haol6,QF) £ Qe(F(€) — L(&)R2(8)) + a3 (€)aa(€)

+ Qe @ O + 5 QLOL (@ <0 (15)

Furthermore, the Hessian matrix of Hgo(€, Q?) is nonsin-
gular at £ = 0.

Then the following controller of order ng solves the DHCD
problem for the system 3.

Ei=F(&) + g1(&)on (&) + g2(&i)aa(&)
+Li(&) (yi — h3i(&:)) (16)
ulzazi(&), i=1,~-~,q (17)

Remark 1: Theorem 1 shows how the DHCD problem for
nonlinear systems be solved, which is an extension of the
results for the centralized Heocontrol problem in [3] and [4].

In Theorem 1, the observer gains L;({:)’s are not given.
Now we look at how to design these observer gains. Two
methods will be presented. The first method makes use of
the centralized observer design result in [4], and the idea is
similar to that of Paz [8] for linear local observers. But our
result here is for nonlinear systems.



Theorem 2: With all assumptions and the design other-
wise the same as in Theorem 1, we further assume that the
local observer gains L; (&), 1 =1,---,gq, satisfy

S2(&)Li(&) = 2v°h5; (&), i =1, ,q.

Then the controller given by (16)-(17) with the above ob-
server gains solves the DHCD problem for the nonlinear
system 3.

(18)

Next, we present the second approach to the observer gain

design. Since f(z) and h2(z) (z = 1,---,q) are smooth
functions with f(0) = 0 and h3;(0) = 0, there exist smooth
matrix-valued functions A(z) and Co;(z) (i = 1,---,q) such
that

fl@) = A@)z,  hai(2) = Culz)w. (19)

Theorem 3: Under conditions (i) and (ii) of Theorem 1, we
assume that V, = 227 P(z) with P(z) being a C? matrix-
valued function. Furthermore, we assume that (in place of
(iii) of Theorem 1) there exists a C? matrix-valued functions
T'(£), locally defined and nonsingular in a neighborhood of
& =0, of the form

T (1)  Tie(8) T14(8)

T (€) Te2(82) T2q(£)
= : : , Ty (&) € R®

qu(f) Tq2(§) qu(gq)
(20)

that satisfies the matrix inequality
T()AL(€) + AT () + T(O KT () KT (€)
I TOCTOCOTTE) + 3031 (©

+* (7€) = To ()] CT(OCE [T(€) — To(©)]T <0; (21)

and there exists a positive definite function Q°(¢) with
Q°(0) = 0 such that (Q°)¢ = 2¢67T1(¢) where

a qu (5)]
]

Tp(€) = diag[T11(€) Ta2(€) -
Ac(€)=diag[A(&) - A&
g2(61)

(22)

!

: diaglgs, (61)PT(€1) - 93,(6.)PT(@3)
g2 (fq)

Az) = A(z) + j—2g1<x>g¥” ()P (z) = g2(2)gT (z) PT (a(R4)

K. (&) =diagl—gs1(£)PT(&1) - — g2, (6)PT(&)]  (25)
C(&) = diag[Car(&1) Caa(€2) -+ Caq(&y)]- (26)

Denote
L=+"Tp(§)CT (). (27)

Then the controller given by (16)-(17) with the observer
gain as in (27) solves the DHCD problem for the system 3.

With Theorem 3, the following result is immediate.
Corollary 4: Under conditions (i) and (ii) of Theorem

1, we assume that V, = 227 P(z) with P(z) being a (2
matrix-valued function. Furthermore, we assume that (in

Xn
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place of (iii) of Theorem 1) there exists a positive definite
matrix T that satisfies the matrix inequality

TAT(0) + AT(0)T + TKT (0)K.(0)T — v*TCT (0)C(0)T

+[T = Tp] CT(0)C(0) [T - Tp] + ;12—51(0)%(0) <0.
(28)

where Tp is the diagonal blocks of T. Denote

L) =" ToC7(0) . (29)
Then the controller given by (16)-(17) with the above ob-
server gain in (29) solves the DHCD problem for the system
3.

Remark 2: Theorem 3 presents a design method for lo-
cal observer gains L;(&;) (: = 1,---,q), which is based on
the existence of solutions of the form {20) to the nonlinear
matrix inequality (21). From Corollary 4, the linear local
observer gains can be designed by solving a linear matrix
inequality. These results are extensions to nonlinear decen-
tralized control systems the results given in [13] for linear
decentralized control systems. The results in [13] are in
terms of solutions of modified algebraic Riccati equations.
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