A Gradient Flow Approach to Robust Pole Assignment in Second-Order Systems

H. C. Chan

Department of Mathematics
City University of Hong Kong, Hong Kong
mahcchan@sobolev.cityu.edu.hk

James Lam

Department of Mechanical Engineering University of Hong Kong, Hong Kong jlam@hkuxa.hku.hk

Daniel W. C. Ho

Department of Mathematics

City University of Hong Kong, Hong Kong

madaniel@cityu.edu.hk

Abstract

Robust pole assignment for second-order systems is considered. It is shown that assignment can be achieved by solving a linear matrix equation or linear system. An objective function measuring the robustness of the closed-loop spectrum is minimized via gradient flow.

1 Introduction

Consider a time-invariant, second-order system

$$M\ddot{q} + D\dot{q} + Kq = f \tag{1}$$

where $q, f \in \mathbb{R}^n$ and $M, D, K \in \mathbb{R}^{n \times n}$. Responses of (1) can be altered by applying a feedback control force f = Bu to (1) with $B \in \mathbb{R}^{n \times m}$ denoting the input matrix and $u \in \mathbb{R}^m$ the control vector. The state feedback control law is defined as $u = -F_K q - F_D \dot{q}$ where F_D and F_K are derivative and proportional feedback matrices respectively. Hence, the resulting closed-loop system is

$$M\ddot{q} + (D + BF_D)\dot{q} + (K + BF_K)q = 0.$$
 (2)

In this note, M is assumed to be invertible and (2) can be written in the familiar first-order form

$$\dot{z} = \bar{A}z + \bar{B}u$$

where

$$\bar{A} = \left[\begin{array}{cc} 0 & I \\ -M^{-1}K & -M^{-1}D \end{array} \right], \quad \bar{B} = \left[\begin{array}{c} 0 \\ M^{-1}B \end{array} \right].$$

For complete assignability, the pair (\bar{A}, \bar{B}) is assumed to be completely controllable.

2 Pole Assignment

Let Λ be a real pseudo-diagonal matrix containing all the assigned poles, in which 1×1 blocks represent real poles and 2×2 blocks of the form

$$\begin{bmatrix}
\sigma & \omega \\
-\omega & \sigma
\end{bmatrix}$$
(3)

represent complex conjugate pairs $\sigma \pm i\omega$. Note that (3) is unitary equivalent to a diagonal matrix, that is

$$U^* \left[\begin{array}{cc} \sigma & \omega \\ -\omega & \sigma \end{array} \right] U = \left[\begin{array}{cc} \sigma + i\omega & 0 \\ 0 & \sigma - i\omega \end{array} \right]$$

where
$$U = \frac{1}{\sqrt{2}} \left[\begin{array}{cc} 1 & 1 \\ i & -i \end{array} \right]$$
 is a unitary matrix.

The idea of state feedback pole assignment is to find $[F_K \quad F_D]$ such that

$$\bar{A} + \bar{B} [F_K \quad F_D] = T\Lambda T^{-1} \text{ or } \bar{A} + \bar{B}G = T\Lambda$$
 (4)

where $G = [F_K \ F_D]T$ and T is some nonsingular matrix. In fact, (4) corresponds to the following linear matrix equation

$$\tilde{A}T\tilde{B} - \tilde{C}T\tilde{D} = \tilde{E} \tag{5}$$

where

$$\tilde{A} = \left[\begin{array}{cc} 0 & I \\ -K & -D \end{array} \right], \quad \tilde{B} = I, \quad \tilde{C} = \left[\begin{array}{cc} I & 0 \\ 0 & M \end{array} \right],$$

$$\tilde{D} = \Lambda, \quad \tilde{E} = \begin{bmatrix} 0 \\ B \end{bmatrix} [F_K \ F_D] T = \begin{bmatrix} 0 \\ B \end{bmatrix} G.$$

Since the pencils $\tilde{A} - \lambda \tilde{B}$ and $\tilde{D} - \lambda \tilde{B}$ are regular and the spectra $\rho\left(\tilde{A},\tilde{C}\right)$ and $\rho\left(\tilde{D},\tilde{B}\right)$ are assumed to be disjoint, i.e. no common closed-loop and open-loop poles, (5) is uniquely solvable for a given G [1, 3]. However, by exploiting the special structures

of the coefficient matrices $\tilde{A}, \tilde{B}, \tilde{C}, \tilde{D}, \tilde{E}$, we can express (5) into linear systems of equations which can then be solved by some effective algorithms [4]. Define $\hat{U} = \operatorname{diag}\left\{\hat{U}_1, \ldots, \hat{U}_{n+\frac{p}{2}}\right\}$ where p, an even number, is the number of real poles of (2) and

$$\begin{cases} \hat{U}_j = 1, & j = 1, \dots, p, \\ \hat{U}_i = U, & j = p + 1, \dots, n + \frac{p}{2}. \end{cases}$$

Note that $\hat{U} = U \bigotimes I_n$ if p = 0 and $\hat{U} = I_{2n}$ if p = 2n. By comparing both sides of (5), we eventually obtain the linear system

$$(\lambda_i^2 M + \lambda_j D + K) w_j = -B \hat{g}_j, \quad j = 1, \dots, 2n.$$
 (6)

where \hat{g} is the j-th column of $\hat{G} = G\hat{U}$. Then for a given G, we can solve for $W = [w_1, \dots, w_{2n}]$ from (6) and $T = \begin{bmatrix} W\hat{U}^* \\ W\hat{U}^* \Lambda \end{bmatrix}$. Consequently,

$$[F_K \quad F_D] = GT^{-1} \tag{7}$$

which is the augmented derivative and proportional feedback matrix such that the closed-loop system (2) have the assigned spectrum.

3 Robust Pole Assignment

In measuring the robustness of the closed-loop spectrum, an objective function is defined as

$$\phi(T(G)) = ||T(G)||_{\mathcal{F}}^2 + ||T(G)^{-1}||_{\mathcal{F}}^2. \tag{8}$$

It can be shown that [5] the objective function (8) has to be minimized in order to obtain a robust closed-loop system. For notational simplicity, we write $\phi(T(G))$ as $\phi(G)$ throughout.

For a given G, T is solved via the linear matrix equation (5) or linear system (6) at each minimization iteration for $\phi(G)$. When an optimum solution, say G^* , is reached such that $\phi(G^*)$ attains its minimum, the required augmented feedback matrix $F = [F_K \ F_D] = G^*T^{*-1}$ is recovered from (7), where G^* and T^* satisfy (4)

With gradient flow analysis, this minimization problem comes down to solving the following system of ordinary differential equations

$$\begin{split} \dot{G}(t) &= 2 \left[\operatorname{trace} \left\{ \frac{\partial T}{\partial g_{jk}} \left(T^{-1} T^{-T} T^{-1} - T^T \right) \right\} \right]_{m \times 2n} \\ G(0) &= G_0 \in \mathcal{G}. \end{split}$$

where $\mathcal{G} = \{G \mid T \text{ is a nonsingular solution of (4)} \}$ is open and dense in $\mathbb{R}^{m \times 2n}$. The solution, say G^* , to (9) will be a minimum of $\phi(G)$ in (8). Important issues on

the existence and convergence of the solution to (9) on $[0,\infty)$ are discussed in [5].

In the ODE (12), $T = S\hat{U}^*$ where

$$s_l = - \left[\begin{array}{c} I \\ \lambda_l I \end{array} \right] \mathcal{C}_l^{-1} B \hat{g}_l$$

with $C_l = \lambda_l^2 M + \lambda_l D + K$. And also $\frac{\partial T}{\partial g_{jk}} = \frac{\partial S}{\partial g_{jk}} \hat{U}^*$ where

$$\frac{\partial s_l}{\partial g_{jk}} = \begin{cases} -\delta_{lk} \begin{bmatrix} I \\ \lambda_l I \end{bmatrix} \mathcal{C}_l^{-1} b_j, \\ k = 1, \dots, p, \\ -\frac{\delta_{lk} + \delta_{l(k+1)}}{\sqrt{2}} \begin{bmatrix} I \\ \lambda_l I \end{bmatrix} \mathcal{C}_l^{-1} b_j, \\ k = p + 1, p + 3, \dots, 2n - 1, \\ -i \frac{\delta_{l(k-1)} - \delta_{lk}}{\sqrt{2}} \begin{bmatrix} I \\ \lambda_l I \end{bmatrix} \mathcal{C}_l^{-1} b_j, \\ k = p + 2, p + 4, \dots, 2n \end{cases}$$

where δ_{jk} the Kronecker delta. It is important to realize that $\frac{\partial T}{\partial g_{jk}}$ is a constant matrix and is only required to evaluate once in the computation process.

4 Conclusion

In this note, the problem of robust pole assignment for second-order systems by state feedback is examined. It has been shown that pole assignment can be achieved by either solving a linear matrix equation or linear system. The assigned spectrum is made optimally robust by minimizing an objective function via gradient flow which involves the solution of a system of ordinary differential equation.

References

- [1] K.-W. E. Chu, "The solution of the matrix equations AXB CXD = E and (YA DZ, YC BZ) = (E, F)", Lin. Alg. Appl., **93**, pp. 93-105 (1987).
- [2] B. N. Datta and F. Rincón, "Feedback stabilization of a second-order system: a nonmodal approach", Lin. Alg. Appl., 188/189, pp. 135-161 (1993).
- [3] G. D. Gardiner, A. J. Laub, J. J. Amato and C. B. Moler, "Solution of the Sylvester equation $AXB^T + CXD^T = E$ ", $ACM\ Trans.\ Math.\ Soft.$, 18, pp. 223–231 (1992).
- [4] G. H. Golub and C. F. Van Loan, *Matrix Computations*, 2nd Ed., Johns Hopkins University Press, Baltimore, 1989.
- [5] J. Lam and W. Y. Yan, "A gradient flow approach to robust pole-placement problem", *Internat. J. Robust Nonlinear Contr.*, 5, pp. 175-185 (1995).