<table>
<thead>
<tr>
<th>Title</th>
<th>Lyapunov equations and Riccati equations for descriptor systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Zhang, QL; Dai, GZ; Lam, J</td>
</tr>
<tr>
<td>Citation</td>
<td>Proceedings Of The ieee Conference On Decision And Control, 1996, v. 4, p. 4262-4263</td>
</tr>
<tr>
<td>Issued Date</td>
<td>1996</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/46627</td>
</tr>
<tr>
<td>Rights</td>
<td>This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.; ©1996 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.</td>
</tr>
</tbody>
</table>
Lyapunov Equations and Riccati Equations for Descriptor Systems

Q.L. Zhang G.Z. Dai
Department of Automatic Control
Northwestern Polytechnical University
Xian, Shanxi 710072, P.R.C.

J. Lam
Department of Mechanical Engineering
University of Hong Kong
Pokfulam Road, H.K.

ABSTRACT: In this paper, two new types of Lyapunov and Riccati equations are presented for linear time-invariant descriptor systems. The two equations play key roles in asymptotic stability analysis and control synthesis for this class of systems. Fundamental properties of the two equations are investigated and interesting results are obtained.

1 Introduction

Descriptor systems arise in many applications such as electrical networks, economic systems, and biochemical engineering systems. Recently, the Lyapunov methods have been extended to the descriptor systems [1]. However, an issue remains to be resolved is to relate asymptotic stability and stabilizability of descriptor systems with impulses using Lyapunov and Riccati equations in a way similar to those of normal systems. Preliminary studies were conducted by Syrmos et al. [4] and Zhang et al. [5,6] in the impulse-free case. Unfortunately, the results in these works cannot be directly utilized to analyze the asymptotic stability and stabilizability of descriptor systems with impulses. The purpose of this paper is to study the properties of Lyapunov and Riccati equations associated with descriptor systems (with or without impulses). In particular, we relate the two equations to the asymptotic stability and the asymptotical stabilizability of descriptor systems.

2 System Descriptions

Consider a linear time-invariant descriptor system given by

\[
E \frac{dx}{dt} = Ax + Bu, \quad y = Cx
\]

where \(x, u \) and \(y \) are respectively the state, input and output; \(E, A, B \) and \(C \) are real matrices. The descriptor system in (1) will be identified by the quadruple \((E, A, B, C)\). Whenever an argument, \(E, A, B, \) or \(C \), of a realization is of no consequence in the development, we may replace it by a \(\ast \). \((E, A, B, C)\) is assumed to be regular, that is \(\det(sE - A) \neq 0 \) and it is said to be asymptotically stable if the finite roots of \(\det(sE - A) = 0 \) lie in the open LHP. System concepts related to descriptor systems such as \(R \)-controllability and \(R \)-observability may be found in [1]. Since there exists \(s_0 \) such that \(s_0E - A \) is invertible, we define

\[
E = (s_0E - A)^{-1}E, \quad A = (s_0E - A)^{-1}A, \quad B = (s_0E - A)^{-1}B,
\]

we have \(EA = A E, \quad A = s_0E - I \) and \((E, A, B, C) \) is restricted system equivalent (r.s.e.) to system \((E, A, B, C)\).

*The research was supported by the NNSFC under grant No.90674004, NSFLP under grant No.95168 and ITDC, contract No.105-82150, respectively.

3 Lyapunov Equations and Stability

To motivate the use of a new Lyapunov equation, we note that \(\overline{E}^{h+1}x \neq 0 \Leftrightarrow x_1 \neq 0 \). Thus one can construct a Lyapunov function of \((E, A, B, C)\) as

\[
V \overline{E}^{h+1}x = x^T \left(\overline{E}^{h+1} \right)^T \overline{E}^{h+1}x
\]

where \(V \geq 0 \), with the property that \(V \overline{E}^{h+1}x > 0 \) for \(\overline{E}^{h+1}x \neq 0 \), and \(V(0) = 0 \) for \(\overline{E}^{h+1}x = 0 \). The Lyapunov equation associated to \((E, A, B, C)\) and \(V \) is given by

\[
\overline{A}^T \left(\overline{E}^h \right)^T \overline{E}^{h+1} + \left(\overline{E}^{h+1} \right)^T \overline{E}^{h+1} \overline{A} = - \left(\overline{E}^{h+1} \right)^T W \overline{E}^{h+1}
\]

where \(W \geq 0 \). When \(E = I \), (7) is the usual Lyapunov equation. The Lyapunov equation with \(h = 0 \) was considered in [4,2]. From (2) and (3), Lyapunov equation (7) becomes

\[
\overline{A}^T \left(\overline{E}^h \right)^T \overline{V}_1 \overline{E}^{h+1} = 0
\]

where

\[
E^{h+1} \overline{A}^T \left(\overline{E}^h \right)^T \overline{V}_1 \overline{E}^{h+1} + \left(\overline{E}^{h+1} \right)^T \overline{V}_1 \overline{E}^{h+1} \overline{A} = - \left(\overline{E}^{h+1} \right)^T W \overline{E}^{h+1}
\]

\[\begin{align*}
T^{-T}V_1 & = \begin{bmatrix} V_1 & V_2 \\ V_2 & V_3 \end{bmatrix}, \\
T^{-T}W_1 & = \begin{bmatrix} W_1 & W_2 \\ W_2 & W_3 \end{bmatrix}
\end{align*}\]
such that the partitions are conformal to the dimensions of \mathcal{E}_1 and \mathcal{E}_2. Let $\mathcal{V}_1 = (\mathcal{E}_1^T \mathcal{V}_1 \mathcal{E}_1^T, \mathcal{V}_2 = (\mathcal{E}_2^T \mathcal{V}_2 \mathcal{E}_2^T$, $\mathcal{W}_1 = (\mathcal{E}_1^T \mathcal{W}_1 \mathcal{E}_1^T$, then we have $\mathcal{V}_2 = 0$ and

$$\mathcal{A}_1 \mathcal{V}_1 \mathcal{E}_1 + \mathcal{E}_1^T \mathcal{V}_1 \mathcal{A}_1 = -\mathcal{E}_1^T \mathcal{W}_1 \mathcal{E}_1$$

(10)

since \mathcal{E}_1 and \mathcal{A}_2 are invertible. Also, by defining $\mathcal{W} = (\mathcal{E}_2^T \mathcal{W} \mathcal{E}_2^T$, (7) becomes

$$\mathcal{A}^T \mathcal{V} \mathcal{E} + \mathcal{E}^T \mathcal{V} \mathcal{A} = -\mathcal{E}^T \mathcal{W} \mathcal{E}$$

(11)

Similar to the partition in (9) for \mathcal{V} and \mathcal{W}, we have

$$T^{-T} \mathcal{V} T^{-1} = \begin{bmatrix} \mathcal{V}_1 & \mathcal{V}_2 \\ \mathcal{V}_2 & \mathcal{V}_3 \end{bmatrix}, \quad T^{-T} \mathcal{W} T^{-1} = \begin{bmatrix} \mathcal{W}_1 & \mathcal{W}_2 \\ \mathcal{W}_2 & \mathcal{W}_3 \end{bmatrix}$$

(12)

Theorem 1 Descriptive system $(\mathcal{E}, \mathcal{A}, *, *)$ is asymptotically stable if and only if Lyapunov equation (11) has solution $\mathcal{V} \geq 0$, with $\text{rank}(\mathcal{E}^T \mathcal{V} \mathcal{E}) = \text{rank}(\mathcal{E}^{*+1})$ for $\mathcal{W} \geq 0$, with $\text{rank}(\mathcal{E}^T \mathcal{W} \mathcal{E}) = \text{rank}(\mathcal{E}^{*+1})$. Moreover, $\mathcal{V} \geq 0$ with $\text{rank}(\mathcal{E}^T \mathcal{V} \mathcal{E}) = \text{rank}(\mathcal{E}^{*+1}) = \text{rank}(\mathcal{V})$ is unique.

Similar to normal systems, asymptotic stability and observability are related to the solution of a Lyapunov equation.

Theorem 2 If any two of the following three statements are true, then the other statement is true.

(i) Descriptive system $(\mathcal{E}, \mathcal{A}, *, *)$ is asymptotically stable.
(ii) Lyapunov equation (11) has solution $\mathcal{V} \geq 0$, satisfying $\text{rank}(\mathcal{E}^T \mathcal{V} \mathcal{E}) = \text{rank}(\mathcal{E}^{*+1})$ for $\mathcal{W} = (\mathcal{E}^T \mathcal{C} \mathcal{C}^T \mathcal{E}^{*}) \geq 0$.
(iii) Descriptive system $(\mathcal{E}, \mathcal{A}, *, *))$ is R-observable.

4 Riccati Equations and Stabilizability

For some $R > 0$, we define the Riccati equation associated with the $(\mathcal{E}, \mathcal{A}, \mathcal{B}, \mathcal{C}, *)$ as

$$\mathcal{E}^T \mathcal{V} \mathcal{A} + \mathcal{A}^T \mathcal{V} \mathcal{E} - \mathcal{E}^T \mathcal{B} R^{-1} \mathcal{B}^T \mathcal{V} \mathcal{E} = -\mathcal{E}^T \mathcal{W} \mathcal{E}$$

(13)

Riccati equation (13) can be rewritten as

$$\mathcal{E}^T \mathcal{V} (\mathcal{A} - \mathcal{B} R^{-1} \mathcal{B}^T \mathcal{V} \mathcal{E}) + (\mathcal{A} - \mathcal{B} R^{-1} \mathcal{B}^T \mathcal{V} \mathcal{E})^T \mathcal{V} \mathcal{E} = -\mathcal{E}^T \mathcal{W} \mathcal{E}$$

(14)

which may be considered as the Lyapunov equation associated with descriptor system

$$\mathcal{E} \frac{dx}{dt} = (\mathcal{A} - \mathcal{B} R^{-1} \mathcal{B}^T \mathcal{V} \mathcal{E}) x + u$$

(15)

resulting from closed-loop control of $(\mathcal{E}, \mathcal{A}, \mathcal{B}, *)$ with state feedback given by $u = -R^{-1} \mathcal{B}^T \mathcal{V} \mathcal{E} x$. When \mathcal{V} is such that (15) is asymptotically stable then we refer \mathcal{V} to as a stabilizing solution of (13). From (4), (5), and (9), we have (13) reduced to $\mathcal{V}_2 = 0$ and

$$\mathcal{E}^T \mathcal{V}_1 \mathcal{A}_1 + \mathcal{A}^T \mathcal{V}_1 \mathcal{E}_1 - \mathcal{E}^T \mathcal{V}_1 \mathcal{B}_1 R^{-1} \mathcal{B}_1^T \mathcal{V}_1 \mathcal{E}_1 = -\mathcal{E}^T \mathcal{W}_1 \mathcal{E}_1$$

(16)

on noting that \mathcal{E}_1 and \mathcal{A}_2 are invertible while \mathcal{V}_3 is real symmetric. In other words, Riccati equation (13) is solvable if and only if $\mathcal{V}_2 = 0$ and Riccati equation (16) is solvable.

Theorem 3 If descriptor system $(\mathcal{E}, \mathcal{A}, \mathcal{B}, *)$ is stabilizable, then for $\mathcal{W} \geq 0$, with $\text{rank}(\mathcal{E}^T \mathcal{W} \mathcal{E}) = \text{rank}(\mathcal{E}^{*+1})$, Riccati equation (13) has stabilizing solution $\mathcal{V} \geq 0$ with $\text{rank}(\mathcal{E}^T \mathcal{V} \mathcal{E}) = \text{rank}(\mathcal{E}^{*+1})$. Moreover, there is a unique solution with $\text{rank}(\mathcal{E}^T \mathcal{V} \mathcal{E}) = \text{rank}(\mathcal{E}^{*+1}) = \text{rank}(\mathcal{V})$.

In the following, we relate the stabilizability and detectability of $(\mathcal{E}, \mathcal{A}, \mathcal{B}, \mathcal{C})$ to the solution of (13).

Theorem 4 Descriptive system $(\mathcal{E}, \mathcal{A}, \mathcal{B}, \mathcal{C})$ is stabilizable and detectable if and only if

$$\text{rank}(\mathcal{E}^T \mathcal{V} \mathcal{E}) = \text{rank}(\mathcal{E}^{*+1})$$

Riccati equation (13) has solution $\mathcal{V} \geq 0$ with $\text{rank}(\mathcal{E}^T \mathcal{V} \mathcal{E}) = \text{rank}(\mathcal{E}^{*+1})$ so that descriptor system $(\mathcal{E}, \mathcal{A} - \mathcal{B} R^{-1} \mathcal{B}^T \mathcal{V} \mathcal{E}, *, *)$ is asymptotically stable.

5 Conclusion

In this paper, two new types of Lyapunov and Riccati equations are developed for descriptor systems. They are related to the asymptotic stability and stabilizability of descriptor systems, which may have impulses. In this way, the results unify the use of Lyapunov methods to tackle a variety of control problems for descriptor systems.

References