<table>
<thead>
<tr>
<th>Title</th>
<th>Design of reliable controllers for symmetric composite systems:primary contingency case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Yang, GH; Wang, J; Soh, CB; Lam, J</td>
</tr>
<tr>
<td>Citation</td>
<td>The 35th IEEE Conference on Decision and Control Proceedings, Kobe, Japan, 11-13 December 1996, v. 4, p. 3612-3617</td>
</tr>
<tr>
<td>Issued Date</td>
<td>1996</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/46624</td>
</tr>
<tr>
<td>Rights</td>
<td>This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.; ©1996 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.</td>
</tr>
</tbody>
</table>
Abstract

This paper discusses the reliable controller design problem for symmetric composite systems composed of several identical subsystems. A reliable controller design procedure is presented in terms of the solutions to the Algebraic Riccati Equations. The order of these AREs is much lower than that of the symmetric composite system. The resulting closed-loop system is reliable in that it provide guaranteed internal stability and H_∞ performance when all sensors and actuators are operational as well as when the sensors or actuators of a prescribed subsystem experiences an outage.

1 Introduction

Symmetric composite systems are systems consisting of identical subsystems with interconnections described by constant block-symmetric matrices. This class of systems occurs in very diverse areas such as electric power systems, industrial manipulators, computer networks, etc. [1] [2] [8] [8]. In recent years there has been a great interest in symmetric composite systems. Lunze first proposed the state model of symmetric composite systems, and investigated some of the fundamental properties of such systems [1]. In [6], a synthesis procedure for decentralized controllers for symmetric composite systems is presented and important characteristics of such systems are observed. For uncertain symmetric composite systems, a robust controller design procedure is given in [8].

Recently, some approaches to the design of reliable controllers that retain stability and H_∞ performance have been developed by several authors [3] - [8] [7]. In [7], Veillette et al presented a methodology for the design of reliable centralized and decentralized control systems by using the Algebraic Riccati Equation (ARE) approach. The resulting controller guarantees closed-loop internal stability and H_∞ performance not only when all control components are operational, but also in case of some admissible control component outages. In [3], Medanic investigated the single contingency reliable design problem, and presented a technique for H_∞-norm bounding design that results in performance reliable with respect to the outage of any one sensor or any one actuator by introducing a redundant sensor and a redundant actuator.

In this paper, we study the reliable control problem for symmetric composite systems. By making use of the symmetric structures, the order of the AREs involved in the design process is drastically reduced. The paper is organized as follows. The mathematical description of symmetric composite systems and problem formulation are given in Section 2, together with some technical preliminaries. In Section 3 a reliable controller design procedure is presented in terms of the solutions to the Algebraic Riccati Equations (AREs) whose order is much lower than that of the system. The controller is reliable with respect to the outage of sensors or actuators of a prescribed subsystem. Finally, some concluding remarks are given in Section 4.

2 Problem formulation and preliminaries

The symmetric composite system Σ under consideration consists of N ($N > 1$) identical subsystems and the overall system is described by composite equations of the following form

\[
\begin{align*}
\Sigma : \quad & \dot{x} = Ax + Bu + Gw \quad (1) \\
& y = Cx + w_0 \quad (2) \\
& z = \begin{bmatrix}
Hx \\
u
\end{bmatrix} \quad (3)
\end{align*}
\]

where for $i = 1, \cdots, N$,

\[x = [x_1^T, \cdots, x_N^T]^T, \quad x_i \in \mathbb{R}^n\]
Here u_i, x_i, and y_i are, respectively, the input, state, and output of the ith subsystem; $z \in \mathbb{R}^{N+M}$ is the output to be regulated; and w and w_0 are the square-integrable disturbances. The composite matrices $A \in \mathbb{R}^{N \times mN}$, $B \in \mathbb{R}^{N \times mN}$, $C \in \mathbb{R}^{P \times mN}$, $G \in \mathbb{R}^{N \times sN}$, and $H \in \mathbb{R}^{N \times sN}$ all have block-symmetric structures. For example,

$$A = \begin{bmatrix} A_{11} & A_{12} & \cdots & A_{12} \\ A_{12} & A_{11} & \cdots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ A_{12} & A_{12} & \cdots & A_{11} \end{bmatrix}$$

(4)

When an actuator outage occurs in, say, the first subsystem, the B matrix in (1) is replaced by

$$B_0 = \begin{bmatrix} 0 & B_{12} & \cdots & B_{12} \\ 0 & B_{11} & \cdots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ 0 & B_{12} & \cdots & B_{11} \end{bmatrix}$$

(5)

Similarly, when a sensor outage occurs in, say, the first subsystem, the C matrix in (2) is replaced by

$$C_0 = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ C_{12} & C_{11} & \cdots & C_{12} \\ \vdots & \vdots & \ddots & \vdots \\ C_{12} & C_{12} & \cdots & C_{11} \end{bmatrix}$$

(6)

By defining

$$B_1 = \begin{bmatrix} B_{11} & 0 & \cdots & 0 \\ B_{12} & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ B_{12} & 0 & \cdots & 0 \end{bmatrix}$$

and

$$C_1 = \begin{bmatrix} C_{11} & C_{12} & \cdots & C_{12} \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix}$$

(7)

(8)

we have the following decompositions for the B and C matrices.

$$B = B_0 + B_1, \quad C = C_0 + C_1$$

(9)

Motivated by the controller structure by Veillette et al. in [7], we consider dynamic controllers of the following form.

$$\dot{\xi} = (A + BK)\xi + G_2 \dot{w} + L(y - C\xi)$$

(10)

$$u = K\xi, \quad \xi \in \mathbb{R}^{N+N}$$

(11)

where $\text{dim} \, \dot{w} = \text{dim} \, w + \text{dim} \, u$. Then the reliable control problem considered in this paper is defined as follows. Given the symmetric composite linear system Σ in (1) - (3), design a controller of the form (10)-(11) such that the resulting closed-loop system is asymptotically stable, and the H_∞-norm of the closed-loop transfer function matrix from $[w^T, w_0^T]^T$ to z is bounded by some prescribed $\gamma > 0$ when all sensors and actuators are operational as well as when the sensors and actuators of one, but only one, prescribed subsystem experience outages.

Due to the symmetry in the system, it is sufficient to consider only outages in the first subsystem. Before going to the next section to give the design procedure for the above reliable control problem, the following technical preliminaries are needed.

Suppose that v_0, \ldots, v_{s-1} are the s roots of unity in complex plane. That is $v_j = \exp(2\pi j \sqrt{-1}/s)$, $j = 0, 1, \ldots, s - 1$. Let $m_j = [1, v_j, v_j^2, \ldots, v_j^{s-1}]^T$. For given positive integers p, q and s, denote

$$\lambda = \begin{cases} \frac{s - 1}{2} & \text{for } s \text{ odd} \\ \frac{s}{2} & \text{for } s \text{ even} \end{cases}$$

and

$$T_R(p, q, s) = \text{diag}[I_p, R_s \otimes I_q]$$

(12)

where I_q denotes the $q \times q$ identity matrix, \otimes denotes the Kronecker product and the matrix R_s is defined as follows

$$R_s = M_s U_s$$

(13)

with

$$M_s = \begin{cases} \frac{1}{\sqrt{s}}[m_0 m_1 m_{N-1} m_2 m_{N-2} \cdots m_{s-1} m_s] & \text{for } s \text{ odd} \\ \frac{1}{\sqrt{s}}[m_0 m_1 m_{N-1} m_2 m_{N-2} \cdots m_{s-1} m_s] & \text{for } s \text{ even} \end{cases}$$

and

$$U_s = \begin{cases} \text{diag}[1, V, \cdots, V] & \text{for } s \text{ odd} \\ \text{diag}[1, V, \cdots, V, 1] & \text{for } s \text{ even} \end{cases}$$

where

$$V = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & \sqrt{-1} \\ 1 & -\sqrt{-1} \end{bmatrix}$$

It is straightforward to verify that R_s is a real orthogonal matrix. (In fact, R_s is also normal.) Hence, $T_R(p, q, s)$ is a real orthogonal matrix.

Lemma 1: For any given matrices $E_{00} \in \mathbb{R}^{p \times k_0}$, $E_{01} \in \mathbb{R}^{p \times k}$, $E_{10} \in \mathbb{R}^{s \times k_0}$, $E_{11} \in \mathbb{R}^s \times k$ and $E_{11} \in \mathbb{R}^{s \times k}$
Then
\[j = 1, \ldots, s-1 \]
\[+ \sum_{j=s}^{s-1} v_j \]
\[+ U \]
\[+ \cdots + U_{s-1} \]
\[= 1 \quad j = s \]

where \(V_j \) is the complex conjugate of \(v_j \). Denoting by \(E_1 \) the matrix \(E \) with the 1st block row and the 1st block column deleted, and \((.)^H \) the Hermitian transpose of a matrix, we have, for \(s \) odd

\[(diag[I_{q_0}, M_s \otimes I_d])^H E \]

Proof: Note that
\[1 + v_j + v_j^2 + \cdots + v_j^{s-1} = \begin{cases} 0 & j = 1, \ldots, s-1 \\ 1 & j = s \end{cases} \]

\[\sum_{i=0}^{s-1} (\bar{v}_j v_k)^i = \begin{cases} 0 & j \neq k \\ s & j = k \end{cases} \]

Then
\[T_R(q_0, q, s) E T_R(k_0, k, s) = diag[E_p, E_m, \ldots, E_m] \]

(14)

\[\begin{pmatrix} \sum_{i=0}^{s-1} (\bar{v}_j v_k)^i \end{pmatrix}^H \]

where \(\bar{v}_j \) is the complex conjugate of \(v_j \). Denoting by \(E_1 \) the matrix \(E \) with the 1st block row and the 1st block column deleted, and \((.)^H \) the Hermitian transpose of a matrix, we have, for \(s \) odd

\[\begin{pmatrix} \sum_{i=0}^{s-1} (\bar{v}_j v_k)^i \end{pmatrix}^H \]

But

\[(M_s \otimes I_d)^H E_1 \]

\[\begin{pmatrix} E_{00} & E_{01} & \cdots & E_{01} \\ \sqrt{s}E_{10} & \vdots & \ddots & \vdots \\ \sqrt{s}E_{10} & \vdots & \ddots & \sqrt{s}E_{10} \\ 0 & \sqrt{s}E_{10} & \cdots & 0 \end{pmatrix} = \begin{pmatrix} \sum_{i=0}^{s-1} (\bar{v}_j v_k)^i \end{pmatrix}^H \]

where

\[ZZ = \begin{pmatrix} \sqrt{s}E_{01} & \frac{1}{\sqrt{s}} \sum_{i=0}^{s-1} \bar{v}_j v_{01} & \cdots & \frac{1}{\sqrt{s}} \sum_{i=0}^{s-1} \bar{v}_j v_{01} \\ \sqrt{s}E_{01} & 0 & \cdots & 0 \end{pmatrix} \]

By equation (15), it follows that

\[(M_s \otimes I_d)^H E_1 (M_s \otimes I_k) = \begin{pmatrix} E_{11} + (s-1)E_{12} \end{pmatrix} \begin{pmatrix} E_{11} + (s-1)E_{12} \\ E_{12} \end{pmatrix} \]

(15)
Thus,
\[
T_k^T(q_0, q, s) E T_k(k_0, k, s)
= (\text{diag}[I_{k_0}, U_s \otimes I_k])^H [\text{diag}[I_{k_0}, M_s \otimes I_k])^H E
\times \text{diag}[I_{k_0}, M_s \otimes I_k])\text{diag}[I_{k_0}, U_s \otimes I_k]
= \text{diag}[E_p, E_m, \ldots, E_m]
\]
For the case of \(s\) even, the proof is similar. \(\Box\)

The following notations will be used in the sequel.

\[
A_p = \begin{bmatrix}
A_{11} & \sqrt{N-1}A_{12} \\
\sqrt{N-1}A_{12} & A_{11} + (N-2)A_{12}
\end{bmatrix}
B_p = \begin{bmatrix}
B_{11} \\
B_{11} + (N-2)B_{12}
\end{bmatrix}
C_p = \begin{bmatrix}
\sqrt{N-1}C_{12} \\
\sqrt{N-1}C_{12} + (N-1)C_{12}
\end{bmatrix}
B_{p_0} = \begin{bmatrix}
B_{11} \\
\sqrt{N-1}B_{12}
\end{bmatrix}
C_{p_0} = \begin{bmatrix}
C_{11} & \sqrt{N-1}C_{12}
\end{bmatrix}
G_p = \begin{bmatrix}
G_{11} & \sqrt{N-1}G_{12} \\
\sqrt{N-1}G_{12} & G_{11} + (N-2)G_{12}
\end{bmatrix}
H_p = \begin{bmatrix}
H_{11} & \sqrt{N-1}H_{12} \\
\sqrt{N-1}H_{12} & H_{11} + (N-2)H_{12}
\end{bmatrix}
A_{p_1} = A_{11} + (N-1)A_{12}
B_{p_1} = (N+1)(B_{11} + (N-1)B_{12})
C_{p_1} = (N+1)(C_{11} + (N+1)C_{12})
G_{p_1} = G_{11} + (N-1)G_{12}
H_{p_1} = H_{11} + (N-1)H_{12}
A_m = A_{11} - A_{12}, \quad B_m = B_{11} - B_{12}
C_m = C_{11} - C_{12}, \quad G_m = G_{11} - G_{12}
H_m = H_{11} - H_{12}
\]

3 Reliable controller design

In this section, we consider the reliable control problem for the linear system \(\Sigma\) of (1 - 3) in case of sensor and actuator outages in the first subsystem. First, we review some results in [7] on the reliable control of general linear systems. Note that in Theorems 4.1 and 4.2 of [7], instead of AREs (Algebraic Riccati Equalities), only ARI (Algebraic Riccati Inequalities) are required. We summarize Theorems 4.1 and 4.2 of [7] as the following theorem. Denote

\[
\Delta_x \triangleq A^T X + X A - X B_n B_n^T X + \frac{1}{\gamma^2} X G G^T X + H^T H + \gamma^2 C_T^T C_1
\]
\[
\Delta_y \triangleq A Y + Y A^T - Y C_0^T C_0 Y + \frac{1}{\gamma^2} Y H^T H Y + G G^T + \gamma^2 B_1 B_1^T
\]

Theorem 1: [7] Given the linear system \(\Sigma\) in (1 - 3), suppose that \((A, H)\) is a detectable pair, and \(0 \leq X \in \mathbb{R}^{nN \times nN}\) and \(0 \leq Y \in \mathbb{R}^{nN \times nN}\) satisfy the AREs

\[
\Delta_x = 0
\]
\[
\Delta_y = 0
\]

respectively, with \(\sigma_{\max}\{Y X\} < \gamma^2\) and \(A + B K + G + K d + A + B K + G + K d - L C\) Hurwitz where \(\sigma(\cdot)\) is the singular value of a matrix and

\[
K = -B^TX
\]
\[
G_+ = \begin{bmatrix}
G & \gamma B_1
\end{bmatrix}
\]
\[
K_{d+} = \frac{1}{\gamma^2} G_+^T X
\]
\[
L = (I - \gamma^2 Y X)^{-1} Y C^T.
\]

Then the controller in (10) and (11) with

\[
\bar{w} = K_{d+} \xi
\]

asymptotically stabilizes the closed-loop system, and the \(H_\infty\) norm of the closed-loop transfer function matrix from \([w^T, 0^T]\) to \(z\) is bounded by some prescribed \(\gamma > 0\) when all sensors and actuators are operational as well as when the sensors and actuators of one, but only one, prescribed subsystem experience outages. \(\Box\)

Note that the orders of the two AREs in (18) and (19) are \(nN \times nN\), and this poses enormous computation burden on the design process especially when \(N\), the number of subsystems, is large. But the system \(\Sigma\) in (1-3) under consideration has very strong symmetry. We show in this section that this high-order problem of the two AREs is equivalent to four AREs of much lower dimensions: two of order \(n \times n\) and two of order \(2n \times 2n\). This reduces greatly the computational complexity of this reliable control problem. Denote

\[
\Delta_{xp} \triangleq A_p^T X_p + X_p A_p - X_p B_p B_p^T X_p + \frac{1}{\gamma^2} X_p G_p G_p^T X_p + H_p^T H_p + \gamma^2 C_{p0}^T C_{p0}
\]
\[
\Delta_{xm} \triangleq A_m^T X_m + X_m A_m - X_m B_m B_m^T X_m + \frac{1}{\gamma^2} X_m G_m G_m^T X_m + H_m^T H_m
\]
\[
\Delta_{yp} \triangleq A_p^T Y_p + Y_p A_p - Y_p C_p C_p^T Y_p + \frac{1}{\gamma^2} Y_p H_p H_p^T Y_p + G_p G_p^T + \gamma^2 B_{p0}^T B_{p0}
\]
\[
\Delta_{ym} \triangleq A_m^T Y_m + Y_m A_m - Y_m C_m C_m^T Y_m + \frac{1}{\gamma^2} Y_m H_m H_m^T Y_m + G_m G_m^T
\]

Theorem 2: Suppose that the pairs \((A_{p1}, H_{p1})\) and \((A_m, H_m)\) are detectable, and \(\gamma\) is a positive constant. Suppose also that the following hold.
1. There exist \(0 \leq X_p \in \mathbb{R}^{2n \times 2n} \) and \(0 \leq X_m \in \mathbb{R}^{n \times n} \) such that

\[
\Delta x_p = 0 \quad (29) \\
\Delta x_m = 0. \quad (30)
\]

2. There exist \(0 \leq Y_p \in \mathbb{R}^{2n \times 2n} \) and \(0 \leq Y_m \in \mathbb{R}^{n \times n} \) such that

\[
\Delta y_p = 0 \quad (31) \\
\Delta y_m = 0. \quad (32)
\]

3. (a) The matrices \(A_p - B_pB_p^TX_p + 1/\gamma^2G_pG_p^TX_p \) and \(A_m - B_mB_m^TX_m + 1/\gamma^2G_mG_m^TX_m \) are Hurwitz;

(b) \(\max\{\sigma_{max}(Y_pX_p), \sigma_{max}(Y_mX_m)\} < \gamma^2; \quad (33) \)

(c) the two closed-loop matrices \(A_p - B_pB_p^TX_p + 1/\gamma^2G_pG_p^TX_p = L_pC_p \) and \(A_m - B_mB_m^TX_m + 1/\gamma^2G_mG_m^TX_m = L_mC_m \) are Hurwitz, where

\[
C_p = \begin{bmatrix} C_{11} & \sqrt{N-1}C_{12} \\ \sqrt{N-1}C_{12} & C_{11} + (N-1)C_{12} \end{bmatrix} \\
L_p = (I - \gamma^2Y_pX_p)^{-1}Y_pC_p^T \\
L_m = (I - \gamma^2Y_mX_m)^{-1}Y_mC_m^T.
\]

Then there exists a controller of the form (7) and (8) such that the resulting closed-loop system is asymptotically stable and has the \(H_\infty \) norm bound not greater than \(\gamma \) when all sensors and actuators are operational as well as when the sensors and actuators of the first subsystem experience outages.

Furthermore, the construction of the controller is given as follows. Partition \(X_p \) and \(Y_p \) into \(n \times n \) blocks

\[
X_p = \begin{bmatrix} X_{p00} & X_{p01} \\ X_{p10} & X_{p11} \end{bmatrix}, \quad Y_p = \begin{bmatrix} Y_{p00} & Y_{p01} \\ Y_{p10} & Y_{p11} \end{bmatrix} \quad (34)
\]

and let

\[
X = \begin{bmatrix} X_{00} & X_{01} & \cdots & X_{01} & X_{01} \\ X_{10} & X_{11} & \cdots & X_{12} & X_{12} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ X_{10} & X_{11} & \cdots & X_{12} & X_{12} \\ X_{10} & X_{12} & \cdots & X_{11} & X_{12} \end{bmatrix} \quad (35) \\
Y = \begin{bmatrix} Y_{00} & Y_{01} & \cdots & Y_{01} & Y_{01} \\ Y_{10} & Y_{11} & \cdots & Y_{12} & Y_{12} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ Y_{10} & Y_{12} & \cdots & Y_{11} & Y_{12} \\ Y_{10} & Y_{12} & \cdots & Y_{12} & Y_{11} \end{bmatrix} \quad (36)
\]

where

\[
X_{00} = X_{p00}, \quad X_{01} = 1/\sqrt{N-1}X_{p01}
\]

\[
X_{10} = 1/\sqrt{N-1}X_{p10} \\
X_{11} = 1/(N-1)[X_{p11} + (N-2)X_m] \\
X_{12} = 1/(N-1)[X_{p11} - X_m] \\
Y_{00} = Y_{p00}, \quad Y_{01} = 1/\sqrt{N-1}Y_{p01} \\
Y_{10} = 1/\sqrt{N-1}Y_{p10} \\
Y_{11} = 1/(N-1)[Y_{p11} + (N-2)Y_m] \\
Y_{12} = 1/(N-1)[Y_{p11} - Y_m].
\]

Then, the controller of equation (7) and (8) is given by (20 - 23) of Theorem 1.

The following lemma will be used in the proof of Theorem 2.

Lemma 2: Under the assumptions of Theorem 2, the following hold:

1. \(\Delta x = 0, \quad (37) \)

2. \(\Delta y = 0; \quad (38) \)

3. \(\sigma_{max}\{YX\} < \gamma^2; \)

4. the controller given by (7) and (8) with (20 - 23) is open-loop stable.

Proof: 1. By Lemma 1 and the orthogonality of the matrix \(T_R(p, q, s) \), we have

\[
T_R^T(n, n, N-1)A^TXT_R(n, n, N-1) = T_A^T(n, n, N-1)A^TT_T(n, n, N-1) \\
\times T_R^T(n, n, N-1)XTR(n, n, N-1)
\]

\[
= diag[A_p, A_m, \cdots, A_m]diag[X_p, X_m, \cdots, X_m]
\]

Similarly,

\[
T_R^T(n, n, N-1)XAT_R(n, n, N-1) = diag[A_pX_p, A_mX_m, \cdots, A_mX_m]
\]

\[
T_R^T(n, n, N-1)XAT_R(n, n, N-1) = T_A^T(n, n, N-1)AT_R(n, m, N-1) \\
\times T_R^T(n, n, N-1)B_0^TXT_R(n, n, N-1)
\]

\[
= diag[X_pB_pB_p^TX_p, X_mB_mB_m^TX_m, \cdots, X_mB_mB_m^TX_m]
\]
From equalities (29) and (30), it follows
\[T_R^T(n, n, N - 1) \Delta \Delta_n T_R(n, n, N - 1) = \text{diag} \left[\Delta_{n, p}, \Delta_{n, m}, \cdots, \Delta_{n, m} \right] = 0 \]

By assumption 1 in Theorem 2, \(\Delta_{n, p} = 0 \) and \(\Delta_{n, m} = 0 \). Thus, the equality (37) holds. The proof for equality (38) is similar.

Conclusions 2, 3 and 4 follow from the assumption 3 of Theorem 2 and the similar arguments as above. \(\square \)

Proof of Theorem 2: Note that \(C = C_0 + C_1, B = B_0 + B_1 \), then the proof is completed by using Theorem 1 and Lemma 2. \(\square \)

Remark 1: Theorem 2 presents a reliable controller design procedure for symmetric composite systems in terms of the solutions of the algebraic Riccati equations (AREs). But the order of these AREs are much lower than that of Theorem 1. The resulting closed-loop system is reliable with respect to the outage of sensors and actuators of a prescribed subsystems (the first subsystem, in this case). This result is also different from that given in [6] [8] where the solution of the ARE for a symmetric composite system is constructed from the solutions of two AREs of the same order as the subsystem. When only sensor outages, or only actuator outages are considered, simpler design procedures can be obtained from Theorem 2 and its proof. The details are omitted.

Remark 2: It should also be noted that the condition under which the pair \((A_p, B_p)\) is stabilizable and the pair \((A_p, C_p)\) is detectable, is a necessary condition for the equation (29) and (31) to have positive definite solutions. This condition requires that the unstable modes of the prescribed subsystem be controlled or detected by other subsystem inputs or outputs through the coupling between the subsystems. When the matrix \(A_m = A_{11} - A_{12} \) is unstable, it can be shown by a method similar to that in the proof of Theorem 2, that the reliable controller design is impossible for the case in which the sensors and actuators of any two subsystems are susceptible to outages.

References

