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Absirset. We smé;g flexible robotic arms that are free o rotate and bend in the horizonial
plane but are stiff in vertical bending and torsion. A motor connegted o the hinged end
drives the arm to a prescribed target position and it is the sim of this vaper 1o design boundary
feedback controller to stabilize the arm once it reaches the targst pisition. A distinet difficuliy
is the non-dissi ;;3 ivity that arises from the reguirement that the designed feedback shouid
retain O as an eigenvalue in order not fo change the rigid body mode shape of the arm. On
preserving this zero eigenvalue, we have successfully constructed a boundary feedback that is
robustly stable with respect to the target position by showing it is exponentially stable there.

Key Werds. Euler-Bernoulli beam, boundary feedback control, non-dissipativity.

1. INTRODUCTION exponentially stable, while retaining the rigid mode
\ shape, by showing the system is a Riesz one, and hence

Inthe past two decades, the Euler-Bemoulli beam with satisiy the spectrum éﬁﬁm&w Erath-condition.

boundary contrel have been extensively studied as a

distributed parameler system, see for instance Guo 2, MATHEMATICAL MODELLING OF THE

{11 and references therein, In most lieratures on the FLEXIBLE ARM

és&nﬁgf;f control problem of Euler-Beroulli beam,

the feedback contral is puton the freeend, which s 2.1 Model Descrintion

aiso the loaded end. Recently, ) Knani in (2 lstudied s

different madel. The free end iscontolied by puttiag

the boundary feedback on the other end and this suits

the practical situation more that the former. This is Torgus

the Knani's model that we shall study in this paper.

Without disrupting the rigid mode shape, we designz

boundary feedback contro! such that the closed loop

system is exponentially stable with respect to the rigid

The present paper is organized as follows, In sec-
tion 2, we recail our problem from {2} and the detsils
that we shall need in this paper, and propose our con-
trol law. In section 3, we find asymptotic expressions
for the spectrum of the closed loop system. Finally
in section 4, we prove that the closed loop system is Fig. 1. The skeleton of the flexible arm,
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Due to the lack of space, we only give a short de-
scription of the fiexible arm and refer the readers o
[2] and [4]. The arm is free to rotate and bend along
the horizontal direction, but it is stiff vertically both
in bending and in torsion. It is powered by a direct
dc drive motor connected to the hinged end of the
arm. The arm is modelled as a continuous, pinned-
free beam of length £ whose moment of inertia about
the root is J;, with an additional lamped inertia Jj, at
the actuator end. A tip mass m; (of negligible moment
of inertia) is added at the other end of the arm (tip).

Line “OR” is the fixed reference line; “OX” is the
tangent line to the beam’s neutral axis at the hub. The
displacement of any point P along the beam’s neutral
axis at a distance = from the hub is given by the hub
angle 8(t) and the small elastic deflection w(z, t) mea-
sured from line “OX”, as shown in Fig. | (see also {2]).
Axial deformations are neglected. The hub angle 8(t}
can be arbitrarily large.

To set up a mathematical model for the implemen-
tation of controllers for the flexible arm, one can adopt
the truncated dynamical model of an idealized one-
link direct-drive elastic manipulater. Several notewor-
thy approximations will be made. First, deformation
of the beam was ignored and second, rotational iner-
tia momenis were not considered. For slender beams,
such as flexible arm with thickness only 0.6 mm and
length about 1000 mm, either shear nor rotational ef-
fects are important and so are neglected.

2.2. Equations of motion — Fourth-order partial
differential equation
Let us define a variable y{z, ) as
ylz,t) =wlz,t) + z8(t) Q.10

which is the distance departed from the reference line
“OR”, w(z,t) is the deformation of the beam from
“OX™, 6(t) is the angle between “OR” and “OX".
Then y(z, #) satisfies a fourth-order partial differential
equation of motion ({3], [81) of a one-link flexible arm
givenby

Elypper +pun=0,8xz <« 4 23
together with the boundary conditions

§{§§ g’} =0, &= §s{§§ f}f
7= ?{gs §}§ §§£i‘§;§$ g} =0

and the bending moment condition at the original point
as well as the tip mass shear condition

-§§z§ = Efy..(0,¢} + T(th myu(t) = Ely.:.(¢,8}, .

2.3)
where 8 = y.(0,}, 7 = y{{, ). Putting
Y(t) = {u(- 1), 00), ne)]", 24
then system (2.2) and {2.3) can be rewritien as
V() = AY(t) + BT(®) (2.5

where

§ AY = §“” %?ﬁﬁzﬁ ‘;%E?;%z{g}; é%?xzx{é}? s
1B:=00,1,0.
246

£

Lemma 2.1. Operator —A with domain

D(A) = {Y =[50, € L*[0,§ xCxC @7
v=(0) = 6,3=(8) = 6}

is a nonnegative self-adjoint operator in L?0, g xCx
C endowed with norm

t |
IY|? = fﬁ oly(@)Pdz + LjOP + mdnl?, 28)

and the corresponding inner product. The spectrum of
A are all eigenvalues, and 0 € o{A).

PROOF ForanyY = [y,6,9)7 € D(A) and
any Z = {2,£,(] € H*(0,£) x C x C, direct compu-
tations show that

<AV, Z >
~§ .
=~ [ Efy@)seces(@)ds - Hiyeee( (0
¢
+ElY222(0)2(0) + Elye (€)==(8)
~ Ely:-(0)2:(0) — ET v {€)22=(0)
+ BTy, (0)2:.{0) + Ely{€) 2228}
—EIy{0)222+(0) + EI §:£§:§§§ + Ely.--(€)C.

If we take z{0) = 0, 2.2(€) = 0,€ = 2,(0),{ = 2(0),
and use y{0) = 0, y=={f) = 0, we have

<AY,Z »
g . <
- g‘ Ely() tazzs(@)de + ET9:(0)2::(0)
&
+El §{§§g$§${§:§

&

* EI , . :
= - .[ §m§{§§zg§g£{5§§$ ’é‘ i&s?zggég_}
J & £ :‘jg

Er ,
%migngz:‘{g}
me

= <YV AZ >.

So A is seif-adjoint in £2[0, ] % € x C. In particular,
we have

¢
<AY,)Y >=-— j Elly..{z)dz,
Bl

therefore, —A > 0. Direct verification shows that
0 € o(A) with Yy := [z, 1, {] being an eigenvector.

Since I — A is positive and {I ~ A)™? is bounded
from L?[0, ¢} x € x C to D(A), so the Sobolev Em-
bedding Theorem ensures that (7 — A)~! is compact,
and hence 4 has discrete spectrum. =
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Remark 2.1. Ler {A, : n € Nwith A, < Aog1}
be the spectrum of —A. We see that X = 0 is a sim-
ple eigenvalue of A, which is nsually called the rigid
body mode shape. Its eigenvecior ¥ = {z,1,§
ic calied the iotal mement of initial assoeciated this
mode shape becanse

4
Yol =»p fr lzPde + I + ml® =: Ir.
Jo

Thus for any Y = [y,0,7]7 € L?[0,4] x XxCxC, we

have

o«
Y=<VYo>%h+) <VY.>Y,

feed

where {Ya : n > 0} is the orthogonal basis in
L2[0,4] x C x C satisfying the normalized condition

<Y, Y >= Frby
Jormed by the eigenfunctions of the selfadjoint A, In
particular, we have

P4
[ Engeo
Jo

Yl (z)dz = Frdje.

Goal of the problem: Let Y{0) = [yo{z), 45{0).
yo{£}} be the initial state, which denote the arm po-
sition at the resting state. The iﬁg‘g state {final amm
position) is Yzinar == [y1(z), v} (0}, v1{€)]. Our goal
is *“To find a control T(2}" s.zzaées‘ which the solution
Y (¢) of the closed-loop controiled system makes

1Y (£} — Yinatll

goes to zero exponentially or there exists fp > O such
that IY (¢} - ?;gﬁggii 0,¥t >t

This situation arises from a computer-controlled
manipulator that is required to follow a prescribed tra-
jectory in its workspace and then stay at a target loca-
tion in order to perform a required task.

The difficult part of this problem is that the feed-
back conirol should not change the rigid mode shape,
which meansthat Ao = O will still bean eisenvaluesf
closed loop system but at the same time the feedback
must achieve exponentiab stabllity with sespect to the
targel sigte of the controlled closed loop systen,

Design of the feedback control law: Let > 0. We
observe that the values of the rate of change of moment
=08

~Ely...{0,t)

If we let the torque of the motor be
?ﬁi;?i:’* ;§§§ ?zsi{gf §}§ .

then the closed loop system is

T
b4

Elysesr +pun=0, O<z<y

Ely,. {g: 5} + ﬁﬁyzﬂ{ﬁs f')
~InYzur (Bs ﬂ =0,

(0,8} =0, Ely..({t)=0,

Ely.:.(t, i} = mﬁ.ﬁ’!gﬁg Q

.10

Under the state variable {2.4), .
Y(t) = [y(=, 1), 8(2) = v=(0, £),nf2) = &, )],
system {2.10) is just

Y{t) = AY (1) + B¥), @.1n
where
{BY = i, §§‘i%§§{§} i}? ©2.12)
D(B) := H[D, £ C D(A). o

Lemma 2.2. The energy of the closed-loop system
{2.11), defined by

3 fo (E st P
‘*"P!M(m)}g}dm + Inlueel0,8) 2

%ﬁ?@g{% 3352 + melpdl, )] ]
2.13)

EQ) :=

is a non-increasing fmctionin i

PROGF Direct computationleads to

dE(t t
- §M} = } Elyzs(z, )yzae(z, t)dz
dt o

of
== } o §§{3 ¥ i}%‘zzx:g{$; i}éﬁ
o ;

A N
%‘igff:i{ﬁ; 513 - E;ﬁ?fix{gs f}i

i§§§x££{§s §} - 535 §$x§‘§§s ‘5}%
+meye(l, t)yedd, 1)

{E‘f; 53§§£x§§s g}?
&

g Q‘%
Lemma 2.3. For the clomm!‘my system {2.10), there
is no eigenvalue on the imaginary axis besides X = 0.

Proof Let A= ir beancigenvaluewithr € R
and let Y = [y{x), 8, 9|7 € D(A) be the correspond-
ing nontrivial eigenvector. Then Y{t) = &MY isa
S{ﬁﬁsﬁ}? {21 or(2.10), and yl= } :«;a{ssm ‘

g’ Elyeese + 20005z} =0, O<z<t,

% Ely..(0) + BAEL §§E§}§ = Egggé?g{'g:i =0,
Ely...lf) = Ag?ﬁ%?% g
§§.§§ =4, El §t§§§} g, ao

Multiplying —#{z), 7240) g§§§} respectively to the
first, second and thivd eguation in (2.14), integraling
aad adding them up, we set

—Elyszsd %3;{5} Elyex §}§:{§:§
f Ely.:(z)} §& a2 5 plylz)Pdr

+Ely sz(ﬁ}mi*}) "3" EI 5@:@#{3}“‘({}}
—In X2y (O) + Elyzo{O)HE) — meX¥{ulE)
=0.
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 +Hhr?e O + mer iy =0,

iEIPry=2(0}7=(0) = ©. (2.15)

Combining these w §§§§ & second equation of (2.14),

we get 17.(0) = y.2f f; = 0. Therefore, y{z) should

satisfy

Elyeeze — pr2y(z) =0, G<z<d,
Ely.22(8) = XNmey(d),

¥(0) = yz(0) = y==(0) = y==(f) = 0.

2
Letting w* = £, then

(2.16}

y(z} = Asinhwz4 Bsinwz
+ T coshwz + P coswe,
y:{z) = w|Acoshws+ Bcoswz
+Csinhwz — Dsinwz},

v==(z}) = o*|[Asinhwz ~ Bsinwz
+C coshwz — D coswzl,
YezelZ) = a:;g%;é coshwr — Beoswz

+Csinhwz + Dsinwel.

y(0) = 2(0) =
-D =0,

Using the boundary condition:
Yzz(0) = 0, wesee that A = B, C =
and so

' y(z) = Afsinhwz — sinwz].

From Jz:{g} G, Eg&x:x{g}

have
Alsinhwl + sinwf] =0,
Alcoshwt + coswl] = ZtwAlsinhwt — sinwé].

—m,72y(£), we also

AsA#0OsinceYisa nonzero eigenvector, so

i p
| sinhwf +sinwl =10,
Eeas}; wlcoswl = &wéséﬁéwf = sinwd],

which has a unique zerow = 0, Henee, r = 0 and se
there is no eigeavalue on the imaginary axis besides
A=0 o
Remark 2.2. The energy of the closed-loop sysiem is
non-increasing in t (Lemmn 2.2) implies that there is
no eigenfrequency i right open half plane 9f ©. Com-
bining it with Lenmuna 2.3, we conclude that oll the
sonzero efgenfreguencies ore located in the left open
half planeof C,

3. ANALYSIS OF EIGEN.FREQUENCIES OF
THE SYSTEM

We are now ready to calculate the nonzero eigenviues
of the closed loop system. For simplicity, we normal-
ize equation (2.10) by rescaling the spatial coordinate
and time as

z=sf 0<s<]l, (=vur

with v2 = 8%, and let z(s,7) = y(z, t) so that

§§ 8% §“§ 8%z
e

§;§:§ = 35 52 - 52

eguation (2.10) becomes
Zsses + 2er =0, O<s<,
254(0, ”5} + By §§S?§§§ ’?E
~i125-(0, 7} =G,
2{0,7) =0, z,,(1,7) =0,
fsssiis ?E = gﬁng?{ig ?Ei

where By = (B/E2WEI/p)?, py = In/(pf®) and
p2 = me/{pt). _ |

For the sake of convenience, instead of z, s and T,
we will still denote the unknown function by y and the
spatial and time variable respectively by z and ¢, with
B renamed to £. Under these renamings, the torgue
conirol is just

?{i} = Byz2:{0, ), V G.n

where B > 0 can be regarded as the feedback con-
trol gain that can be tuned in practice. We rewrite the
closed-loop-conirolied system ast

gﬁ§§£§i{§9 *%} ~ y==(0, g} -
ye2(1,8) = 0,

i 5}2???{}15 f} = §§§£{§s i} = 0.
{3.2)
To find all the eigenvalues of (3.2), welet Abean
eigenvalue, and f{z} be the eigenfunction such that
y(z;t) = e’\‘f {z) is a solution to {3 2). Then we have

() + J@f\x} =0, O<z<l,

Us(f,2) = f(0) =0,

ffsii ;‘} 3&?%?@} == gs

Ua(f, A) = pi X2 f'(0) = BAS(0) - f"(0) = 0,

Ur(f, ) =221 (1) = f7(1) =0

3.3

Setting A = p°, and divide the complex plane
into eight e:;%:si sectors S (m=86,1 2;;.,;?} with
sector Sp 1= i*"f €C:0<gagz< 5} Arrange the
fourthrooisof -1 inte

V2 V2.

: 3
o LI E
Wy 5% o e e ——3

2. ! 3.4)
. oitw V2 %*% .
wo =2 £ TT = e e g

2 2
and ws = —wo, Wy = -y, S0 that they satisfy
Re(pw:) < Re{pws) < Relpws) < Re(pu), ¥ p € So.
'fheﬂ in sector 8, the equation

) 4 ptfla) = (3.5)
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has 4 fundamental solutions fi(z)}, folz), fa(z), ulz)
that are functionally independent, and they possess the
following expressions, fors = 1,2,8,4 :

§$ m% = ggg.ggi :
fi(z) = puer=,
§§§g} — {ﬁﬁs?gﬁ?&;‘*g

S8 %
§§§ {}{gé §§§x€§;@g§

(386

Using (3.6}, we can obtain asymptotic expansions
for the boundary condition Uy, Uy, Uy, Uy of system
(3.3). While those for boundary conditions Us{f, A)
and Ug(f, A) are clear, the rest are

(12p® = (pwm)®) €= (3.7)
= plemm(m =™,

Uy (fma i‘;)

= 10 (pom) — Bo*(pom)’ = (pwm)*3.8)
= A (imwm = ufp™ +0(™%))
= plmem — Bute ™,
where [a]s := a + O(p~2). Since the eigenvalues of
system {3.3} are exactly the zeros of the characteristic
determinant A(p) (cf. [1 1, pp.13-15]), where
3G9

Afp) = (Uilys, p)) =

S 24,
£.2.3.4
we can substitute the asymptotic expressions of
Uilfmy p), 5y = 1,2,3,4, into (3.9) and obtain the
following asymptotic expansion for the characteristic
determinant. ‘

Theorem 3.1. In each sector Sy, the characteristic
determinant A(p) of the characteristic equation (3.3)
has either one of the following asympiotic expansions

221 Alp) = 2v/2ips pop’!

... F<5 . B8\ I A
§$%§i§§§ }j§§ Leofp %é s
%ﬁﬁ%a@;:‘? fﬁ} %%ﬁ?{g‘%}g ewz}

.10
a%’csg; the values of wy will %s taken fo be the fourth
roorof —1 but differently i each sector S, sothat

Re{pw;) < Re(pws) € Re(pws) € Re(pw,)

Jor all p in that sector.

PROOF. For p € Sy, substitute the asympmﬁc £x-
pansions of U{ fin, p), ./ = 1, 2,3, 4, into thechar-
acteristic determinant (3.9) and we have

§ i i
, o (e
) = | i}%@s - 5{%‘; . I %ﬁi‘if? *§*§§
T g
é 0
(pws)2er - (pag)?eP
P {Has §»;i iR g .
pler g — %}E pler %Eg -2
= ?ize&%{ 2ipprafewn —
+(#1(W1 — wal{ws —wg) — 43#2)(?“3
+O0(p~%)|e” + gﬁéﬂiﬁz’{ﬁ% —wy)
. %
(s — wi )z ~wa) +4Bp2 ) (6™)
+0{p™%) ﬁﬁg}g
because in sector Sp, wf = ~i,03 = {,wf = {w? =
—iand

wy—wp = V2,  ws—wy= v,
%§ éﬁgm@gﬁ“‘*‘é‘%

Thaus, we arrive to the asymptotic expansion of A{p}
in{3.10).

Alsg, from [11, pp.56-74] we kuow by repeai-
ing the same arguments in the other sector S, m =
1,2,...,7, we will end up with one of the two expan-
sions in {3.10). =i
Theorem 3.2, If pypa 5.0, then an asymptotic ex-
pansmn for the eigenvalues A, of system (3. 3) is, for
k=2~ nandn=1,2,...

@iy —why =

8.11)

Moreover, each eigenvalue A, with sufficiently large
modulus is algebratcally simple and satisfes
342

Baj, = mggg - 00,

&

PROOE Insector 5p, singews = o and from
A{p) = 0, equation (3.10) is equivalent to

Cash S mack X (g gff{ igg‘*‘* G519
+i g: e ﬁg} lepr 4 O(p~%) =0,
which can be rewritten as
* 4iePe £ O =0, (14)

Since the equation €™? 4 ie™#+2 = 0 possess theso-
fution N

By = ot
g

n=12,...,

58
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with £ = 2 — n, so by Rouche’s theorem, equation
3.14) has solutions

§Q:E§§§€’§=§“§{é}, n=1,2,.... 315}
. e ]

From
ef92 L g
= eFFitwnOr™) 4 o
= {g os(kn} 4+ isin{ka) + ¢ cos{kn)
;»sm §§ s(20(n"1))
«§»§§: - sm{ﬁ; v} + i cos(kr) — isin{kr)
+ ees{i:';r}} sin(220(n"1)),

= ErifwatinT

using ie"*“%\-e"‘**" = i cos(kn)—sin{kxr)+cos(kn)—
isin(kx), € 4 ie™* = cos(kn) + isin{kn) +
t{cos(kw) — isin{kn)) = O and

we obtain
On~)+0R"2).

U2 L i PV o {éeémé%_g»—imfé%
Tt
3.16)

urthermore,
SExi+ O3} ST 2N
eHHHOM) = i 4 (=),
T
hence (3.13) changes into

(ie""t %—fz’"”’% 20(n~t) + (L ﬁé} Yz ghni

N 35«‘2 [
+ (£ +42) g%e“*ﬁ* +0(n~2) =0,

- b
-“‘“0(’3 = g},gﬁf;;;ﬁ%;m:'? G.17

\@m phEL, ki
;.u km mg“‘%e"""
+0(n"2%).
Note that k = 2 — n, so we have
iw:g & S«s%ﬁi
jehmi % gt
2 ms{,i:?f}

5 =k

gt —g -
fekwi pg—kmi  § 44

§u§si§%a£§z§g those identities into (3.17), we have

rpn o VB (1B .
O( )= I+!(2ﬂg §p;)£.’r+0(n )
(3.18}

60

From (3.15) and {3.18), we obtain a more accurat
asymptotic expansion for B, fork = % — 5 and
n=12...,

= * = a X s
_ bxi 2 £ ;3% 5
LA S (T 0 LI, T A
P s 3%%(%@ §§§§§3§% ™)

Since in sector Sg, A = 53, wo = /" andwd =14,
so

28 .
éﬁﬁ—swim%{i*} O™, G149
B p2
In sector &y, the s;g&ﬁ*ﬁ&ﬁ, of problem (2.6} can
be obtained by similar arguments provided that we

choose

and wy = —udg, Wy = w1, 50 that the {eﬁvw ing in-
equality hoids:

Re(pw;) < Re{pwa) < Re{pws) < Re{pwy),Vp € Sa.

Hence, in sector Ss, the 3&?@@3@@&1@ expression

Afp)is
™1 Alp) = (2V2pum)p*!

[ ‘j%“ \,féfﬁ\‘} ;_23 =3
- {j*éé;;“;:)?f}i il
[ /3 \ ,
+ »%%(%E%mﬁﬁ/}éé«@{p*};?"*?
{7 \2 o ]

Since wy = ~ws, 50 the root g, inSs is given by _

’C/ﬁ 1 ﬁi‘ -3
Ms (am ) &= T,

where §: = g - ﬁﬁé n=12... Insector &,
Ax = B}, wn = €747 and w? = —i, so we have the
conjugate of the cigenvaluegs of problem (3.3) namely,

Ay = 2 ~ ki om™Y, G20
By Bz :
fork= 3 —nandn = 1,2,.... The exact same pro-

cedures can be carried out for the remaining sectors
and end up either {3.19) or {3.20) and so ths theorem
follows. 2
Remark 3.1, Ler { X, : n > 1} be an enumeration of
all nonzero eigenfrequencies af the closed loop systea.
As a consequence of Theorem 3.2, we have

inf dist{,,iR) =6 >0,
a2l
and there are positive constants N and M such that

Cinf yPAn—Aml >0, [Reda] < M,

ngmnme
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4. GENERATION OF SEMIGROUP AND
RIESZ BASIS PROPERTY OF GENERAL-
IZED EIGENFUNCTIONS

To discuss the exponential stability of the targst state
of system (2.11), we put it into a “double-sized” state
space and show that the eigenfunctions of the system
form a Riesz basis. For convenience, we denote by X
the Hilbert space

X :=L*0,f§xCxC,
and define a subset of X by Vp := {Y = [y{=), v- {&‘i%

y(0)] € X |y € H[0,£],5(0) = 0}, and endow it
with a norm » K

; £
Y2 = ]s Elyee@)dz + [y (OF,

and the corresponding inner product. It is easy to see
that (Vo, [ - {11) is also a Hilbert space. We now define
the state Hilbert space'as

Hi=Vpx X =V x I’[0,1] xC x C,
with an inner product defined by:

< §%§ §§§§ E?’& gﬁ% >u

= ;[ﬁ Ely{ (z)y4 {z;-{»m{sf}}gé{éi
+ ! pzilz)za(z)dx + 146182 + mum 5,
48

where, for 7 =1,2,

Y; = ls(z),45(0), 1500 € Vo,

and \ \
= [25(2), 05,15} € X.
In H, we define operator A by \
AlY, 2} = [Z +BY, §§ @.n
gi;éj §?§§§?§§§f§ §£§‘§§§§3
- Y0 =0,Z = [o(z),0,7), 2 € B0, 4,
z{0) = {32 ﬁig} 3,
=70 - BBy 0, 1=50).
. 42)
I we put

Z{@) =Y -BY({t), ¥()=[Y(), 2] eH,

4.3
then equation {2.11) can be rewritten into an evolution-
ary equation in H:

{I@{f‘
Tdt

with initial condatma

W(0) = [V (0),0) € H.

=AU}, t>0, @4

Lemma 4.1. Operator A : D{A) C H — H defined
by (4.2} and {4.1} s a closed densely defined Linear
operator with compact resolvents and generates a Gy
semigroup on H.

Proof. First, forany [Y.Z] € DA}, we have

§g<.§§§f§§§§’ Zl>n
= <Z4+BY,Y > +<Y,Z+BY >,
=§~«<§§’;§3‘>§«§»\;2§§’>A

= Rez(0)5a(0) - %} L

lr=(O)®

§g§ EB,.. 0P

8,0

< deO)f +

% v(0" —
(ﬁ“i B,

72

2‘»’{!%(“) - Yra {a}i 'i"{

17
[
[

o
by

e}

o W
ot
# §
e
e
-

E %’*xig}gg

By choosing ¢ sufficiently small such that

pel2° _ s
“r §

ym

and taking A/ = max{2¢, 1}, we have

Re < AlY,Z),1Y, 2} >

< MY, Z)i + %5%5}“
Ee o

So, (A~ Ml)isa d@\ss;\g;amw ogmramr onH.

Next weshowthatif A > 0 then d € ﬁ{A% For
A > Oand foreach (W, U] & H, we consid ff%zﬁ re-
solvent equation

O — A, 2] = WU}, [Y,Z] € D),
AY—Z-BY =WeVs, and AZ-AY =UgX.
Then, A

MY —AY - MBY =AW +U in X,

whichisjust, forli€z < §,

Elysss + pXry(z) = plue) +ulz)],
InA%y:{0) = Ely..(0)
—BAEy,.{0) = In[Awe + us),

Xmyy(l) — Elyez.{t) = mehwy, + ug}.
¥{(0) =0, E?.rxu(f} =0.
{4.5)
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Since A()) # 0 whea A > 0, so from the theory of
ordinary differential equations, for A>0D thereise
unique function y{-, ) € H*[0, x C x C such that

#€
g

y(z, A=p 5
e

Glz, A, )w(s) + uls) + A2h(s)}ds

(4.6)
that satisfies equation (4.5), where G(z, A, s) is the
Green's function {see [11]y and

h{s) = c1s + 25" + 038>
with

- mg(f\wg + ttg — Awg_, - ts!;)
3= Gmeln (1 + BN EI + 2)2myl3 + 6EI’

¢ 1= =3les,

& o= In{Mwg + ug) — 6e3i(1 + BAEI
a ¥, :

Thus
Z=AY-BY —We H}3,{xCxC &7

and so [Y, Z} € D(A). Since the Sobolev Imbedding
Theorem ensures that R(A, A)[W, U] = [V, Z]isa
compact operator, o the Lumer-Phillips theorem says
that A— M generates a Co—semigroup of contraction
&At on Hilbert space H, and so does A. o

Corollary 4.1. The spectrum of A is o(A) = {Ao =
0,1, A2, ...}, where each Ay (n € N} is an eigen-
value of the closed loop system that can be determined
by Theorem 3.2.

Direct calculations show that A = 0 is an eigen-
value of A of degree two with generalized eigenfunc-
tions [¥5,0] and [0, Yo}.

As a direct application of Theorem 2.1 in {12,
pp.1326}.on (4.6), we may conclude the following
lemma about the completeness of the generalized
" eigenfunctionsof AinH.

Lemmad.2. Let A be defined by (4.2} and (4.1). Then
the system of generalized eigenvectors of A is com-
plerein'H.

The Riesz basis property can be deduced from
Theorem 1.1 of {13}, which is recalled as follows.

Lemma 4.3. Let X be a separable Hilbert space, and
A be the generator of Co semigroup S(t). Suppese
that

1) olA) = o1(A) U o2(A) and o2(A) =
{Ax, Y22, is consisted of isolated eigenvalues of finite
multiplicity;

| 2) supgsy Ma(AE) <00, where ma(A) =

dimE(x; AYX and E(Xx; A) is the Riesz projector
associated with Ag; :

3) there is a constant C such that

sup{ReX: A€ o3{A)} < C < inf{Rek: A € oo{A)}

62

amnd
ig}i §§§§; - }eﬁi > é.

Bty
Then the following assertions are true:
i} There exist two S(t)-invariant closed subspaces
X; and X with property thato{Aly } = a1{A) and
oAl 0 = o2 A) , and {E{dp; A) X}z, forms a
Riesz basis of subspaces for Xg. Furthermore,

X=X 8Xs.
i) I supo (IO Al < 0o, hen
DAY c X, eXaC X.

iii} X has the topological direct sum decomposi-
tion

X=Xj6X2
ifand only if
55
supli Y EQui A)f < oo.
w2l oy

K=

Combining Lemma 4.1, 42 and 4.3 with Theorem
3.2, we arrive to the following conclusion.
Theorem 4.1, There is a sequence of generalized
eigenvector of A that forms a Riesz basis for H.

Proof Take o2(A) = o(A) and 01(A) = {oo}.
It is easy to see from Theorem 3.2 that o2(A) satis-
fies all conditions of Lemma 4.3. Thus the first asser-
tion of the lemma says that {E{Ay; AYH}S,, forms
a subspace Riesz basis for span{E(ie; A), k € N}
Lemma 4.2 in tuns implies that

span{ B AYH 1k € N} =M.

Therefore, { E{Ax; A)H}52, forms a subspace Riesz
basis for H. -From Theorem 3.2, we know that the
eigenvalue A for k large enough is simple, so we
can choose a sequence {¥p; : k€ N0 £ 7 =
ma(Ae) — 1} of generalized eigenvectors of A to form
a Riesz basis for H. Denote by {¥; gt ke ND <L
§ € ma{Ax)} its biorthogonal system, and assume
without loss of generality that A fork > 1 are simple.
Then forany ¥ = [V, Z] € H, we have

- %2 :
= <9, §‘§§ > §%§§§”§' < §§§§§3§ >H §§s §%§

]

f=<]
+Y <O >u T,
f o
where Yy is given in Remark 2.1. Let S(f) be the semi-
group generated by A. Then ‘
S = S, Z]
= i{ ¥, g%& >+t < ¥, !‘Egg,} >?‘§§%:§§
+ <0, ¥, >u [0, Yo

o
+Zéhg < ¥, ¥ >y Gy

Bl
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o
S&z‘e}ﬁzi? 4.2, For initial state ¥ = {Y, 0}, system
(4.4} is exponentially stable 10 the state < ¥, U5 >y
Ye- ’

Proof If we let [Y{1}, 2(2}] 509 =
S{i}gf §}; we have
Y() =[< ¥, U5 >n +t < T, 03, >]¥o + Vit)

and

fe =
Yi(t) =P M < 0,0} >y Uy,
Rl

where P is the projection from H to V5, and
Z(t) = V(&) =< ¥, %3, >x Yo+ Zu(t),

Zit)={I - @;Ee“% < 0] >y Ug.
Bl
Since ReA <€ —§ < 0 {see Remark 3.1}, we have

VO + 1211 = O(e™*) — 0,

It is not hard to check that ¥, = L.10, ¥5] be-
cause [0, Yp] is the corresponding eigenvector of A*
for the eigenvaiue A = 0. Therefore, for any initial
state ¥(0} = ¥ = [V, AZ], with Z € D(A), we have
< ¥, %5 ; >y=0. Thus,

Y(t) =< ¥, %5 >u Yo + Y1(2),

£ =0,

and when f — oo,

HY (6)— < O, ¥ >n Yol = O(e™®) — 0.

g

We are now in the position to give an explicit ex-

pression for < U, 95, >x Yo. For this aim, we

need only to calculate \Il§o From the theory of op-

erator, we know that A™“¥3, = 0. We m assums

without loss of gangzaiii?g that A* 0, = . Let
Vg = [W,U] € H, forany [Y, Z] € D(A), %&»” hsﬁss

< AlY,Z|,[W,Ul>y
<Z+§§§§§>g»§«<§§’§>x

It

= f Elz,. zft"}@?gx ;‘E;ii&i’ +zz i{%‘%ﬁgiﬁ}
— BTy (€)ull) — BTy, (0)u-{0)

4
f Ely.stize(z)dz + Ely.. (0
'S‘éég?z:*f{g}g
N S -
= Ezf{@}wgﬂx}és Bl 2(z)wpny g}%

j; i.&zazs% =2 (®)dz + 2:(0)w. (0
— Ely.oo(0)u(l) — Efy..(0)2.(0)
-/ * Blye ir(@)ds + Elyea ()8
-é»E??;mig}?%«

Supptied by The British Libn

Equate it, after choosing

(€ = 0,45 = —B, weall) =0,

u{z) =0,u, = 7
4.8)

=

with

<Y, 2], AW, U] >n

i 5

=. <§§f§§1:§;§s }t}} >§%

£
= j[‘ pz{z) zdz
o

then function w{z) will satisfy the following equation

ﬁ%xm@@ = PEy
w(0) =0, wﬁ-{ﬁ} 0,

igsz{{%‘é = Elw,(0)=1I @9
i s ’gzi‘{i} éﬁég
together with normalized condition
< [Yo,0,[W,U] >n=w(0)=1.  (4.10)
Solving equation (4.9} we get
5 25 24 B
wiz) = §§ %aagg -§~§; ~§»€ +e§:s {4.11)

- . »
wherea = 2zl B b= 04 4

?%g‘gﬁi e = -gﬁéﬁ and d = 1. Thaus, for any
¥ =Y, Z] € H, we have

<, W50 >n
= <[V,2],W,U] >x

= fl Elyso{z)wzs iﬁ}{fﬁ: 4 ?*{géi»‘:{g} + IhzeTp
= [ Bteiomie + us0) - lico,
a8

and we are free to choose the parameter £ to alter this
quantity to achieve our task with w given by (d.11}.
Conclusion 4.1, B show in this paper that e fles-
ible arm: roboi can be conirolled by o feedback con-
trol without disrupting the rigid mode shape. We also
see from the proof of Corollary 4.2 that the Ty semi-
group S{f} determined by the system is not uniformly
bounded even if 8 = 0. Other stabilizing feedback
controf such asg '

T(t) = ElByc=:(0,1) - ay:{0,1),
is not suitable in practice because it will drive the state

of the closed loop system back to the reference line
rather than the target pasition.

- “The world's knowledgs”



5.

ACKNOWLEDGMENTS

This work Is supported by an RGC grant of code HKU
71337020

REFERENCES

f.

Gue B.Z.: On the Boundary Control of a Hybrid
System with Variable Coefficients. J. Oprim. The-
ory Appl, Vol. 114, 2002, pp. 373-395.

Knani L: Dynamic modeiling of m}gs‘%a robotic
mechanisms and adaptive robust control of tra-
jectory computer simulation Part L é;}gf Maih.
Model, Vol. 26, 2002, pp. 1113-1124.

Denavit J., Hartenberg R.S.: A kinematic notation
for lower-pair mechanisms based on matrices. J.
Appl. Mech, Vol. 22, 1955, pp. 215-221.

Knani L2 Explicit and implicis adapiive controls
Jor flexible munipulaior. TASTED modelling iden-
tification and control, Innsbruck, Austria, 1993,

Rnani L. On the adaptive conirol, application fo
a flexibie roboe. JASTED modelling identification
and control, Innsbruck, Austria, 1994,

Knani §.: Dynamic analysis and trajeciory contrsl
for kinematics chain with flexible links. Sysrems

10.

Analysis Modeiling Stmudation Journal, Vol. 37,
2005, PP- 221231, ‘

Knani J.: Robust control for manipulator with
flexible defect, JMACS, 1997 pp. 355-350.

Cannon R.H.: Initial experiments on the end-point
control of a Hexible one-link robot. e J. Bob.
Res, Vol. 5, 1986, pp. 62.75.

Schmitz C.: Experiments on the end-point posi-
tion contrel of a very flexibie one-link manipula-
tor. Ph.D. Thesis, Stanford University, Guidance
and Control Laboratory, 1985,

Liu Z., Zheng S.: Semigroups associated with
dissipative systems, Research Notes in Mathemat-
ics, Vol. 398, Chapman & Hall/CRC, 1999,

Naimark M.A: Linear Differential Operators.
Vol.1, Frederick Ungar Publishing Company, New
York, 1967.

Shkatikov A.A.: Boundary probelms for ordi-
na z}f differentail equations with §3xai’i‘§§€f inthe
undary condition, J. Sovier Marh, Vol. 33, 18986,
§ 13181-1342,

t’:’!"

Xu G.Q., Yung 8.P: The expansion of semigroup
and criterion of Riesz basis. To appear.

Supplied by The British Library - "The worid's knowledge”




