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Abstract — In recent years, techniques such as dynamic
programming, the maximum principle, linear
programming, and genetic algorithms have been used to
synthesise optimal control policies for manufacturing
systems. However, such techniques are frequently rather
opaque and often yield control policies that are
implemented by open-loop rather than closed-loop
control systems. In this paper, it is therefore shown that
closed-loop systems incorporating hybrid fuzzy/crisp-
logic controllers can be readily designed for
manufacturing systems.  This hybrid approach is
illustrated by reference to the closed-loop control of a
simple manufacturing system producing a single part
type.

I. INTRODUCTION

In modern industry, it is important that manufacturing
systems be controlled so as to satisfy production schedules
and to minimise manufacturing costs. Therefore, in recent
years, various techniques such as dynamic programming, the
maximum principle, and linear programming have been used
to synthesise such optimal control policies for manufacturing
systems [1] - [6]. Such synthesis techniques are needed
because the state and control vectors involved in the
mathematical models of manufacturing systems must satisfy
numerous complicated constraints, which create major
difficulties both for the design and for the operation of
conventional multivariable control systems.  However,
synthesis techniques like dynamic programming [1] and the
maximum principle [5] entail rapidly escalating computational
difficulties as system complexity increases. Such
computational difficulties are avoided by the use of linear
programming [6] to synthesise optimal control policies for
manufacturing systems; but this tractability is achieved at the
expense of having to deal only indirectly with the dynamical
complexities of such systems.

In order to circumvent these difficulties, it has recently
been shown by Porter and Allaoui [7] that the genetic design
methodology developed by Porter [8] can be readily used to
synthesise optimal control policies for manufacturing systems.
However, the optimal control policies thus obtained are
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unable to function automatically for different part demand
rates since they are implemented by open-loop rather than
closed-loop control systems. In this paper, it is therefore
shown that closed-loop systems incorporating hybrid
fuzzy/crisp-logic controllers can be readily designed for
manufacturing systems. This hybrid approach is illustrated by
reference to the closed-loop control of a simple manufacturing
system producing a single part type.

II. CLOSED-LOOP HYBRID CONTROL

The manufacturing systems to be controlled comprise m
machines (with n associated buffers) and produce p part types.
The dynamical behaviour of such systems is governed by
linear differential equations of the forms [6]{9]

qt) = Ajpu®+A, i(t) M
and

x(t) = Az u(t)—d(t) 2
for the buffer dynamics and for the production dynamics,

respectively. In these equations, q(t) € R is the vector of
buffer levels, x(t)e RPis the vector of finished parts,
u(t) € R" is the vector of buffer production rates, i(t) € RP
is the vector of part release rates, and d(t) € RP is the vector
of part demand rates. In addition, A; € R™™ is the buffer
routing matrix such that A; u(t) represents the flows of parts
between buffers; A, € R™P is the buffer loading matrix
such that A, i(t) represents the arrivals of external parts at
the buffers; and A3 € RP*" is the output matrix such that
Aj u(t) represents the flow of finished parts. Finally, if T;
is the processing time of parts in buffer j and B® is the set of

buffers for machine k(k=1,2,..,m), then the buffer production
rates must satisfy the capacity constraints
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k=12,..,m) . (3)

In addition, the state and control vectors must satisfy the
constraints

q(t)=0 , “)

()20 , )
and

(20 . (6)

However, x(t), the state vector of finished parts, is not
required to satisfy such a non-negativity constraint (since
there may be either a surplus or a backlog of finished parts).

The control problem is to find, over some time period of
duration T, the vectors i(t)€ RP and u(t) e R" of part
release rates and buffer production rates in response to a

specified vector d(t) e RP of part demand rates. More
precisely, the objective is to choose the control vectors

i(t) e RP? and u(t) € R" so as to minimise the cost function

I = i[kq(t)w*x*(t)w‘x‘(t)] dt 7
where

xT(t) = max {x(1),0} € RP (8a)
is the parts surplus vector,

X" (t) = max {~x(t),0} e RP , (8b)
is the parts backlog vector, and

AeR™ n” e R ut e R™P are weighting vectors
for the buffer contents and the finished parts surplus or
backlog. It is evident that the control vectors i(t) € RP and
u(t) € R" that minimise this cost function, I, are optimal in
the sense that the entire cost function associated with work-in-
progress (as measured by the buffer levels), production

surplus, and production backlog is minimised. However, the
solution of this optimisation problem is non-trivial because

the control vectors i(t) € RP and u(t) € R™ must satisfy the

constraints (3), (5), and (6) whilst the state vector q(t) € R"
must satisfy the constraint (4).

This problem has, nevertheless, recently been solved by
Porter and Allaoui [7] using the genetic design methodology
developed by Porter [8]. However, the resulting genetically
synthesised optimal control policies are implemented by open-
loop rather than closed-loop control systems. In order to
facilitate the closed-loop control of manufacturing systems, it
Is possible to introduce hybrid fuzzy/crisp-logic controllers.
Since it is required that such controllers function
automatically for different part demand rate vectors,

d(t) € RP, it is convenient to control the vector of finished
parts, x(t)€RP, by using a fuzzy-logic controller to
generate the vector of buffer production rates, u(t) e R";
and to control the vector of buffer levels, q(t)e R", by
using a crisp-logic controller to generate the vector of part

release rates, i(t) € RP. The design of both the fuzzy-logic
components and the crisp-logic components of such hybrid
controllers so as to ensure that both ”X(t)" — 0 and

“q(t)“ — O is straightforward because of the special structure
of the linear differential equations (1) and (2).

II. ILLUSTRATIVE EXAMPLE

This general approach to the hybrid fuzzy/crisp-logic
control of manufacturing systems can be conveniently
illustrated by considering a simple system in which m=2,
n=2, and p=1 [7]. In this case, equation (1) for the buffer
dynamics assumes the scalar forms

q(® = i(O—u;(t) )]
and
q2(t) = u)()—uy(t) , (10)

whilst equation (2) for the production dynamics assumes the
scalar form

x(t) = u, (H—d(t) . (11)

It is assumed that T, = 0.5 and T, = 0.5 so that, in view

of the inequalities (3), the production rates must satisfy the
constraints

u ()2 (12)
and
u, <2 . (13)
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In addition, it follows from the inequalities (4), (5), and (6)
that the state variables and control variables must satisfy the
constraints

q;(t),q,(t)=0 , (14)

u; (t)u, ()20 , (15)
and

(t)y=0 . 16)
The initial state of the system is such that

q;0) =5, (172)

q,(0) =0, (17b)
and

x(0) = 0 (17¢)

It is assumed that control is to be exercised on the time
interval [0,10], and that the part demand rate on this interval
is

dit) =1 (0<t<10) . (18)

The objective of such control is to generate i(t), u;(t), and
u,(t) so as to minimise the cost function in equation (7) with

T=10, A=[5,10], and p* =p~ =5.

In order to achieve this objective, the finished parts level,
x(t), is controlled by a fuzzy-logic controller embodying the
following five rules:

FR1. If x is P, then Au, is NB.

FR2. If x is N, then Au, is PB.

FR3. If xis Zand X is Z, then Au, is Z.
FR4. If xis Zand X is P, then Au, is NS.
FR5. If xis Zand X is N, then Au, is PS.

However, the buffer levels, q,(t) and q,(t), are controlled

by a crisp-logic controller embodying the following four
rules:

CR1. If q; >0, theni =0 .
CR2. Ifqu =0, theni = u; .
CR3. If g, >0, thenu; =0 .

CR4. If q, =0, then u; = u, .

The hybrid controller embodying these nine rules provides a
simpler means of controlling the multivariable manufacturing
system than does a completely fuzzy controller. Indeed, it is
evident from equation (9) that q;(t) depends directly on

both i(t) and u;(t); and from equation (10) that q,(t)
depends directly on both u;(t) and u,(t). But the hybrid
controller essentially decouples these control tasks by first
using the fuzzy-logic controller to generate u,(t), and then
using the crisp-logic controller to generate u,(t) in terms of
u,(t) and i(t) in terms of u,(t).

The results obtained when this hybrid fuzzy/crisp-logic
controller is implemented are shown in Figs 1 and 2 when the
system is in the initial state defined by equations (17) and the
part demand rate is given by equation (18). Thus, the state
variables q;(t), q,(t), and x(t) are as shown in Figs 1(a),

1(b), and 1(c), respectively; whilst the controls i(t), u,(t),
and u,(t) generated by the hybrid controller are as shown in
Figs 2(a), 2(b), and 2(c), respectively. It is evident that this
closed-loop behaviour is very similar to the following
behaviour of the optimally controlled system (for which the
cost function, I, is equal to 62.5):

(i) q(t) reduces linearly from 5 to O when t=5, and then

remains equal to 0;

q,(t) equals O when 0<t<10;

x(t) equals 0 when 0<t<10;

(iv) i(t) equals O when 0 <t <5 and 1 when 5<t<10.
(v) u;(t) equals 1 when 0<t<10;

(vi) u,(t) equals 1 when 0<t<10.

(ii)
(iii)

However, it is important to note that the near-optimal results
shown in Figs 1 and 2 were obtained automatically by the
closed-loop system incorporating the hybrid fuzzy/crisp-logic
controller.

The ability of the same hybrid controller to deal

automatically with the same part demand rate when the
system is in the different initial state

q,0) =3 , (19a)

q,(0) =3, (19b)
and

x(0) =1 (19¢)
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is demonstrated by the results shown in Figs 3 and 4. Thus,
the state variables q;(t), q,(t), and x(t) in this case are as
shown in Figs 3(a), 3(b), and 3(c), respectively; whilst the
controls i(t), u;(t), and u,(t)generated by the hybrid

controller are as shown in Figs 4(a), 4(b), and 4(c),
respectively. This hybrid controller is equally effective if the
part demand rate is increased by 50%, such that

d(t) = 1.5

0<t<10) , (20)

when the system is in the initial state defined by equations
(19). Indeed, the state variables q(t), q,(t), and X(t) in

this case are as shown in Figs 5(a), 5(b), and 5(c),
respectively; whilst the controls i(t), u;(t), and u,(t)

generated by the hybrid controller are as shown in Figs 6(a),
6(b), and 6(c), respectively.

IV. CONCLUSION

Techniques for the synthesis of optimal control policies for
manufacturing systems are frequently rather opaque and often
yield control policies that are implemented by open-loop
rather than closed-loop control systems. In this paper, it has
therefore been shown that closed-loop systems incorporating
hybrid fuzzy/crisp-logic controllers can be readily designed
for such systems. This hybrid approach has been illustrated
by reference to the closed-loop control of a simple
manufacturing system producing a single part type.
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Figure 1: Time-domain behaviour of g1, g2 and x. [q1(0)=5, g2(0)=0, x(0)=0, d(t)=1]
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Figure 2: Time-domain behaviour of i, u1 and u2. [q1(0)=5, q2(0)=0, x(0)=0, d(t)=1]
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Figure 3: Time-domain behaviour of g1, g2 and x. [gq1(0)=3, g2(0)=3, x(0)=1, d(t)=1]
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Figure 4: Time-domain behaviour of i, ut and u2. [g1(0)=3, q2(0)=3, x(0)=1, d(t)=1]
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Figure 5. Time-domain behaviour of g1, g2 and x. [q1(0)=3, q2(0)=3, x(0)=1, d(t)=1.5]
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Figure 6: Time-domain behaviour of i, u1 and u2. [q1(0)=3, g2(0)=3, x(0)=1, d(t)=1.5]
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