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ABSTRACT

Most classical approaches to the determination
of geodesics (such as the calculus of variations)
arc difficult to apply except for simple
surfaces. Genetic algorithms are therefore used
to provide a general methodology for the
computation of geodesics.

1. INTRODUCTION

Many  important  problems in
engineering involve the computation of
geodesics (ie, lines of shortest distance) on
three-dimensional curved surfaces. Thus, for
example, it may be required to position a
robotically operated riveting machine so as to
produce a set of equally spaced rivets along the
geodesic joining two points on the curved
fuselage of an aircraft under manufacture.
However, most classical approaches to the
determination of geodesics (such as the
calculus of variations) are difficult to apply
except for simple surfaces. In addition, the
outputs from such procedures are usually in the
form of mathematical functions and not in the
form of discrete sets of Cartesian co-ordinates
suitable for numerical control (or, more
generally, for use in digitised form within any
CAD/CAM system).

The need to generate geodesics in such
digitised forms has been addressed by, for
example, Kiryati and Szekely [1]. However, it
is considered that such procedures are
relatively difficult to apply (particularly in the
case of complicated curved surfaces). In this
paper, genetic algorithms [2][3] are therefore

used to provide a general methodology for the
computation of geodesics. The outputs of the
sets of Cartesian co-ordinates from this genetic
procedure are in a form immediately suited to
such practical tasks as the programming of
CNC machine tools or industrial robots. The
effectiveness of this genetic methodology is
illustrated by reference to a spherical surface,
for which theoretical results are known.

2. GENETIC METHODOLOGY

The general methodology for the
genetic computation of geodesics can be
conveniently described in relation to a curved
surface, =, described by the equation

Sfx.y,2)=0 ()
in three-dimensional Cartesian space. In
equation (1), P =(x,y,2) is a point referred to
fixed rectangular Ox, Oy, Oz axes with O as

origin. It is desired to find the line of shortest
length joining the points

A= (X4,Ya524) (2
and

B=(x5.y5,25) a3
which lies on the surface described by equation

(1). Since the points A and B lie on this
surface, it is evident that

Sxa,¥4,24) =0 . {4a)

and
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Axs,y8,28) =0 . co (4D)

It is convenient to define the geodesic joining A
and B on E in terms of » equally spaced
interior points

Pi=(x,yi,z) (=1,2,..,n). ....(5)
Thus, if

L =dA,P) ... (6a)
Li=dP,P)) (=23,.,n),....(0b)
and

Ly =d(P,,B) ... (6c)

are the lengths of rectilinear segments between
A and P,,P, and P,,..., and P, and B,
respectively, these interior points are required
to be such that

1='§i}‘1,- )
is a minimum where

h=b=.=ln e (8
and
fxuyiz)=0  @G=12,.,n).....(9

This constrained minimisation problem
is equivalent to determining the Cartesian
co-ordinates of the » interior points
Py, P,, ..., P, such that the cost function

F=ull+u2:‘§ l(],' —7)|

+u3i§ l/(x,-,yiz,»)l N (10)

is minimised. In equation (10),

J , (1D

] =
n+l

and pi, 2, and p; are positive weighting
parameters. It is evident that, in the case of
curved surfaces for which geodesics are
uniquely defined, the Cartesian co-ordinates of
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the » interior points that minimise " will
produce a space-polygonal approximation to
the required geodesic in which the sides of the
space polygon are of equal length and its
vertices lie on Z. In order to use genetic
algorithms to determine this geodesic, it is
necessary only to encode the Cartesian
co-ordinates of the # triples (x1,y1,21),
(x2,¥2,22), ..., (Xn,Vn, 2») In accordance with a
system of concatenated, multi-parameter,
mapped, fixed-point coding [3]. Thus, each
ordered set of 7 such triples is represented by a
string of binary digits with 3» sub-strings.
Then, following any choice of an initial
generation of such strings, successive
generations of strings can be readily obtained
using the basic genetic operations of selection,
crossover, and mutation [3]. In particular, by
defining the 'fitness' of each such string as
O=Ur \ oo (12)

the successive generations of interior points
P, P,,....P, produced by the genetic algorithm
tend to exhibit progressively increasing 'fitness’,
@, as the cost function, I", decreases towards
its minimum value. This methodology for the
genetic computation of geodesics thus produces
space-polygonal approximations to the required
geodesics that satisfy the constraints expressed
by equations (8) and (9) with increasing
accuracy while minimising the length defined
by equation (7). Note that, although the
constraint expressed by equation (8) is
appropriate to many manufacturing
applications of geodesics (in riveting, for
example), this particular constraint is not
fundamental to the general methodology. Note
also that planar problems, such as those
involved in designing shop-floor layouts or in
optimising the paths of remotely guided
vehicles, can be solved according to this
formalisation simply by replacing equation (9)
with the constraints

z;=0

(=1,2,...n). L (9)

3. ILLUSTRATIVE EXAMPLE
This general methodology for the

genetic computation of geodesics can be
conveniently illustrated by reference to a



curved surface, E, for which theoretical results
are known. Thus, for example, consider the
case of a sphere with centre at the origin and of
unit radius for which it is required to determine
the geodesic joining the points

A=(1,0,0) ....{13a)

and
B=(0,1,0) ....(13b)

In this case, let it be desired to determine the
three interior points

Pi=(x,y,21) , ... (14a9)

Py=(x2,y5,22) , ....(14b)
and

Py =(x3,y3,23) ... (l4c)

which satisfy the constraints expressed by
equations (8) and (9), and which minimise the
length defined by equation (7), in case n=3.
The results of the genetic computation in this
case are shown in Figures 1 and 2 over
100,000 generations for a population size
N=100, a crossover probability p, =06, a
mutation probability p,, =0.001, and a string
length A=90. In Figure 1, the
best-of-generation and  generation-average
values of the cost function, T, are plotted
against generation number when
W =25, =1, and U3 =1; whilst, in Figure
2, the associated best-of-generation values of
the nine Cartesian co-ordinates
X1,V1,21,X2,V2,22,X3,¥3,23 are plotted against
generation number. It is thus evident that the
optimal locations of the three interior points are

P, =(0.92375,0.38221,-0.00098) ,
... (15a)

P, =(0.70869, 070478, 0.00098)
... (15b)

and
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P3=(0.38416,0.92179,0.00098) ,

... {15¢)

for which

1=1.55989 . (16)

I, =0.38974 (17a)

,=0.38769 (17b)

13 =0.39040 .(17¢)
and

1,=0.39204 o (17d)
These genetically computed results are

evidently close to the corresponding theoretical
values

P\ =(0.92387,0.38268, 0)

>

... (18a)

P, =(0.70710,0.70710, 0) ,
. (18b)

P53 =(0.38268,0.92387,0) ,
. (18¢)

1=156071 . (19)
/;=0.39017 . (20a)
[, =039017 . (20b)
13 =0.39017 . (20¢)

and

14=0.39017 ... (20d)

This accuracy can be improved, if desired, by
using longer strings. Note that the outputs of
the sets of Cartesian co-ordinates from this
genetic procedure are i a form immediately
suited to the programming of CNC machine
tools or industrial robots. In addition, note that



the evolutionary process depicted in Figures 1
and 2 can be accelerated by using more precise
a priori information regarding the admissible
ranges of the Cartesian co-ordinates
x,yi,2i(i=1,2,..,3).

4. CONCLUSION

In this paper, genetic algorithms have
been used to provide a general methodology for
the  computation of  geodesics  on
three-dimensional  curved  surfaces. The
effectiveness of this genctic methodology has
been illustrated by reference to a spherical
surface for which theoretical results are known.
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Fig.1:Ca) Generation-average cost Function.
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