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Abstract - Supply chain is a network of cooperating 
organizations that are involved through upstream orid 
donwstream linkages. Such a complex system coimot be 
modeled simply by mathematical equations without 
simplification of the problem. Recently, Multi-Agent 
System (MAS) is proposed as o modeling technique to 
represent supply chain networks. In fact, many application 
problems in MASS fliat are concerned n.ith firrdirig a 
consistent combination of agent actions can be formalized 
as Distributed Constraints Satisfaction Problem (DCSP,l. 
The main purpose of this paper is fa propose a novd 
coordination framework by adapting the DCSP philosophy 
for distributed supply chains, which are modeled by MASS, 
subjected to uircerfainties. Simulation results indicate the# 
the proposed mechanism outperfomis troditioiid 
stochosric modeling in solving supply chain dynamics bi 
terms oftotal cosf aridfill rule of the system. 

Keywords: Supply Chain Coordination and Optimization, 
Modeling and Simulation of Supply Chain Management. 

1 Introduction 
Supply chain can be viewed as a network of 

participating corporations working together to achieve the 
system goals. Supply chain management is the act cf 
optimizing all activities through the supply chain, so that 
products and services are supplied in the right quantity, to 
the right time, and at the optimal cost. In this connectiori, 
coordination among supply chain members is of vital 
importance. Due to the distributed nature of global supply 
chain, agent technology has been employed to model 
supply chains. Agent technology provides methods of 
integrating the entire supply chain as a networked system 
of ihdependent echelons, each of which utilizes its own 
decision-making procedure [ I ] .  Mutli-agent system (MAS), 
a branch of Distributed Artificial Intelligence, consists of 
more than one autonomous agent. Coordination, or 
teamwork, is one of the critical research challenges in a 
large number of multi-agent applications [2]. In fact, many 
application problems in MASS that are concerned with 
finding a consistent combination of agent actions can b's 
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formalized as Distributed Constraints Satisfaction Problem 
(DCSP). In this connection, this paper aims to develop a 
coordination methodology, which is based on DCSP, 
through quantity flexibility to resolve supply chain 
dynamics. 

The rest of the paper is organized as follows: Section 
2 provides a review of related literature. Section 3 
formulates the simulation problems, in tenns of stochastic 
model and the proposed coordination mechanism. Section 
4 presents and discusses the simulation results. Section 5 is 
the concluding section. 

2 Literature review 

2.1 Coordination in supply chains 
Quantity / price discount is a common strategy to 

provide coordination channel among supply chain 
members. For example, Viswanathan and Piplani [3] 
considered a policy where a vendor offers a discount to 
buyers as an incentive for them to place orders only at 
times specified by the vendor. One common weakness of 
the reported research with such channel coordination is that 
deterministic demand is assumed, and hence, impact of 
system dynamics on the proposed model has not been 
studied. Facing uncertain demand, for example, retailers 
prefer to place an order late in most case in order to gather 
enough time to collect more information [4]. However, this 
leads to insufficient production times and hence production 
cost would probably be increased. 

Coordination can also exist in the form of contracting. 
Quantity flexibility contract provides flexibility with no 
explicit penalty for exercise, by adopting constraints as a 
way to motivate appropriate behavior [5]. This philosophy 
is in line with solving Constraint Satisfaction Problem 
(CSP), which will be reviewed in the later sub-section 2.3. 
By introducing quantity flexibility, the retailer can place an 
order earlier due to the flexibility that is introduced in the 
quantity range and the supplier may only need to finish the 
order with quantity that is within the committed range. In 
addition, the retailer may request less quantity of goods to 
be shipped if the actual demand is lower than what is 
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expected. This philosophy can provide incentive to both 
supplier and retailer. 

2.2 Distributed problem solving in supply chains 
Multi-Agent System (MAS) is a trpical example of 

distributed problem solving technique that gains high 
attention in recent research. Swaminathan et al. [6] 
presented a multi-agent approach to model supply chain 
dynamics. A supply chain library of software components 
has been developed such that customized supply chain 
models can be built from the library. Sadeh et al. [7] 
presented an agent-based architecture for dynamic supply 
chain called MASCOT (Multi-Agent Supply Chain 
coordination Tool). MASCOT is a re-configurable, multi- 
level, agent-based architecture for coordinated supply 
chain. Agents in MASCOT serve as wrappers for planning 
and scheduling modules. Above mentioned architectures 
are focusing on the architectural issues and lacking of 
higher coordination mechanism. Since agents in a MAS is 
loosely coupled and are not controlled by a central 
controller, it is easy to loss distributed functions. 
Coordination is an effective tool to prevent the system from 
such problem, i.e. chaotic behavior in agent’s terminology. 

2.3 Distributed constraint satisfaction problem 
Constraint Satisfaction Problem (CSP) consists of a 

set of variables X = {xr, ..., x,J while each variable x, 
belongs to a finite set D, of possible values (its donlain), 
and a set of constraints restricting the values that the 
variables can simultaneously assign from the domain. The 
objective is to And values of the variables that satisfy every 
constraint. Many problems in operational research, e.g. 
scheduling, fall within this general framework. Distributed 
CSP (DCSP) is formally defined as a CSP in which 
variables and constraints are distributed among multiple 
automated agents [8] .  Various application problems in 
MAS that are concemed with finding a consistent 
combination of agent actions can be formalized as DCSP 
while solving DCSP involves communication between 
agents by sending message and each agent has some 
variables and tries to detemine their values so that the 
value assignment must satisfy inter-agent constraints, 
which are also distributed among agents [9] .  

In this paper, the philosophy of DCSP is applied to 
solve inventory management problem in distributed supply 
chains. In an inventory management problem, the variables 
of a retailer are the quantity and the time to re-order, which 
decision is constrained by its inventory posjtion. For 
supplier, the variables are the quantity to produce and the 
time to ship (if the supplier has the flexibility), which is 
constrained by its own capacity and raw material supply. 
Domain of the variables is simply positive integers. Details 
will be provided in the next section. 

3 Problem formulation 
The supply chain under study is modeled as the MAS 

that described in the previous research work that was 
conducted by Chan and Chan [IO]. Since the main 
objective of this paper is to discuss the coordination 
mechanism for inventory management through flexible 
quantity in distributed supply chains, the model and details 
of operations are not reproduced here. Interest readers can 
refer to the previous work for details [IO]. In summary, 
independent companies are represented by agents. In fact, 
the coordination mechanism is relied on inter-agent 
communication and negotiation to come up with how and 
when to deliver outstanding orders in supply chain, with 
the background philosophy of solving CSP. Each agent’s 
action is govemed by constraints and the performance of 
the coordination mechanism is compared against traditional 
stochastic model in order to verify the usefulness of the 
proposed mechanism. 

3.1 Stochastic model 
The supply chain under study consists of one retailer 

and four suppliers. They are independent in the way that 
suppliers do not have access to the demand information 
and the retailer does not know the capacity of the suppliers. 
Each supplier’s capacity per period is limited and is 
uncertain. Sequences of operations are stated as follows: 

* Retailer’s inventory at period f (I,) is reduced 
according to daily demand (d,), which is normally 
distributed, plus all incoming orders (I0,J from supplier i 
at period 1. Any unfilled demand is backordered (BO,). The 
retailer monitors its own inventory position in order to 
place an order. The inventory position at period f (IP,) is 
the sum of existing inventory (i.e. I,), ordered quantities in 
all outstanding orders (00,,) from all suppliers i at period f, 
and backorder at period f .  These can be sunmiarized 
mathematically as follows: 

L - I t - r ’  xIO<z-dr (1) 

0 Reorder cycle policy is employed to decide an order 
should be placed or not. Review period T can be chosen 
using procedures analogous to those used for determining 
Economic Order Quantity (EOQ) such that Tis given by: - 

T =  k (3) 

where k, h and ,U are ordering cost, inventory holding cost 
and mean of demand of the retailer respectively. At the 
review period, the retailer will place a job announcement 
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with quantity requirement so that the suppliers will bid for 
the order. The quantity Q is calculated by equation (4): 

Q = S-IP,  (4) 

S in equation (4) is known as the order-up-to-level. In 
stochastic model, the retailer needs to know the mean (p) 
and standard deviation (4 of its demand function, or the 
retailer can forecast them from past data, in order to 
calculate S. Forecasting error will be introduced if the 
retailer does not know its parameters well. Since the focus 
of this study is to investigate the effect of uncertainties, an 
assumption is made here that the retailer knows its 
parameters of the demand function well. In this connection, 
forecasting error is not introduced and it will not affect the 
comparison between the stochastic model and the proposed 
coordination mechanism later in Section 4. In this 
connection, the order-up-to-level is calculated as follows: 

S = p  (T + L)+ u a m  

where U is the service level that the retailer would like to 
achieve and L is the order lead time, which is assumed to 
be deterministic by the retailer (the retailer and suppliers 
are distributed in the sense that the retailer does not know 
the capacity function of the suppliers). The latter temi in 
equation ( 5 )  is known as safety stock, which is a buffer to 
deal with demand uncertainty. The higher the service level, 
the higher is the safety stock. Assuming backorder cost of 
the retailer is b, and inventory holding cost is h as defined 
above, the service level can be calculated by: 

where @(.) is the probability density h c t i o n  of normal 
distribution. If there is no uncertainty exists in the systcm, 
above analysis is in fact equivalent to the analysis of EOQ. 

The suppliers will base on their own capacity :and 
outstanding order to come up with the proposed bids. 
Essentially, all suppliers can submit a bid but the lead time 
is different for different suppliers. Without loss of 
generality, transportation lead time is incorporated in the 
production lead time so that the former is assumed to be 
zero. This is a common assumption in the literahire. 
Assume the longest due date of supplier i at period t is D ,  
in its outstanding order, the expected delivery due date (:an 
be calculated by equation (7): 

(7) Q 
Mean Capacip 

Expected Delivery Due Date = Djz + 

In addition, supplier inventory in increased by its 
daily capacity, which is also modeled as normal 
distribution. 

* 
the shortest delivery due date will be selected. 

- In the meantime, suppliers will update their 
inventories according to their daily capacity if there is any 
outstanding order. 

- In addition, the retailer will check its outstanding 
orders in each period to identify if due date of a particular 
order reaches. In such a case, the retailer will ask the 
supplier to ship the order. In case the supplier does not 
have enough inventories to satisfy the order, penalty cost 
per unit (this is analogous to the backorder cost in case the 
agent is a retailer) will be charged to the supplier. 

- At the end of each period, the inventory cost, 
backorder cost, and penalty cost of each agent are updated. 
At the end of the simulation, the operating cost of each 
agent, and hence the total system cost, can be recorded. In 
addition, setup cost per order is charged to the retailer and 
the supplier who gets the offer. 

After the retailer received all the bids, the one with 

3.2 Coordinated model 
From equation (4). the order quantity in stochastic 

model in fact consists of a basic quantity plus a safety 
stock. The rationale behind is to use the safety stock as a 
buffer to compensate the effect of uncertainties. Therefore, 
the stochastic model inherently increases inventory cost. In 
other words, the stochastic model is not dynamic enough 
because demand may be lower due to its random nature. In 
this connection, quantity flexibility is introduced in the 
coordinated model in order to provide the flexibility to the 
retailer, as well as suppliers to react with system dynamics. 
In order to apply this proposed mechanism, the supply 
chain members must be coordination oriented, hut no 
explicit information sharing is required. In the coordinated 
model, similar procedures are followed as in the stochastic 
model, but with the following alteration: 

When a job is announced, it consists of a range of 
quantity required instead of a fixed quantity. Equation (5) 
can be rewritten as the following equations: 

S = p (T + L) + u a 6 = A + B (8) 

The range of quantity Q is defined such that: 
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Q E [ A  - B, A + B ]  

Equation (1 1) defines the “domain” of the variable 
“quantity” that the retailer requires the supplier to be 
shipped. In addition, the retailer will calculate a range of 
delivery dates so that supplier should ship the quantity as 
defined in equation (1 1) withiin the range of deliver due 
dates. The range of delivery date can be defined as in 
equation (12): 

(Expected Delivery Due Date - (B / p), Expected Delivev 

‘ 

Due Date + (B / g)] 

(7) 

(12) 

where Expected Delivery Due Date is given by equation 

The procedure is the same as the stochastic model 
until lower bound of the due date in equation (12) of an 
outstanding order reaches. The retailer starts to coordinate 
with the supplier when and how many to be shipped as 
outline in Figure 1. 

1 = t + I ;  
coordination( ) 

if(le[DJo,, Dhjgh]) then ... (i) 
if(l=Dl,;gl,) then __ .  (ii) 

I,, = get supplier inventory( ) 
if (Il, e [QI~,. Qh;&]) then . . . (iii) 

penalize supplier ( )  
exist( ) 

else if (I, = get my inventory ( ) > p )  then . . . (iv) 
exist ( ) 

Ii, = get supplier inventory( ) 
if(h e [QJw. 

penalize supplier ( ) 

else 

. . . (V) 

exist ( ) 
else 

exist( ) 
end coordination ( )  

get supplier’s inventory() 
if(tWlo,,  DJ,~~J,I)  then 

i f (L > Q~,;gll)  

I, = get my inventory ( ) 

4 = Qhigh 
ilse 

return Iit 
exist ( ) 

end get supplier’s inventory() 

Figure I .  An outline of pseudo code for coordination 

This can be formulated as a DCSP with two variables 
- one is quantity Q, and the other is the date for shipment 
D. The two variables are distributed among the retailer and 

supplier under contract. Domain of Q is given by equation 
(1 1) and let Qlo, (i.e. A - B in equation (1 1)) and Qsi, (i.e. 
A + B in equation (11)) be the lower bound and upper 
bound respectively. Domain of the date for shipment is 
given by equation (12) and let DJ,,, and Dhtgh be the lower 
hound and the upper hound respectively. The objective is 
to solve this DCSP through coordination. Condition (i) in 
Figure 1 constrains the coordination to be taken place only 
if the due date is within the domain in equation (12). 
Condition (ii) ensures the coordination phase is ended 
when the upper hound of the due date in equation (12) 
reaches. In such case, outstanding order must be 
completed. Condition (iv) makes sure the retailer does have 
enough inventory if no shipment is made when Dhjgh is not 
reached. Please be reminded that conditions (iii) and (v) of 
the pseudo code allow the supplier to supply with quantity 
less than the defined domain, subjected to penalty being 
incurred, if the inventory of the supplier less than the lower 
bound as stated in equation (11). This is a constraint 
relaxation and hence the new domain of Q is effectively 
become (0, Qlow], i.e. any positive integer below Qlow The 
reason to accept this argument is to ensure that the 
mechanism is complete and sound, i.e. the algorithm can 
always returns a solution. Of course, both the retailer and 
the suppliers would not like to relax the constraint, if 
possible, because both will suffer - the retailer gets less 
product and the suppliers make a loss due to the penalty. 

4 Results and discussions 
Simulation program is written in JAVA. The length of 

the simulation program is 465 periods while the first 100 
periods i s  disregard to eliminate the error of the warm-up 
period. For each simulation setting, 10 tuns, each with 
different random seed, were performed and the average of 
the 10 simulation runs was computed in order to minimize 
random errors. 

Simulation results are depicted in Figures 2 to 3. Each 
figure consists of three graphs: (a) the results of an 
idealistic system that does not take uncertainties into 
consideration; (b) the results obtained from the system 
employing stochastic model to deal with uncertainties; and 
(c) the results by employing the proposed coordination 
mechanism to react with uncertainties. Obviously, the 
performance of (a) is the worst subjected to uncertainties. 
However, this is included solely as a benchmark so that 
improvement of the stochastic model and the proposed 
mechanism from this worst case can be compared, All 
grouped graphs under the same heading are drawn with the 
same scale so that they can he compared visually in an easy 
manner. The two base axes that are labeled with “demand 
uncertainty” and “capacity uncertainty” refer to the two 
independent variables, retailer’s demand and suppliers’ 
capacity respectively, in the simulation study, They are 
varied by altering the standard deviation of the associated 
normal distribution to reflect the level of uncertainties of 

4530 



each variable. The higher the value of the parameters, the 
larger is the standard deviation of the normal distribu~on, 
i.e. more uncertain. On top of the fmdings on individual 
measurement that will be discussed, it is found that the 
performance under certain environment, i.e. no 
uncertainties present, is the best as expected. Therefore, all 
simulation results are presented relative to this situation, 
but the word "relative" will not be stated explicitly in most 
of the case. 

4.1 Total system cost 
Figure 2a shows that the total system cost is increwed 

in the same direction as both demand and capacity 
unceminties. In fact, this observation is trivial as level of 
uncertainty is increasing, the chance that the system is aut 
of stock is also increasing, which leads to increase in 
backorder cost. 

If stochastic model is employed, safety stock is wed 
as buffer to reduce the impacts of the uncertainties so that it 
is easily to conclude from Figure 2b that the total syst" 
cost is improved subjected to demand and capacity 
uncertainties. Improvement is more significant in highly 
uncertain environment. Although the total system cost is 
reduced, the trend that total system cost increase with legel 
of uncertainty is still valid. In other words, the safety stcck 
is a means to reduce loss due to uncertainties, but it is not 
so effective to eliminate system dynamics completely. 

If the proposed coordination mechanism is employed, 
the total system cost is even improved to a larger extcnt 
than the system with stochastic model as shown in Figure 
2c. This is probably due to the dynamic nature of the 
proposed algorithm that can successfully filter the systt:m 
dynamics. In addition, the proposed algorithm is not only 
able to reduce the total system cost but the impact of 
increasing uncertainty is also suppressed. That means the 
marginal cost against uncertainty (i.e. the cost increased Sy 
increasing one level of uncertainty) is decreased 
significantly. This can be shown by comparing the 
deviation in the height of various columns of the graphs in 
Figure 2. 

4.2 Fill rate 
. The second performance measure to be examined is 

fill rate, which is usually not considered in mathematical 
programming. Figure 3 illustrates the performance of tlie 
three systems in terms of fill rate. In order to ease readers 
to study the graphs, the two axes of uncertainty are 
rearranged. From Figure 3a, it can be observed that fill rate 
(the higher is the better) is deteriorating while uncertainties 
are increasing. This is not surprising because the higher tlie 
uncertainty, the easier is the system encounters stock out, 
i.e. customer orders could not be filled. In the stochastic 
model (Figure 3b), since safety stock is employed as 
cushion to uncertainties, fill rate is improved as compared 

with Figure 3a. However, the improvement is less than 3% 
in fill rate. 

On the other hand, for the coordinated system, the fill 
rate can be improved more than 5% as compared with the 
idealistic system. In addition, the maximum benefit that 
switches from stochastic model to the proposed model is as 
high as 3.5% improvement in fill rate. If the average 
improvement among all uncertainties setting is considered, 
it is found that the average improvement of stochastic 
model over the idealistic model is 1.2% against 3.6% ofthe 
proposed coordination algorithm. 

(a) Idealistic system 
~~~ ~ 

-~ .~ 

: ""Cenllnly 1 1  ""iC"iU",? ~ 

~~ p, 

(b) Stochastic system 

- 

I .s 
.-: 

I 

(c) Coordination system 

Figure 2. Relative total system cost against uncertainties 
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(a) Idealistic system 

(b) System with stochastic modeling 

(c) System with the proposed coordination mechanism 

Figure 3. Fill rate against uncertainties 

5 Conclusions 
‘ System dynamics in supply chains is not uncommon. 

Facing dynamics situation in modem distributed supply 
chains, traditional stochastic model may not be dynamic 
enough to react with uncertainties from different 
participating members in the supply chains. In this paper, 
an innovative coordination mechanism is proposed for 
distributed supply chains for inventoly management so that 
delively decision of outstanding order is negotiable. This 
dynamic nature is proven, through simulation study, to he 
effectively in reducing total supply chain cost and 

improving fill rate. More effort can be paid to enhance the 
robustness of the proposed mechanism. 
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