Proceedings of the 2004 IEEE
International Symposium on Intelligent Control
Taipei, Taiwan, September 2-4, 2004

Equal Size Lot Streaming to Job-shop Scheduling Problem Using
Genetic Algorithms

Felix T. 8. Chan*, T. C. Wong and P. L. Y. Chan
Department of Industrial and Manufacturing Systems Engineering,
The University of Hong Kong, Pokfulam Road, Hong Kong

*Email address: ftschan{@hkucc.hku.hk

Abstract — A novel approach to solve Equal Size Lot
Streaming (ESLS) in Job-shop Scheduling Problem (JSP)
using Genetic Algorithms (GAs) is proposed. LS refers to a
situation that a lot can be split into a number of smaller lots
(or sub-lots) so that successive operation can be overlapped.
By adopting the proposed approach, the sub-lot number for
different lots and the processing sequence of all sub-lots can be
determined simultaneously using GAs. Applying Just-In-Time
(JIT) policy, the results show that the solution can minimize
both the overall penalty cost and total setup time with the
development of multi-objective function. In this connection,
decision makers can then assign various weightings 50 as to
enhance the reliability of the final solution.

1 INTRODUCTION

In conventional job-shop systems, lots are processed on
workstations or machines in different orders. A feasible
solution to this problem can be defined by the processing
sequence of all lots on all machines such that lots can be
finished completely. The total possible solution can be up
to (n!)™ if there are 1...m machines and 1...n lots. So it is
hard enough to solve this type of problem in practical time
limit. In general, it is commonly assumed that a lot cannot
be split into sub-lots because of single lot size [1,2]. If LS
is considered, it is a must to relax this assumption. By
applying LS to JSP, lots can be finished earlier, hence,
minimize the overall lot lateness as defined by the deviation
beyond due dates. On the other hand, the total setup cost
may increase due to the increment in split lots. To solve
this problem, it is prevalent to define a multi-objective
function considering the overall penalty cost and total setup
cost. For practical applications, decision makers are
required to assign weights to these 2 objectives. Overall
penalty cost, as defined by the sum of earliness cost per
hour per early unit and tardiness cost per hour per late unit,
is weighted. Total setup cost is regarded as the product of
processing cost per hour and the total setup time during
fixture changeover between lots or sub-lots.
Then the objective becomes the minimization of the sum of
these 2 cost types.

2 LITERATURE REVIEW
For most applications, it is quite often to apply LS to Flow-
shop Scheduling Problem (FSP) [3-5). In traditional flow-

shop, lots are processed in the same order. Therefore, it is
extremely useful to split lots into sub-lots in order to

0-7803-8635-3/04/$20.00 ©2004 IEEE

472

expedite the production process as shown in Fig. 1.
Kalir and Sarin [3] presented a new heuristic method
called the Bottleneck Minimal Idleness (BMI) heuristic
to equally sized 1.8 in FSP. The principle of BMI is to
minimize the idle time on the bottleneck machine such
that the near-optimal schedule can be obtained. Kumar
et al. [4] addressed LS in 3 elements, i.e. the number of
sub-lots, sub-lot size, and sub-lots processing sequence.
By applying i) GAs to determine the number of sub-
lots and the processing sequence of sub-lots, and ii}
Linear Programming (LP) to determine the sub-lot size,
the results are insightful and rewarding. Yoon and
Ventura [5] proposed a Hybrid Genetic Algorithm
(HGA) which incorporates LP and a Pair-wise
Interchange (PI) method for IS in FSP. The objective
is to minimize the weighted absolute deviation of lot
completion time from due date.

1 MISM25M3
- 1] 5 l 12: MIDM2OM3
2 |] >]
" L+ 1 - |
@ : >
M1) |) l 5 l 5 | Ir%lprovemt%nt
i i
w2 .
]
o i
©) >

Figure 1. FSP a) without LS; b) with LS

If the objective is to minimize makespan, the optimum
solution is to split lots into single unit sub-lots with no
setup time. If the objective is to minimize the earliness
or tardiness of lots, it is important to split lots in
consideration of lot sequencing. However, the problem
is less complex as compared to a simple JSP. But since
the number of inherent constraints of ISP is bigger than
that of FSP, the application of LS to ISP is still useful
in modem manufacturing environment. Other than
huge capital investment, any improvement to the
scheduling issues can implicitly reduce the overall

production cost by economically utilizing the fixed assets,
Fig. 2 shows the potential of LS to JSP.

J1: M1->M2->M3
J2: M2->M1>M3

M1 1 I

s 1 7]

v

i [] | ; l " I 3 I Iml?rovemqn

L]
t
3
]
v (2120]1] L
' 1
v Gl l212] |

D)
Figure 2. JSP a) without LS b) with LS

v

From Fig. 2, the improvement is noted with LS. It is
assumed that the processing sequence of sub-lots follows
the sequence of its original lot. If the objective is to
minimize makespan, the improvement is quite significant.
In general, there are 4 types of LS approaches to general
scheduling problems including i) Equal size sub-lots
without intermittent idling means that lots are split into sub-
lots with the same size and machine is required to process
all sub-lots in a continnous manner; ii) Equal size sub-lots
with intermittent idling allows idle time between sub-lots
on the same machine; iii) Varied size sub-lots without
intermittent idling means that lots are split into sub-lots of
different size and no idle time is allowed between sub-lots
on the same machine; and iv) Varied size sub-lots with
intermittent idling permits idle time between sub-lots of
varying size on the same machine. For detailed description
of the above 4 LS approaches, please refer to the work done
by Trietsch and Baker [6]. In this paper, the second LS type
is adopted and an algorithm will be developed. Moreover, it
is assumed that once LS is applied to split lots into sub-lots,
the total number of sub-lots and the sub-lot size are fixed
throughout the schedule,

Although few studies are dedicated to LS in JSP, some
have attempted to address the benefits. Dauzére-pérés and
Lasserre [7] presented an iterative procedure to determine
the sub-lot size for a given sub-lot sequence and JSP with
fixed sub-lot size using LP and GA. The procedure stops
until the makespan converges or the maximum number of
iterations is achieved. They have shown that results near to
lower bound can be obtained by using the proposed
procedure. However, no attention is given to the selection
of split lots. Jeong et al. [2] studied a lot splitting heuristic
for ISP in dynamic environment. Some heuristics are
applied to determine the split lots and the sub-lot size and

473

then schedule sub-lots with a modified shifting bottle
procedure. Also, the proposed heuristics has been
applied in different dynamic cases such as machine
failure and rush orders. Particularly, the importance of
the before-arrival setup time to the schedule
performance is highlighted. However, they did not
explicitly explain the impact of different dynamic
factors on this before-arrival setup time.

Since there are limited applications on LS to JSP, an
mnovative approach using GA will be studied. This
paper will be organized as follows. The proposed
approach will be elucidated in the next section. In
section 4, computational results will be investigated to
examine the performance of the proposed method. An
industrial case study will be studied in section 5.
Finally, conclusions will be drawn together with future
research direction.

3 THE PROPOSED ALGORITHM

3.1 Model Notations

Weightings on overall penalty cost
Weightings on total setup cost
m Total number of machines

n Total number of original lots
n Total number of sub-lots

J]‘ Loti

Ji j'Jl lot of J;

S; Number of sub-lots of J;

Fi Fixture of J;

L; Original lot size of J;

Qij Quantlty of Jlj

MS; k™ machine for J;
Pty Processing time on k™ machine of J;
Sti Start time of J;; on machine k

Cj Completion date of Jj;

D, Due date of J;

suy Total setup time on machine k

ec; FEarliness cost / hour / unit of early J;
tc; Tardiness cost / hour / unit of late J;
Machining cost of machine k per hour

3.2 Model Formulation

Min. (W1 x Overall penalty cost + W2 x Total setup
cost)

:Wlx[ZZ(a,j xec, + f3, xtc,)xQﬁ]+

WQX[Zsuk xmckj
%

(n

where

If Cij <D, oy = D;- Cij and Biji 0.
If Cij =1, BU: C‘J — Di and @= 0.
If Cij = D,‘, uij = Bij= 0.

ZQg'_LiZO Vi 2
J
St oo > Pt,xQ, + Stgm“ Vi, jf (3)
Q0,20 @
Sty 20 &)
1<i<n (6)
1<j<8§, N
1£k<m (8)

The objective function is illustrated by equation {1).
Overall penalty cost is the sum of carliness and tardiness
costs. Earliness (tardiness) cost is defined as the sum of the
total early (late) hour by each unit of all lots/sub-lots times
ec; (tc;) where j = 1...n°. Total setup cost is regarded as the
sum of individual setup time on each machine (suy) times
its associated cost (mc;) where k = 1...m. Constraint (2)
requires the sum of sub-lot size should satisfy the original
lot size. Limitation (3) ensures that the processing sequence
of sub-lots corresponds to the predetermined order.
Constraints (4) and (5) set the non-negativity conditions for
all sub-lot sizes and start time of sub-lots. Equations (6)~(8)
specify the range of variables i, j, and k.

3.3 Generic Algorithms

GAs is a kind of stochastic optimization methods as
proposed by Holland [8]. The principle of GAs is based on
the natural evolution and has been applied to a wide range
of combinatorial problems. In terms of GAs, solutions are
encoded in a set of strings (or chromosomes) to form a
solution pool called population, Then strings are evaluated
based on the objective function to obtain the fifness value.
Then, strings with higher fitness value will be combined to
produce new strings forming a new pool, this process is
called crossover. For extensive review on genetic crossover
operators, please refer to Cheng et al [9]. These new
strings then may be subjected to self-tuning called mutation
with a probability called mutation rate (mrate). Each
population then represents a generation, thus the procedure
will continue to run until the terminating criteria are met
such as the maximum number of generation is reached.
Finally, the best solution is obtained at the end of the
procedure. Recall that the size of solution pool refers to
population size (psize) and the number of pools defines the
maximum number of generations (gen).

474

3.4 Lot Streaming Problem

In this paper, a GA is applied to determine the sub-lot
number for all lots called GA1. A solution in GAl is
defined as a string of size n. Each bit of the string
represents the number of sub-lots for the corresponding
lot. For example, a string {1 2 2 5 5} means that lots 2
and 3 are split into 2 sub-lots; and lots 4 and 5 are split
into 5 sub-lots while lot 1 remains unsplit. Because
integer-sized lots are considered, it is assumed that §; <
L;. According to the second LS type, Q; = L/S;. In
some cases, the value of Ly¢/S;is not an integer, so the
last sub-lot of J; equals to L; — 3'Q; for j = 1...8-1. For
example, if L;= 10 and S;= 4, then Q;=10/4=25=2
(no rounding). Then Q; = Q= Qu = 2, Qu = 10-
(2+2+2) = 4. After splitting n lots to n’ sub-lots
according to the string, the next step is to sotve a JSP
with n’ independent lots. The value of n’ can be
obtained by equation (9). The scheduling resuits will
then become the objective value {OV) of the string by
equation (1). And the OV will be transformed to the
fitness value by equation (10). The procedure of GA1
will continue to run until terminating criteria are met.
Then good strings will be used to perform crossover
operation according to ranked fitness list, i.e. only
solutions rank top can perform crossover. For GA1l, a
simple 2-cut-point crossover (2X) operator is
implemented (Fig. 3a) and mutation operation (Fig. 3b).

"':ZS;-

Fitness Value(FV) =

(9

MAX - OV + MIN

AVERAGE
MAX—>the maximum OV of the same generation
MIN->the minimum OV of the same generation
AVERAGE->the average OV of the same generation

(10)

Solution 1; Solution 2:
{12[25/5...8n} {32131]5...8n}
JaL

Solution 27: Solution 1°:
{32125 5...5n} {12131)5... 8n}
dnl

Solution 17;] Solution 2°:

{12315...8n} §32155... 8n}
Not Mutated
mutated

Figure 3. a) 2X operator; b) Mutation operation

3.5 Job-shop Scheduling Problem

After L8, a new ISP is formed after splitting n lots into n’
sub-lots. To this end, another GA is applied to solve the
new ISP called GA2. A string for GA2 is defined as the
preference list of lot priorities on each machine. For
example, fm=n=2,L,=5,L,=38, 8§;=8;= 2, then we
have n" = 4 sub-lots with Q; = 2, Q3= 3, Qu = Qn=4.
Hence, a StI']Ilg can be defined as {Jll T2 T I l Iy Iy Iz
Ji2}. It means that the preference list on machine 1 is
J]]>J]2>le>122! simi]arly I=30=In>l;, for machine 2.
Then Non-Delay (ND) schedule will be generated. ND
means that no machine is allowed to idle when there is at
least one lot or sub-lot waiting for that machine [10]. This
policy is of extremely useful to workshops with only local
buffers available on machines because frequent
rescheduling is not always applicable. Hence, the
preference list of lot processing order is proposed
particularly to this type of working condition.

Similar to GAL, the fitness values of strings are obtained by
equation {10) and strings of GA2 will perform crossover
operation according to rowlette wheel selection scheme.
Job-based Order Crossover (JOX) which has been proven
to preserve job order on all machines between different
generations well [11], is applied to GA2. The working
mechanism of JOX is depicted in Fig. 4. Mutation
operation is defined as the interchange of position between
2 lots or sub-lots on the same machine. Tab. 1 shows the
comparison between a well-known method Shifting
Bottleneck (SB) [12] and GA2 te some standard JSP.

Step 1: A number of random lots or sub-lots is
preserved, say J13 and J21.

Solution 1: {... J12 122 J13 J21J11 ...}
Solution 2: {... J22 111 J21 J12 13 ...}

Step 2: JOX is applied by fixing the position of
preserved lots or sub-lots.

Solution 1: {...xxJ13J21x...}

Solution 2: {...xx J21xJ13...}

Step 3: Then inherit the lot processing order of
solution 2 to selution 1 and solution 1 to solution 2.
Solution 1: {... J22 J11 J13J21)12 ...}

Solution 2: {... J12 J22 J21J11 J13 ...}

Figure 4. JOX operator

Table 1. Comparisons between SB and GA2

JSp OPT SB GA2
FT5x20 1165 1178 1178
LAO1 660 666 666
LAO6 926 926 926
LAle6 945 978 998
LA21 1046 1084 1125
LA3L 1784 1784 1784

475

4 COMFPUTATIONAL RESULTS

To examine the performance of the proposed algorithm,
various JSP will be employed. For each problem, Pty
from [1~16), L, ranges from [1~30], F; from [1~20], ec;
from [1~10], t¢; from [1~10], and me, from [1-~20].
Precedence processing constraints are maintained such
that lots should visit each machine once in a
predetermined order. Also, fixed sctup time is
considered during fixture changeover between lots or
sub-lots. Let m = n = 3, different weightings will be
employed to generate the solution to each of 10 3x3
problems using objective function (1). Average results
are shown in Tab. 2. It is noted that the primary goal is
the minimization of the overall cost, i.e. the sum of
overall penalty cost and total setup cost.

Table 2. Overall cost with different weightings

10 W1/W2

Problems | 1.0/0 | 0.9/0.1 | 0.7/0.3 | 0.5/0.5 | 0/1.0

Average | 7886 | 7266.7 | 8389.4 | 8006 | 169448
[657] | [638) | [739] | [662] | [568]

[1- Total setup cost

From this experiment, it is observed the lowest overall
cost cannot be obtained by considering either the
overall penalty cost (i.e. W1/W2 = 1.0/0) or total setup
cost (i.e. WI/W2 = 0/1.0). On average, it seems that
WI1/W2 = 0.9/0.1 gives the best result on the overall
cost in this example. In fact, the ratio W1/W2 should be
case-dependent and there should not be any single best
ratio to all problems. However, the results show that
there is at least one balance point captured between
these 2 objectives using the proposed method. And it is
shown that the proposed algorithm works quite well to
the weightings. From Fig. 5, the convergence of GA is
examined. GA1 (gen, psize, mrate) = (10, 20, 0.01) is
implemented, It is observed that the convergence is
quite well with respect to the objective (1) over 200
GAI1 solutions. Recall that each GA1 solution defines
the sub-lot number for all lots. For GA2, (gen, psize,
mrate) = (20, 20, 0.1) is employed. Fig. 6 shows the
convergence of GA2 for one particular GA1 solution,
Recall that the objective function of GA2 is the
minimization of overall penalty cost only and each
GAZ2 solution defines the processing sequence of all
lots or sub-lots. From Fig. 6, it is seen that the
fluctuation is minimized across generations. To this end,
it is observed that the convergence of GA2 is quite well
with respect to overall penalty cost. It is noted that the
proposed approach explores 200 GAl solutions. Each
GAI1 solution is evaluated by 400 different processing
sequences. So there are total 80000 individual solutions
to every single ESLS to JSP. However, the
configuration of GA parameters is also case-dependent.
Probably, more emphasis must be placed on the

determination of suitable GA configuration to various
ESLS to JSP so as to minimize the subjective errors due to
human judgment.

GA1 Convergence

----- local best global best l

2 4500
5 4300 +
Z 4100
g5 3900 &
% 3700 +
S 3500 s o i s iy

1 2 3 4 5 6 7 8 9% 10

Generations
Figure 5. GA1 Convergence
GA2 Convergence
F = = = 'local best global best |

Owverall penalty cost

12345678 91011121314151617181920

Generations

Figure 6. GAZ Convergence
5 CONCLUSION

In this paper, a new approach using GAs is developed to
ESLS in JSP. The primary goal of the proposed GA
approach is to determine the split lot, the sub-lot number
for each lot, and the lot processing sequence simultaneously
so as to minimize the value of the multi-objective function.
The assignment of weightings also facilitates the decision
makers to control the outcomes to different problems in
dynamic working environment. Moreover, the proposed
GA approach can be easily applied to other applications
such as demand splitting in supply chains, allocation and
distribution problems in system design, genecral lot
streaming problems in different areas, etc. However, the
study of GA configuration is surely encouraged to further
strengthen the reliability of the GA mechanism.

476

6 REFERENCE

[11 Woo S., Kang 8. and Park J., A Batch Splitting
Heuristic for Dynamic Job Shop Scheduling
Problem, Comput. Ind. Eng., vol. 33, 1997, pp
781-784.

Jeong H. 1., Park J. and Leachman R. C., A Batch

Splitting Method for a Job Shop Scheduling

Problem in an MRP Environment, Int,], Prod. Res.,

vol. 37, 1999, pp 3583-3598.

Kalir A. A. and Sarin 8. C.,, A Near-optimal

Heuristic for the Sequencing Problem in Multiple-

batch Flow-shops with Small Equal Sublots, Int. J.

Manage. Sci., vol. 29, 2001, pp 577-584.

Kumar S., Bagchi T. P. and Sriskandarajah C., Lot

Streaming and Scheduling Heuristics for m-

machine No-wait Flowshops, Computers Ind. Eng,,

vol. 38, 2000, pp 149-172.

Yoon 8. H. and Ventura J. A., An Application of

Genetic Algorithms to Lot-streaming Flow Shop

Scheduling, ITE Trans., vol. 34, 2002, pp 779-787.

Trietsch D. and Baker K. R., Basic Techniques for

Lot Streaming, Ops. Res., vol. 6, 1993, pp 1065-

1076.

Dauzére-pérés S. and Lasserre J. B., Lot Streaming

in Job-shop Scheduling. Ops. Res., vol. 45, 1997,

PP 584-595.

Holland J. H., Adaption in Natural and Artificial

Systems, The University of Michigan Press, Ann

Arbor; 1975.

Cheng R., Gen M. and Tsujimura Y., A Tutorial

Survey of Job-shop Scheduling Problems Using

Genetic Algorithms, Part II: Hybrid Genetic

Search Strategies. Computers Ind. Eng., vol. 36,

1999, pp 343-364.

[10]Croce F. D., Tadei R. and Volta G., A Genetic
Algorithm for the Job Shop Problem. Computers
Ops. Res., vol. 22, 1995, pp 15-24.

[11]0no 1., Yamamura M. and Kobayashi 5., “A
Genetic Algorithm for Job-shop Scheduling
Problems Using Job-based Order Crossover”, in
International ~ Conference on Evolutionary
Computation, Nayoya, Japan, 1996, pp 547-552.

[12] Adams J., Balas E. and Zawack D., The Shifting
Bottleneck Procedure for Job Shop Scheduling.
Manage. Sci., vol. 34, 1988, pp 391-401,

2]

(3]

[4]

(5]

f6]

(71

[8]

[

