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Abstract

The end-effector kinematics error of a manipulator is
caused by variations in machining accuracy of linkages. In
most manipulators, the structural design results in an error
magnification from the linkage variation to the end-effector
position. In this paper, an optimization approach for
suppressing kinematics error magnification is considered
for a 4-DOF parallel manipulator. Two objective functions
are developed for characterizing the error magnification
effect. The kinematic parameters are then determined by
minimizing these objective functions. It is shown that the
proposed approach can reduce the error magnification to
such a degree that the magnification factor is reduced to
close to one. This means that the end-effector kinematics
error can be made to match the error tolerence allowed in
the manufacturing of the linkages.

Keywords
Parallel Manipulator, Kinematics, Optimization

1. INTRODUCTION

Kinematics optimization is essential for achieving high
positioning accuracy and compactness of a multiple-DOF
parallel manipulator. The manipulator dexterity,
operational workspace and structural stiffness have been
used as the performance index for most of the existing
optimization algorithms. A global performance index has
been proposed by Gosselin and Angeles [5] to minimize
the kinematics error due to the transformation between
joint and Cartesian space. The global performance index
has been modified by Tsai and Joshi [8] and Leguay-
Durand et al. [6] to optimize the stiffness and the dexterity
of the manipulator workspace. The global dexterity index
was recently proposed by Gallant and Boudreau [4] to
optimize the workspace of the planar parallel manipulators.
The quasi-Newton optimization algorithm was proposed by
Carretero et al. [2] to minimize the parasitic motion of a 3-
dof spatial manipulator. A nonlinear programming method
had been proposed by Bhattacharya ef al. [1] to maximize
the rigidity of the Stewart platform over the desired
workspace.
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A method for optimal kinematics design of the HexaSlide
type parallel manipulator was recently proposed by Ryu
and Cha [7]. The error kinematics model of the manipulator
was derived and an objective function defined to be the
product of the singular values of the error model was used
for constrained optimization. The weakness of this
approach is that the minimization of the singular values
product does not ensure that the kinematics error is reduced
in all directions of the workspace.

In high precision positioning mechanisms, end-effector
accuracy and repeatability are essential in assuring the
product quality. Furthermore, the size of the mechanism is
required to be compact with respect to the workspace.
Under these constraints, the structural design of the
manipulator may cause the manufacturing variations of the
mechanical linkages to be magnified at the position of the
end-effector. The accuracy of the linkages is constrained
by the manufacturing capability of the machines. To
overcome the problem of error magnification, optimization
approaches are developed to determine the kinematic
parameters so as to minimize the kinematics error within a
prescribed reachable workspace volume.

In this paper, a kinematics optimization approach for high
precision positioning accuracy of manipulators is
considered. Kinematics optimization methods based on two
new objective functions are developed for a 4-DOF parallel
manipulator developed in [3]. The proposed objective
functions yield better kinematic parameters (with respect to
the suppression of kinematic error magnification)
compared with that obtained using the method of [7]. The
paper is organized as follows. In section 2, the error
magnification matrix for a 4-DOF parallel mechanism
under consideration is derived. Two objective functions for
minimization of the end-effector kinematics error are
developed in section 3. The optimization process and the
constraints of the design variables are described in Section
4. In Section 5, the results of the optimization are given
together with the statistical analysis of the kinematics error
distribution of the end-effector in an operational
workspace.
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2. PROBLEM FORMULATION

In a semiconductor packaging system, the positioning
mechanism is usually required to provide 4-DOF motion,
where 3 of these motions are translations in the XYZ space,
and the remaining DOF is a rotational motion against the
Z- axis.

G(x,y,z,ﬂ)

Figure 1. Kinematics design of the 4-DOF parallel
manipulator.

Figure 1 shows the kinematics design of the 4-DOF parallel
manipulator proposed in [3]. The manipulator consists of 3-
DOF of translation in XYZ space and 1-DOF in rotation
against the Z-axis. The linear miniature servomotor pairs
aja; and a;a, are coupled to two 2-DOF planar mechanisms
on the XY plane. A triangular structure is constructed on
the two planar mechanisms with motion restricted to a
vertical plane.

Let the locations of the four linear actuators be a, (n =
1,2,3,4) satisfying the conditions,

0<amn <0 <800 <O

5”2 < A max

A min
O<ay, Sa;<ay, <a,..

Ui S Ay < Ay,

In the case when /\=l=0h=Il=] and ki=ky=k the

coordinates of the points P(x;, y;) and Q(x;, y,) are related
to the actuator positions by:

x, =%(a1 +a,) 1

y‘=\12—-%(a2-—a,)2 @
X, = ‘/12 --%(a4 -a) (3)

Y2 =%("3 +aa) Q)

The coordinates of the end-effector, denoted G(x, y, z, 9),
can be related to the coordinates of P(x;, y;) and Q(x;, y2)
as:

x=%(xl ix) ®)

y=%(yl+yz) ©

z=\/k2_(xz_x1)2:(YZ".V1)z )

0=tan"(l’—2—"—l"—) ®
Xy =X

Suppose the mechanical linkages have manufacturing
variations: '

sL=[8} &, &I, &l &k k)T (9

These variations lead to a kinematics error of the end-
effector of the manipulator:

SE=[6x 6y 6z 66]" (10)

JE can be related to AL by:

where
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1 16
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1! 17
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ey = ksing (18)
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From (11), we see that the Jacobian matrix E,, defines how
the variations of the mechanical linkages is transformed
into end-effector kinematics error in the coordinate G(x, y,
z, ). In most manipulators, E,; has a magnification effect
so that 4L is amplified to become larger errors at the end-
effector. Since the size of JL is prescribed by the
machining capability, we can only improve the kinematics
positioning accuracy by making E,, as ‘small’ as possible.
In the next section, we will consider how the parameters of
the linkages can be optimized to ensure that Ej, and hence
OF is small.

3. DESIGN OF OBJECTIVE FUNCTIONS
Let E), be factorized using Singular Value Decomposition
as:

=UsSy” (28)

where U = [u;...u4] and V = [v;...v4] are (part of) unitary
matrices, and S=diag(o-, .o 4) is a diagonal matrix with

the singular values o; (i = 1,2,3,4) satisfying 6;> ... 2 oy 2
0. The singular value decomposition can be regarded as a
principal component analysis of the error magnification
matrix E,, with the singular values representing the error

(5-x)| @9

amplification along different principal directions defined
by the singular vectors. From (28), since U and V are -
unitary, the error magnification matrix can be reduced by
minimizing the singular values of S.

In [7], it is proposed that the product of the singular values,
(ie. [15;) is minimized over a workspace volume. The
drawback of using the product of the singular values as an
objective function in the minimization is that very little
control can be exercised over the magnitude of individual
singular values. For example, the product is suppressed by
making only one particular singular value small while
leaving the others unchecked. This means that error
amplification is reduced only along one direction of the
workspace corresponding to the suppressed singular value.
It would be more desirable to reduce all singular values of
E, as a whole so that error amplification is suppressed
uniformly in all directions of the workspace.

We note that the Frobenius norm of Ej, is related to the
singular values by:

4
[Ewl: =l = Yo @9

i=1
Since all the singular values are bounded above by || Exl| s,
the minimization of the Frobenius norm of E,, ensures that
all singular values are bounded below this value. We will
next propose the minimization of two objective functions
for the purpose of suppressing the end-effector kinematics

error over an operational workspace W.

4
A. Minimizing the integral of }:‘a? over W
pa

Since Ejs depends not only on the kinematic parameters
(1,k), but also on the position (x, y, z, §) of the end-
effector, it is necessary to ensure that E;; remains small
over a chosen operational workspace W. For this purpose,
we define an objective function to be the integral of || Ey|| »
over the operational workspace:

4
o= [ Yot dw 30)
i=]

The kinematic parameters / and k are then determined by
solving the minimization problem:

min f,(,k)

This means that / and & are optimized to reduce the average
(or typical) error amplification over W. The accuracy of
the system is however often expressed in terms of the
worst-case error. For this reason, we will consider a
second objective function for reducing the worst-case
kinematic errors magnification.
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B. Minimizing the Maximum of |[E,, ":_ over W

The objective function for the minimization of the worst-
case kinematics error magnification over the operational
workspace is defined as:

4
Lk)= 2 31
AR <§“%’§W(Z“J (3D

Let (7*,k*) be the solution to the minimization problem:

ﬂ,l,iknfz(l,k)

J2(I*,k*) can be used to obtain a hard upper bound on the
end-effector kinematics error over the entire operational
workspace W, which can then serve as a specification of
the system in the sense that all points within /¥ will have an
error no larger than this value. The minimization of f5(/,k)
thus have the meaning of designing the system for the best
specification.

4, OPTIMIZATION PROCESS

The objective of the optimization algorithm is to minimize
the kinematics error of the end-effector of the manipulator
in the operational workspace. A cubic volume in the centre
of the manipulator workspace is selected to form the
operational workspace. The size of the operational
workspace is equal to (Ax, Ay, Az) = (15mm, 15mm, 2mm).
The operational workspace is divided into 432 grid points
for evaluating the numerical integration in the case of the
objective function f; and for taking the maximum in the
case of f5.

The design variables of the optimization are the linkage / of
the two 2-DOF planar mechanism and the linkage & of the
triangular structure as shown in fig.1. The maximum error
budget of the length of both / and % is set at 1um. The
length of / and k are constrained within the linkage
boundaries to avoid excessive geometrical error
magnification. The boundary singularities of the
manipulator can be determined by the geometrical
characteristic equations: .

k=(3’2 -yl)/z and x; = X, (32)
I=(a,-a)f2 ot I=(a,~a,)/2 (33)
These boundary singularities are avoided in the

optimization process by constraining the length of /and £.

A constrained nonlinear optimization method is used for
the minimization of the kinematics error of the end-
effector. The Sequential Quadratic Programming (SQP)
method is used for minimizing the value of the objective
function. In each iteration, the Hessian matrix of the
Lagrangian function is calculated using the BFGS method.

The projected gradient is calculated to determine the step
size of the change of the design variables. Finally, the
design variables are modified for the next iteration. The
iteration is terminated when the difference of the objective
function derivative in two iterations is less than a certain
minimum tolerance.

5. OPTIMIZATION RESULTS AND ANALYSIS

A given set of dimensional parameters of the linkage is
used to generate the surface of the proposed objective
functions. A plot of the surfaces of objective functions
fi(l,k) and fo(1,k) over the feasible region of the
constrained parameters / and % are shown in Figures 2 and
3 respectively. In these surfaces, no local minimum of the
objective functions exists within the feasible region. This
means that under the constraints imposed on the kinematic
parameters, the optimal solution lies on the boundary of the
feasible region.

Figure 2. Surface of the objective fuhction fi(1,k).

Surface of the objective function 20.k)

Figure 3. Surface of the objective function f,{/, k).

Figures 4 and 5 show a plot of the values of the objective
functions fi(/,k) and f£(I,k) respectively at the 432
individual test points in the operational workspace W.
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These plots show how the objective functions are scattered
around the optimal value after optimization.
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Figure 4. Values of the objective function f;(/, k) at the
individual test points in the workspace W.
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Figure 5. Values of the objective function £,(/, k) at the
individual test points in the workspace W.

We observe from Figures 4 and 5 that although the optimal
value of f; (=3.535) is smaller than that of f; (=3.70), the
latter represents a hard upper bound for all grid points in
the workspace whereas f; can only be read as an average
error. Furthermore, the range as well as the scattering of
the points is slightly smaller in the case of the optimal
solution for f;. '

The initial parameters of the linkages / and k, and the
optimal parameters for the objective functions f; and f;
after optimization are shown in Table 1.

Table 1. Optimization resuilts of the linkages and the
objective functions of the manipulator.

! (mm) k Objective
(mm) function
Initial parameters of fi(/,k) 130 130 153.125
Tnitial parameters of 5 (/,k) 130 130 626.627
Optimal solution for f; (1, k) 70 118.6 3.535
Optimal solution for £ (1, k) 70 116.6 3.70

Table 2. Statistical analysis of the initial kinematics
positioning accuracy.

8x (um) Sy (um) 8z (um) 56 (mdeg)
Minimum 3.79 3.79 -91.66 T | -602.59
Maximum 106.09 106.09 -1.52 602.59
Average 12.17 12.17 -8.86 Q
Standard 15.89 15.89 13.89 139.98
deviation

From Table 2, we see that with the initial kinematic
parameters, a variation of only 1pm in each of the linkage
of 1 and k, the average kinematics positioning error of the
end-effector is magnified to 12um in the XY plane and
8um in the Z-axis.

The kinematics positioning error after optimization using
the objective functions f1(/,k) and f(/,k) are shown in
Tables 3 and 4 respectively.

Table 3. Statistical analysis of the kinematics
positioning accuracy optimized by f;.

8x (um) &y (um) 8z (pm) 86 (mdeg)
Minimum 0.68 0.68 0.68 -2.72
Maximum 1.03 1.03 0.89 2.72
Average 0.83 0.83 0.8 0
Standard 0.089 0.089 0.049 1.225
deviation

Table 4. Statistical analysis of the kinematics
positioning accuracy optimized by f,.

8x (um) By (um) 8z (um) 36 (mdeg)
Minimum 0.65 0.65 0.73 -2.47
Maximum 0.96 0.96 0.9 247
Average 0.78 0.78 0.83 0
Standard 0.079 0.079 0.042 1.147
deviation

Tables 3 and 4 show that a significant reduction of the
kinematics positioning error of the end-effector has been
achieved by minimizing either £;(1,k) or £(1,k). With the
optimized solution, the kinematics error of the end-effector
is of the same order of magnitude as the variation of the
linkages / and k. This is in contrast to an error
magnification that is usually found in many mechanisms.
Indeed, if we had used the initial parameters in the present
mechanism, the variations in the linkages would result in a
kinematics error of about an order of magnitude larger than
the errors in the linkages.

1260




6. CONCLUSIONS

Although we have developed the optimization approach for
reducing the kinematics error magnification specifically for
the 4-DOF parallel manipulator of [3], the method
described in this paper is applicable to other mechanisms.
A significant improvement of the kinematics positioning
accuracy demonstrates the capability of the proposed
optimization method for high accuracy semiconductor
packaging applications. The objective functions developed
in this paper have been found to give better results
compared with the objective function used in [7].
Furthermore, we have shown that the 4-DOF parallel
manipulator, together with suitable choices of the
kinematic parameters using the optimization approach
developed in this paper, can achieve a high positioning
accuracy which matches the error tolerence allowed in the
manufacturing of the linkages. Hence, the results of this
paper provide a justification for the structural design of the
4-DOF manipulator.
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