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ABSTRACT 

This paper proposes a new factorization for the M-channel 
perfect reconstruction (PR) IIR Cosine-Modulated filter banks 
(CMFB) proposed previously by the authors. This factorization, 
which is based on the lifting scheme, is also complete for the PR 
FIR CMFB as well as the general two-channel PR IIR filter 
banks if the determinant of the polyphase matrix is equal to 
constant multiplies of signal delays. It can be used to convert a 
numerically optimized nearly PR CMFB to a structurally PR 
system. Furthermore, the arithmetic complexity of the FB using 
this structure can be reduced asymptotically by a factor of two. 
When the forward and inverse transforms are implemented with 
the same set of SOPOT coefficients, a multiplier-less CMFB can 
be obtained. Its arithmetic complexity is further reduced and it 
becomes very attractive for VLSI implementation. 

I. INTRODUCTION 
The cosine modulated filter banks (CMFB) [I] or the 

Extended Lapped Transforms [2] are efficient structures for 
implementing M-channel PR filter banks. They have high 
stopband attenuation, and low design and implementation 
complexities. The design of biorthogonal CMFB is usually 
performed by constrained non-linear optimization [7,8]. Unlike 
the orthogonal case where it is possible to perform an 
unconstrained optimization on the coefficients of the lossless 
lattice structure [ I f ,  the filter banks so obtained are in general 
pseudo PR. To overcome this problem, factorizations of the filter 
bank, which structurally enforces the PR condition, is necessary. 
In [9], the polyphase components of the CMFB are parameterized 
by the lifting scheme so that the filter bank is still PR for 
different choices of the lifting coefficients. The design problem 
can then be formulated as an unconstrained optimization problem 
with the lifting coefficients as variables. Factorizations of 
arbitrary-delay and arbitrary-length FIR CMFB were also 
obtained recently by Schuller [5] and Gao et al. [6]. In this paper, 
a new factorization for the IIR CMFB, which was previously 
obtained by the authors in [3], is proposed. This factorization, 
which is based on the lifting scheme [4], is also complete for the 
PR FIR CMFB as well as the general two-channel PR IIR filter 
banks if the determinant of the polyphase matrix is equal to 
constant multiplies of signal delays. Since the unconstrained 
optimization using the lifting coefficients results in highly 
nonlinear objective function, we prefer to formulate the design 
problem as a constrained optimization in the filter coeficients. 
The proposed factorization technique is then applied to convert it 
to a structurally PR system. Like the lifting scheme, it also 
reduces the arithmetic complexity of the filter bank 
asymptotically by a factor of two. Further, by representating the 
coefficients in the lifting structure as SOPOT coefficients and 
using the SOPOT DCT-IV in [IO], multiplier-less biorthogonal 
CMFBs with low complexity can be obtained. The paper is 
arranged as follows: Section I1 is devoted to the proposed 
factorization for two-channel PR IIR FBs. Its application to M- 
channel IIR CMFB is described in Section 111 followed by several 
examples in Section IV. Conclusions are drawn in Section V. 

11. FACTORIZATION OF TWO CHANNEL PR IIR FBS 
Let the TTR analysis filters H o ( z )  and H , ( z )  be written as 

H,(z)= N,(z ) lD, (z )  for i = O , I  , where N , ( z )  and D,(z)  are 

respectively the numerator and denominator polynomials of 
H,(z )  . Multiplying the numerator and denominator of H,(z) by 
D, (-z)  , we have 

Decomposing the numerators Eo(.) and f i I ( z )  into their 

polyphase components: f io (z )  = f ioo(z2)  + ~ - ~ f i ~ , ( z ~ ) ,  and 

f i , ( z ) =  f i l o ( z 2 ) + z - ' f i , , ( z ' ) ,  the polyphase components of 
H ,  ( z )  are determined as follows 

I? ( z ' )  fi ( z2)  H ,  ( z )  = _rO D , ( z 2 )  + z-I - D,(z ' )  , i = O J  

= H,,(z2)+ z-IH,, ( z 2 )  
For perfect reconstruction (PR), the determinant of the polyphase 
matrix E(z )  can be chosen as constant multiplies of signal 
delay. This yields 

Equation (2-3) can be viewed as an ideal 

{$o :$o(z )  = ~ ~ z ~ G o o ~ z ~ - ~ ~ Z ~ G o l ~ Z )  = p ~ z - d ~ o ( z ~ E l ( z ~ ,  
generated by f ioo(z)  and -f iol(z). The Highest Common 

Factor (HCF) of Goo(z)  and f i o l ( z )  must therefore divide 

+o(z) = Z - ~ D ~ ( Z ) D , ( Z )  . For simplicity, it is assumed that such 

factors have already been extracted from Noo(z)  and G o l ( z ) ,  
and they are co-prime to each other. The general solutions of 
k l o ( z )  and k , , ( z )  are 

- -  
- 

(2-4) 

and 

for some k l o ( z )  and f i l l ( z )  in the ideal $,,(z), and some 

polynomial Q(z)  in F [ z ] .  The general solution of i l ( z )  is: 

GI I ( z )  = il I ( z )  - Q(z)gOl ( z )  

fi, ( z )  = NI ( z )  - Q ( Z 2  ) i o ( z )  , (2-5) 

where k I ( z )  = i l o ( z 2 )  + z - ' f i lo (z2)  . Dividing both sides of (2-5) 

by D , ( z 2 ) , o n e g e t s  

H I  (z) = fi, ( z )  - Q(z2 )HO(z), (2-6) 

where Q(z) = Q(z) . Eo ( z )  / 5, ( z )  is an arbitrary causal stable 

rational function and f i l ( z )  = k I ( z ) / b l ( z 2 )  is a particular 
solution. (2-6) allows us to parameterize all solutions of the PR 

IIR filter banks using Q ( z )  and f i , ( z ) .  The latter can be 
constructed from the Euclidean algorithm or lifting steps as in 
[4]. Suppose that i o o ( z )  and %ol(z )  are coprime and apply 
Euclidean algorithm to them yields 

(2-7) 
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where q, ( z )  are polynomials in F [ z ] ,  K is a non-zero constant, 

and d, are positive integers. The delay z ', results from the 
removal of the lowest order coefficients, instead of the higher 
order coefficients in conventional polynomial division, during the 
polynomial division, i.e. they are treated as Laurent polynomials. 
If the highest order coefficients are removed as in conventional 
polynomial division, d ,  = O  . This offers more flexibility in 
carrying out the Euclidean algorithm than using ordinary 
polynomial, which helps to reduce the dynamic range of q , ( z )  . 
It should be noted that this factorization is highly non-unique. 
Dividing both sides of (2-7)  by &(z)  gives 

(2-8) 

Using (2-8), the following polyphase matrix P ( z )  with the 
required determinant a . z-' can be formed. 

0 

(2-9) 
where d,  is the sum of the delays d, and it should be smaller 
than d .  Otherwise, the system delay will be increased beyond 
the given value 2d + 1 . Using (2-6), the general solution of the 
IIR analysis polyphase matrix E ( z )  is 

a (  )/K I[' 0 - T z ) l .  

0 
(-IT p . Z-(d-d. )E 

(2-10) 
(2-10) can also be implemented as a series of lifting steps [4]. 

111. FACTORIZATION OF IIR CMFB 
In CMFBs, the analysis filters f , ( n )  and the synthesis 

filters g,(n)  are derived from a prototype filter h(n)  by cosine 
modulation, 

f,(n)=h(n>cos(o,n+cp,)= Mnk,.,, , 

and g,(n)=h(n)cos(o,n+6~ )=h(fl)F,., 9 

k = 0,l) ..., M -1  , (3-1) 
where 

[2", 2 "I 4 
N - l  

Ck." =cos -(2k+l)(n--)+(-l)'- , 

k = 0,1, ..., M - 1 , n = 0,1, ..., N - 1 , are the modulation sequences. 
The PR condition, in terms of the polyphase components H , ( z )  
of the prototype filter is 

1 = 0,1, ..., M - 1  , 
f f /(zW2,-/-1 ( z )  + HA(+/ (z)HA/-/.i (2) = P . z-" 3 

(3-3) 

where a is an integer determining the delay of the filter banks. 
This simplified PR condition greatly reduces the number of 
variables to be optimized and the implementation complexity. 
For the IIR CMFB in [3], the denominators of all the polyphase 

components are identical, and we have H ,  ( z )  = N ,  ( z )  / D ( z )  . 
The PR condition in (3-3) is simplified to 

~ / ( z ) ~ , , ~ , ~ l ( z ) + ~ , + , ( ~ ) ~ , ~ , ~ I ( z )  = P . z - " D Z ( z ) ,  
I = 0,1, ..., M - 1 .  (3-4) 

Equation (3-4) can also be viewed as an ideal 

generated by N, ( z )  and N,+,(z). For simplicity, we shall 
assume that the common factors of N , ( z )  and N,+,(z) , which 
must divide the right hand side of (3-4), have already been 
removed and they are co-prime to each other. The general 
solutions of N,, - ,_ ,  ( z )  and Nh,-,-l ( z )  in (3-4) are given by 

{@cl :$o(z)= A(z)N, (z )+B(z)N,+, (z )= P .Z*D'(Z)) 

- 
Nw-1 ( z )  = Nw-1 ( z )  - Q/(z)N,(z)  9 

N2M-,-l(Z) = N,n,-/-,(Z)+ Q,(z)N,,+,(z) > 

(3-5) - 
for some EA4- / - , ( z )  and E2b4-/- , (z)  in the ideal I + I ~ ( Z ) ,  and 
some Q(z )  in F [ z ] .  Dividing both sides of (3-5) by D ( z )  , we 
have - 

HM-/-,(z) = H M - / - l ( z ) - Q / ( z ) f f / ( ~ ) ,  (3-6) - 
H2M-/-t(z) = f fw- / - i ( z )  + Q/(z)H,w+/(z) , 

H,( z )  f f M - , - l ( Z )  

- f f , + / ( z )  HZM-/-I(Z) 

(3-7) 

1 
= [ H/(Z)  H M - / - l ( z q [  I -y)] and [ 

- H*f +/ ( z )  H,M- , - l  ( z )  0 - 1 

HM-,-l ( z )  and H,,_,_, ( z )  are particular solution to (3-3). 
Since N,(z)  and NM+,( z )  are coprime, they can be written, by 
using the Euclidean algorithm, as 

where K, is a non-zero constant. Dividing both sides of (3-8) by 
D ( z ) ,  we have 

- - 
Then, a particular solution for H ,,,-,- l(z) and H ,  
constructed as follows 

, ( z )  can be 

K,:-'/" / D ( z )  0 
0 (-I)"! p . = - d ' I D ( = ) / K /  

ff,/-/Ll(z) 

(3-10) 
where and d:," are respectively the scale factor and the sum 
of the delays generated during the division of the Laurent 
polynomials. Combining (3-7) and (3-IO), the desired solution is 

- - K / Z - c / " / D ( Z )  - G J Z ) / D ( Z )  

1 HI(=) H,L/ I(=) 

- H,,*A=) H*,,-,-,(=) 

0 (-,)% p . z - I - c / , f " J ~ ( z ) / ~ ,  

/ = O , I ,  ..., M - I ,  (3-1 1) 

where 0, ( z )  = K,Q, ( z )  . It should be noted that in the FIR case, 

D ( z )  = 1 , and (21) provides a complete factorization of the FIR 
CMFB. This factorization is also applicable to FIR CMFB with 
other modulation because their PR conditions are still of the form 
(3-3) [7]. We now consider some examples. 
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IV. EXAMPLES 
Example 4. I 
Factorization of 4-channel FIR biorthogonal CMFB: 

In this example, a 4-channel FIR biorthogonal CMFB with 
length N = 2mM = 2 x 5 x 4 = 40 was factored using the 
proposed factorization. It was designed by the nonlinear 
optimization method in [SI. The length of each polyphase 
component is 5 and the delay parameter a in (3-3) is equal to 3. 
The system delay is D = 2(a + l)M - 1 = 3 1 samples. To avoid 
large dynamic range of the coefficients in the quotients, 
q f ’ ( z ) ,  ( I  = 0,l) , are obtained using ordinary polynomial 
division, while the last one is obtained by removing the lowest 
powers of z - I ,  i.e z o ,  as well as the highest power z-’. The 
remainder is K,z-‘ and its ‘quotient is denoted by 

Lq:’(z) , ( I  = 0,l) . An additional delay is also added to matrix of 

Lqy’(z) (top right entry), giving the delay parameter d;‘’ in (3- 
11) a value of 2. Finally we obtain the following 

[ -zg) :;:;I 
,=O 

(4-la) 

where I = 1 . (4- 1 b) 
Detailed coefficients of the factorization are given in Table 1. 
Figure l(a) shows the frequency responses of the analysis filter 
banks after factorization. Since the input to the polyphase 
components in (4-1) will be down-sampled by a factor of 2M, the 
analysis filtering requires 3.25 multiplications and 2.75 additions 
per sample. Direct implementing the polyphase component, on 
the other hand, will require 10 multiplications and 9 additions per 
sample. Thus, the arithmetic complexity is reduced by 
approximately a factor of two. 
Example 4.2 
Multiplier-less 4-channel FIR biorthogonal CMFB using SOPOT: 

In this example, a multiplier-less 4-channel FIR birothogonal 
CMFB with length N = 2mM = 2 x 5 x 4 = 40 , using the 
factorization obtained in example 4.1, is designed. The 
coefficients in q, (z )  and Q,’(z) are represented as the following 
sum-of-powers-of-two (SOPOT) coefficients 

(4-2) 

where 
r is the range of the coefficients and I is the number of terms 
being used in each coefficient. Therefore, all the multiplications 
can be replaced by limited number of shifts and additions, 
making it very attractive for VLSI implementation. The SOPOT 
coefficients, which are obtained by genetic algorithm [ 101, are 
shown in table 2, while the frequency responses of the analysis 
filters are shown in figure l(b). 
Example 4.3 
Factorization of Low-Delay 4-channel IIR PR CMFB: 

In this example, the low-delay IIR CMFB in [3] is factored 
using the proposed algorithm. The orders of the numerator 
Nk ( z )  and the denominator D ( z )  are 4 and 2, respectively. The 

delay parameter a is 2 and the system delay is 

a, E {-1,l)and b, E {-r ,..., -I,O,I ,... r}. 

D = 2(a + 1)M - 1 = 23 samples. In order to avoid large dynamic 
range in the coefficients of the quotients, a similar approach as in 
Example 4.1 is employed. The delay parameter dy’ in (3-1 1) is 
therefore equal to 2. The pairs ( N 4 ( z ) , N o ( z ) )  and 
( NI ( z ) ,  N ,  ( z )  ) are selected to be factored, and the factorization 
is 

[-::;:I ::;;I 
(4-3a) 

where 1 = 1 . (4-3b) 
Their coefficients are shown in Table 3. The frequency 

response of the analysis filter banks after factorization is shown 
in Figure 1 (c). Implementation of (4-3) requires 5 multiplications 
and 4.5 additions per sample, while direct implementation of 
analysis polyphase matrix requires 12 multiplications and 11 
additions per sample. Due to page limitation, their SOPOT 
counterparts are not shown here. 

IV. CONCLUSION 
A new factorization for the M-channel PR IIR CMFB 

proposed in [3] is presented. It is based on the lifting scheme, 
and is complete for the PR FIR CMFB as well as the general two- 
channel PR IIR filter banks if the determinant of the polyphase 
matrix is equal to constant multiplies of signal delays. It can be 
used to convert a numerically optimized nearly PR CMFB to a 
structurally PR system and reduces its arithmetic complexity 
asymptotically by a factor of two. By using SOPOT coefficients, 
the multiplications in the CMFB can be replaced by simple shifts 
and additions, making it very attractive for VLSI implementation. 
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q ; l )  -5.183990399531847e-001 4.752664554602261e-002 

3.784429309928137e+OOO 1.255986866040156e+OOO 

q : l )  1.479031763369725e-001 2.808848555766270e-001 

~ ~ y )  -3.712245765148790e-001 1.301 803635739650e+000 

4i1' 00 1 ? U  

" ( 0 )  I -2.609485580814473e- I -1.4221 19789394872e- 

I 

I zo 

I 

"(1) I -5.25650260601 6279e- I 1.550783085697046e-001 

z-I 

Y l  

q;O) 

Y 3  I 3.23730 121 2945506e+000 
I 4.214446420237506e-001 I 2.17055 1252533108e+000 

~ ~ ! 1 )  

002 00 1 
1.041254136252027e+OOO -1.634106535095274e- 

00 1 
-1.752486844870494e- -2.824056055807716e- 

I -e;(.) I -QXZ, 

7'J I I .339338205025099e- I -6,075680844340 I 14e- 

1 1  

"' 
,(I) 

00 I 

I .  107633 I981 59869e+000 
4.564456857968386e-001 

2.025591660952922e-001 

t Scaling factors 
[1 I 3.126343724072108e-002 

I I 003 002 

Table 1. Coefficients of 4-channel FIR CMFB in example 4.1. 

Kl 

-4,27954343653891 7e-002 

1.288614619712162e-002 

z~ 

* - I  

-Q;,(z) -Q;(z) Scaling factors 
2 - 1 0 + p  - 2-4+24 p 2-5 

2" + 2"- 2.6 20 -f 2.' ,q, 

K ,  

- 2-5 - 2-6 + 2-8 + 2.F 
2-7 + 2-8 + 2-10 

I -Q; ( z )  -QXZ) 

z O  I -2.274946795285443e-002 I 1.1001 13103764122e-001 

9:' 

q;o)  
(0) 

42 

4:o' 

4jll) 

,rqr) 

4.498469741026905e-003 

7.4668081 69803 180e-002 

Table 3. Coefficients of 4-channel IIR CMFB in example 4.3. 

I 
Z0 Z 

3.839953359572444e-00 1 0 

-5.330797659340726e-001 -2.561369205759393e-001 

1.5613 10374208863e+001 3.49328787360443Oe+OOO 

-8.524163355881699e-002 2.185 15443378595 le-001 

7.6226 166262000l4e+000 2.7088291568 I 1539e+000 

2.27348943 171 4420e+000 0 

I 

I Y 

Normalized Frequency 

(c) 
Figure 1. Frequency response of analysis filters in : (a) 

example 4.1, (b) example 4.2, and (c) example 4.3. 
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