<table>
<thead>
<tr>
<th>Title</th>
<th>A Novel Quadrilateral-based Tracking Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Chung, HY; Yung, NHC; Cheung, PYS</td>
</tr>
<tr>
<td>Citation</td>
<td>Proceedings Of The 7Th International Conference On Control, Automation, Robotics And Vision, Icarcv 2002, 2002, p. 282-285</td>
</tr>
<tr>
<td>Issued Date</td>
<td>2002</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/46358</td>
</tr>
<tr>
<td>Rights</td>
<td>This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.; ©2002 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.</td>
</tr>
</tbody>
</table>
A Novel Quadrilateral-based Tracking Method

H. Y. Chung, N. H. C. Yung & P. Y. S. Cheung

Department of Electrical & Electronic Engineering
The University of Hong Kong
Pokfulam Road, Hong Kong SAR, China
Email: hychung@eee.hku.hk

ABSTRACT

This paper proposes a novel tracking method based on quadrilateral-based segmentation. The tracking method matches quadrilaterals in a region with those in a reference frame to construct region correspondences, from which trajectory of each region can be obtained.

1 INTRODUCTION

Object tracking is an essential task for several application areas including video-based control, human-computer interfaces, surveillance and medical imaging. Object tracking involves two main steps: 1. Segmenting an image into distinct objects. 2. Tracking target regions in successive frames. These two steps, however, are non-trivial tasks, attracting a lot of researchers’ attention. While considerable research and progress have been made, the robustness and generality of segmentation and tracking on a variety of image data have not been fully established. First of all, segmentation itself has already been a challenging task over decades.

In this paper, we present a model-less tracking method based on quadrilateral-based segmentation [11]. Quadrilateral-based segmentation is used because of two reasons: First, quadrilateral representation offers a large data reduction similar to polygon approximation techniques except that it is far more flexible with lower approximation error. Second, inter-frame tracking of regions can be done by matching quadrilaterals (12-14) across frames. In principle, it employs a group of connected quadrilaterals, extracted from an edge-map, to represent a region. Model-less tracking is used because we are aiming at generic object tracking that is less application dependent. Inter-frame tracking of regions is based on matching of quadrilaterals, which is done by finding a quadrilateral in a search area in the reference frame that is most similar to the current quadrilateral. The region in the reference frame with largest number of quadrilaterals matched with the region in the current frame is considered to be the matched region. Based on the ‘table tennis’ sequence, the proposed tracking method was evaluated. It is found that our method is able to track both the ping pong ball and the racket, as well as other regions in the image.

This paper is organized as follows. Section 2 details our proposed quadrilateral based tracking method, section 3 presents tracking results while section 4 concludes the whole paper.
2 PROPOSED TRACKING METHOD

As we are aiming at generic object tracking that is less application dependent, our approach is based on model-less tracking. Since we do not require an accurate model of an object, it can be represented as a group of regions instead of a set of features. To make tracking possible, we have to extract the regions first, using the quadrilateral-based segmentation proposed in [11]. The segmentation method is built upon a network of quadrilaterals to represent regions. Each region is completely described by a set of quadrilaterals, which approximates the region boundary. The following diagram shows an example of using quadrilaterals to approximate object boundaries shown in thick gray lines.

Fig. 1: Quadrilateral approximation result (a) Object (b) Boundaries approximated

2.1 OVERVIEW

Fig. 2 shows the block diagram of the tracking method proposed. To track regions between two frames, the current frame and the reference frame are first segmented into regions by quadrilateral-based segmentation method. Right after that, regions extracted in the two frames would be represented by a group of quadrilaterals. Inter-frame quadrilateral matching will then be carried out to match the quadrilaterals across frames.

2.2 MATCHING OF QUADRILATERALS

To do this, each quadrilateral in the current frame is first projected orthographically onto the reference frame. A rectangular search area is then built upon the centroid of the projected quadrilateral as shown in Fig. 3. The quadrilateral in the current frame is then matched with the quadrilaterals within the search area in the reference frame. The matching criteria can be shape, color, texture, geometric invariants [12-13], etc. In our proposed method, color is considered, i.e., the quadrilateral with color most similar to the quadrilateral to be matched would be chosen.

Let \(S(q) \) be the set of quadrilaterals in the search area built upon the centroid of the projected quadrilateral \(q \), \(R(q) \) be the average red color component of the quadrilateral \(q \), \(G(q) \) be the average green color component of the quadrilateral \(q \), \(B(q) \) be the average blue color component of the quadrilateral \(q \).

Denote the color difference between two quadrilaterals \(p \) and \(q \) as

\[
D(p, q) = [R(p) - R(q)]^2 + [G(p) - G(q)]^2 + [B(p) - B(q)]^2
\]

Then, for each quadrilateral \(q \) in the current frame, the matched quadrilateral \(r \) is:

\[
r = \arg \min_{p \in S(q)} D(p, q)
\]

Fig. 3: Matching of quadrilaterals across frames.

After each quadrilateral in the current frame is matched, Inter-frame Region Links (region links across two frames) can be built. The Inter-frame Region Links are then used to perform the region tracking.

2.3 REGION LINKING

Let us define the following:

\(Q(l) \) = The set of quadrilaterals in current frame within the region with region label \(l \);
\(\Omega(l) \) – The set of quadrilaterals in reference frame within the region with region label \(l \);
\(M(q) \) – Quadrilateral in the reference frame that matches the quadrilateral \(q \) in the current frame.
\(L_1(q) \) – Region label of the quadrilateral \(q \) in the current frame.
\(L_2(q) \) – Region label of the quadrilateral \(q \) in the reference frame.
\(T(l) \) – Region label in reference frame that matches the region in current frame with region label \(l \).

Region Linking is used to match regions between two frames. Essentially, region linking is to determine the region (Inter-frame Region Links), which is derived as follows:

Let \(R(l, l') = \{ q : L_1(q) = l, L_2(M(q)) = l', q \in \Omega(l) \} \)

Then, \(T(l) = \arg\max_{l'} \| R(l, l') \| \).

With \(T(l) \), each region in the current frame will be associated with a region in the reference frame. By using this information, each region in the current frame can be tracked.

2.4 REGION TRACKING

After inter-frame region links have been obtained, region tracking is performed. The inter-frame region links are used to determine which region(s) in the reference frame correspond to the regions in the current frame. The challenge of this is that we have to determine whether or not a region requires splitting or merging. At present, the proposed method employs a simple tracking rule (one-to-one) mapping. That is, a region in the current frame corresponds to exactly one region in the reference frame.

Consider an \(n \) frame video sequence, let the inter-frame region link with the current frame \(c \) and reference frame \(r \) be \(T_{c,r}(l) \) where \(c, r \in \{1, 2, ... n\} \).

Then, for each region \(l_i \) in frame 1, the corresponding region \(l_k \) in frame \(k \), where \(k \in \{1, 2, ... n\} \) can be obtained as follows:

\[l_j = T_{r,c}(l_i) \]
\[l_j = T_{r,c}(l_i) \]
...
\[l_j = T_{r,c}(l_i) \]
which results
\[l_j = T_{r,c} \circ T_{r,c} \circ T_{r,c} \circ \cdots \circ T_{r,c} (l_i) \]

In our current work, as shown in above, only the inter-frame region links between consecutive frames is considered. This simple tracking rule may not be able to deal with cases like occlusion, birth and death of regions, etc. More sophisticated tracking rule will be needed to cater for the aforementioned situations and this will be one of our future directions.

3 TRACKING RESULTS

The first 40 frames of the ‘table tennis’ sequence have been used to see how well the tracking technique performs. The ping pong ball and the racket are the targets to be tracked in the table tennis sequence. It is found that the proposed method can track the ping pong ball and the racket in all the 40 frames. The following shows the boundaries of the tennis ball and the racket extracted in the first frame:

![Fig. 4: Target region boundaries extracted in the first frame of ‘Table Tennis’](image_url)

The following shows the tracked targets. The tracked targets are presented in 4 sequence segments: Frames 1 to 11, 11 to 21, 21 to 31 and 31 to 40. The beginning and the ending frame in each sequence segment are overlaid to show the corresponding positions of each target (as shown in (a), (c), (e) and (g)). The trajectory of the center of mass and boundary of each target (as shown in (b), (d), (f), (h)) are drawn with solid and gray lines respectively.

(a) Frame 1 overlay with frame 11
(b) Tracked targets in frames 1 to 11
(c) Frame 11 overlay with frame 21
(d) Tracked targets in frames 11 to 21
(e) Frame 21 overlay with frame 31
(f) Tracked targets in frames 21 to 31
(g) Tracking results
(h) Tracking results
As shown in the above diagrams, the ping pong ball and the racket can be tracked but the boundary of the ping pong ball is not very exact. This is due to the fact that the ball is not homogenous in color due to the ambient illumination effect. This indicates that the segmentation approach can be further improved. On the other hand, even with imperfect segmentation, tracking is still viable.

4 CONCLUSION

To conclude, we have presented a novel tracking method which is built upon quadrilateral-based segmentation. Although the tracking method is far from perfect, it shows that tracking based on quadrilateral presents a feasible research direction. Further research effort is needed to improve the proposed tracking method. Future directions would be focused on two things: 1. Improve the quadrilateral matching by considering more attributes of quadrilaterals instead of solely rely on color, which is sensitive to intensity variation between frames. 2. Improve Region Linking so that more region correspondences can be obtained to deal with the cases like occlusion, birth and death of regions, etc.

REFERENCES

