Tradeoffs in Modified Discrete Cosine Transform
Implementations

Xin Yang, ShiChang Shi, and Alfred K. Wong
Department of Electrical & Electronic Engineering, Hong Kong University
xyang@ece.hku.hk

Abstract * The performance dependence of modified
discrete cosine transform (MDCT) on hardware
architecture is investigated. The oddly stacked
architecture is found to be superior to direct
computation in terms of accuracy, power
consumption, and circuit area.

L. INTRODUTION

Improvements in integrated circuit technology have
enabled electronic systems to be built on single chips.
Optimal implementation of such systems on a chip (SOC)
requires detailed study of the tradeoffs between system
performance and hardware parameters. In this study, we
consider the tradeoffs involved in the implementation of
modified discrete cosine transform (MDCT).

The MDCT is employed in subband coding schemes as
the analysis filter bank based on time-domain aliasing
cancellation (TDAC). It is a critical block of the MP3
audio coding standard, the first international standard 2!
for digital compression of high-fidelity audio. The high
coding gain of the standard arises from its time to
frequency mapping by a polyphase filterbank. The
outputs from the subband filter are then passed through a
MDCT to obtain higher frequency resolution. This
process is illustrated in Fig.1.

Subband 0 X

g Bid

PCM | subband SUbb@ﬂ‘Ll; Bid Reil;icat?on R
M Filter : MDCT (for long
. block)

Subband 3] cp By

Figure 1. Schematic of the MP3 encoder filterbank.

Operation of the MDCT block in Fig.1 includes two
parts: windowing and MDCT calculation. In the first part,
the subband signals from the filterbank are windowed,

0-7803-6677-8/01/$10.00©2001 1EEE.

370

resulting in 4 types of filter blocks: normal, start, stop
and short. For example, the normal block is defined as
follow [):

' b4 1
zy =X, sin(— (@i +—)) fork=0 to 35 @
k=77 360 T

where x; is the subband input signal. The window

1
length k and coefficients C = sin(—’-z— (i+-)) are
k 36 2
different for the various block types.

In the second part of the MDCT calculation, a discrete
cosine transform is performed on the windowed subband

data Z,:

X, =S 2, cos@k+1+H2i41) @
i = z;, cos(— +1+—-)(2i +
= N 2
fori=0to =1
ori=0t0 ——
2

Because the windowing operation: is basically a
multiplying process, the first part is suaightforwar&. We
focus on the second part-MDCT -calculation—in the
following discussion.

The biggest impediment to efficient implementation of
the MDCT is the length of the windowed data. With
lengths of 36 (for normal, start, and stop blocks) and 12
(for short block), the transformation cannot be
implemented with traditional fast algorithms which
operate on data lengths of 2™ Special circuit
architectures are needed. The tradeoffs involved in the
implementation of these MDCT architectures are
discussed in the next section.

II. ANALYSYS

Architecture

A lot of fast discrete cosine transform (DCT) algorithms
have been presented *4, However, most of them apply
only to data sequence lengths of n=2". They are thus not
applicable to the MDCT under our current discussion.

Three architectures suitable for data lengths of 36 and 12
are discussed below. In the analysis, we illustrate the
techniques by assuming a data length of 36.

a. Direct Computation

This method realizes the MDCT by directly
implementing the MDCT equation:

n-1 T n
Xi = 3 2y cos(—Rk+1+—-)2i+1)) (3)
k=0 2n 2

fori=0t0=-1
2

The input data sequence Z, is multiplied by the
transform matrix D=[d ,;], where

@
i=0,1,---18

dy; = cos(—— (2K +14-)(2i +1))
2n 2

k=01,--35

It is a matrix with a dimension of 36x18. For a block
length of 36 (n=36), this requires 36x18 = 648
multipliers and 35x 18 = 630 adders. The hardware cost
is very high.

b. Oddly Stacked MDCT

By combining and rotating the input data, the MDCT
can be calculated by performing a discrete cosine
transform (DCT) and a discrete sine transform (DST) on
data sequences of reduced length). Furthermore, the
DST can be computed using the DCT ' hardware. This
scheme reduces the hardware requirement to 56
multipliers and 136 adders'™. Compared with the direct
computation implementation, the hardware cost is
reduced greatly but the delay is larger.

c. Recursive MDCT
This implementation is based on the recursive algorithm

for general length DCTs !, The recursive expression of
MDCT is:

Py (i) = x(m) +2 cos(0;)Pm—l @)

371

M +1

cos()6;1
- = xm-D-F, @)
cos(()6;1
2
i=01-2-1
2

where M=n/2
x(m) is the input data sequence

6. is defined as 6, = (i + =) -
i ! 2" 2n
P,, (i) is the intermediate result, and
M -1
2

X; = P?,5 (#) X (—cos(()Bi D

is the final result.

This implementation is suitable for parallel VLSI
computing. For a data length of 36, to compute 18 points
of output, one needs 2x36x18 =1296 multiplications
and 2x36x18+18=1314 additions. In hardware, it
can be realized with 3 multipliers and 3 adders. The
recursive nature of this architecture means that the
hardware cost is low. In practice, however, the run time
and error are the weaknesses. It requires 36 cycles to
calculate one output and 36 x18 = 628 cycles to produce
one MDCT. In addition, fixed-point computation in the
chip induces round-off error. This error accumulates in
each iteration. The resulting error is therefore much
larger in this architecture compared with the previous
implementations if the same number of bits is used to
represent the numbers. In other words, more bits are
required to give the same accuracy. Synthesis results
indicate that the round-off error is unacceptable. So we
will not consider this architecture in next section.

Bitwidil

In direct hardware implementation of the MDCT, not
only does the architecture require examination, the
number of bits used to represent the number also
deserves attention. In computation of the MDCT with
equation (2), the input signal and the transform
coefficients are represented by a finite number of bits.
The number of bits used to represent the input data (iw)
is driven by the dynamic range of the input. One does
not have much latitude for optimization. On the other
hand, the number of bits used to represent the

coefficients Ck (cw) can be optimized. The key is to

find a cw long enough such that accuracy of the
algorithm is adequate with minimal delay, power

consumption, and area. It turns out that the optimal cw is
architecture dependent, as shown in the next section.

III. SYNTHESIS

In this section, we examine the dependence of MDCT
performance on the number of bits used to represent the
coefficients (cw). The performance criteria are accuracy
(error), power, delay, and area. The error of each
implementation is determined by

©®

where the X ;’s are the MDCT outputs of the hardware

and the X ; 's represent the exact results.

Figure 2 shows the performance dependence on cw with
different implementations. The results were estimated by
synthesis from a 250nm standard cell library using
Synopsys Module Compiler ®\. For direct computation,
as cw increases, the error decreases while the area, delay,
and power consumption increases. Increasing cw form 8

(=) Error vs Coefficient Width

100 L
—s— Direct MDCT
80 ~6— Oddly Stacked | |
g
w
- B0 E
S
® 40 4
E
2
20 \ i
o) " " "
6 8 10 12 14 16
cw (bit)
ig (c) Area vs Coefficient Width
—%— Direct MDCT
~o— Oddly Stacked
€ 10} J
E
o
[
< S5}]
0 7 b . N N
6 8 10 12 14 16
cw (bit)

to 12 decrease the error from 35.899 (100%) to 0.708
(1.9%). But the area is increased from 3.07mm’ to
7.68mm’, the power consumption increases from 26.2
normalized unit to 63.5 normalized unit, and the delay
increases from 9.34ns to 12.47ns. There is not much
improvement in accuracy beyond a cw of 12. So the
optimum cw should be 12.

For the oddly stacked implementation, the behavior is
similar. For cw’s less than 8, the error decreases sharply
with increasing coefficient width. For cw’s larger than 8,
the error remains relatively constant, but the area, delay,
and power keep rising as cw increases. A cw of 8 in the
oddly stacked implementation achieves the same
accuracy as a cw of 12 in direct computation. This is
because when the computation is done with fixed-point
arithmetic, the round-off error is induced. Increasing the
number of arithmetic operations in general increases the
error. The number of computations in the oddly stacked
MDCT is less than that in direct computation. The error
is therefore less. That means the direct computation
implementation requires more bits to achieve the same
accuracy. In this case, 4 extra bits are needed for the
direct computation implementation.

(b) Power'vs Coefficient Width

100 *
e
§ 80 —&— Oddly Stacked i
B
% 60 E
E
g 40 E
]
2 20 E
a. SH——E
0 I e A L 1
] 8 10 12 14 16
cw (bit)
6 (d) Delay vs Coefficient Width
|
50 || —e— Oddly Stacked J
~. 40 E
g M
= 30 E
.
a 20 4
10 M]
0 2 L n " n "
6 8 10 12 14 16
: cw (hit)

Figure 2. The performance of MDCT as a function of the coefficient bitwidth (cw). The input bitwidth is fixed at 8.

372

Table 1. Comparison between direct computed MDCT and oddly stacked MDCT

» | Normalized | Normalized
Delay (ns) | Area (mm‘) Power Error
. cw=12 | Direct Computation 10.65 8.10 63.5 1.9
cw=12 Oddly Stacked 44.71 1.09 8.98 0.81
5 cw=12 | Direct Computation 10.65 8.10 63.5 1.9
cw=8 Oddly Stacked 35.06 0.68 7.48 1.17
3 cw=12 | Direct Computation 10.65 8.10 63.5 1.9
cw=8 | Oddly Stacked (x4) 8.765 272 29.92 1.17
Table 1 compares the MDCT implementations by direct References:
computation and by the oddly stacked method. For the
same cw of 12, the area of the oddly stacked MDCT is 1. ISO/IEC International Standard IS 11172-3
one eighth that of direct computation. Power “Information Technology-Coding of Moving
consumption is one seventh and the accuracy of the Pictures and Associated Audio for Digital Storage
oddly stacked MDCT also better. Nevertheless, the Media at up to about 1.5 Mbits/s-Part 3: Audio”.
direct computation architecture is about 4.5 times faster. 2. K.Brandenburg, and G.Stol, “The ISO/MPEG-
: Audio Codec: A Generic Standard for Coding of
Comparing the two implementations with approximately High Quality Digital Audio,” 92* AES-Convention,
the same amount of error, we choose cw=12 for direct preprint 3336, Vienna 1992.
computation and cw=8 for the oddly stacked method. In 3. P.Duhamel, Y.Mahieux, and JDP.Petit, “A fast
this situation, the advantages of the oddly stacked algorithm for the implementation of filter banks
architecture in area and power are further enhanced. based on time domain aliasing cancellation.” In Proc.
Delay of the circuit is also shortened, although it is still IEEE Int. Conf. ASSP ’91, Toronto, ON, Canada,
3.5 times slower than direct computation. May 1991, pp.2209-2212
' 4. Kober, V. and Cristobal, G., “Fast recursive
The slower performance of the oddly stacked algorithms for short-time discrete cosine transform”
architecture can be improved by parallel hardware Electronics Letters, Vol.35 Issue:15, pp.1236-1238,
implementation. If 4 oddly stacked circuits are used in 22July.1999
parallel, the speed can be improved by a factor of 4, 5. V.Britanak and K.R.Rao, “New fast algorithms for
while the area and power consumption will be increased the unified forward and inverse MDCT/MDST
by approximately a factor of 4. This situation shown in computation,” ICTR SAS, Tech. Rep., May 2000
the last two lines in Table 1. The area in the oddly 6. Z.Wang, “A fast algorithm for the discrete sine
stacked implementation is a third that of direct transform implemented by the fast cosine
computation, and power is only a half. The oddly transform,” IEEE Trans. ASSP, vol. ASSP-30,
stacked architecture is therefore superior to direct pp.814-815, Oct. 1982.
computation. 7. M.T.Heidenman, “Computation of an odd-length
DCT from a real-valued DFT of the same length,”
IEEE Trans. Signal Processing, vol.40, pp.54-61,
IV. CONCLUSION Oct. 1992
8. L.P.Chau and W.C.Siu, “Recursive algorithm for
In this paper, we compared 3 different hardware the forward and inverse discrete cosine transform
implementations of MDCT. Recursive implementation with general length”, Electron. Lett., vol.30, no. 3,
suffers from inaccuracies, while direct computation is pp.197-198, Feb.1994.
inefficient in terms of area and power. The oddly stacked 9. Module Compiler User Guide, ®Synopsys, Inc, 2000.

architecture provides the best performance in terms of
accuracy, delay, circuit area, and power consumption.

373

