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Abstract 
Vision-based inspection of industrial 

materials such as textile webs, paper, or wood 
requires the development of defect 
segmentation techniques based on texture 
analysis. In this work, a multi-channel 
filtering technique that imitates the early 
human vision process is applied to images 
captured on-line. This new approach uses 
Bernoulli’s rule of combination for 
integrating images from different channels. 
Physical image size and yam impurities are 
used as key parameters for tuning the 
sensitivity of the proposed algorithm. Several 
real fabric samples along with the result of 
segmented defects are presented. The results 
achieved show that the developed algorithm is 
robust, scalable and computationally efficient 
for detection of local defects in textured 
materials. 

I. Introduction 
Industrial inspection problems are 

typically highly complex and require 
integrated solutions that can be executed in 
real time. Some of the most challenging 
industrial inspection problems deal with 
textured materials such as textile web, paper 
and wood. It should be noted that the 
inspection problems encountered in uniforms 
webs become texture analysis problems at 
microscopic levels. The detection of local 
fabric defects is one of the most intriguing 

and difficult problems in computer vision and 
has received much attention over the years 
[1,21. 

Differences in the mean gray level or in 
color in small neighborhoods alone are not 
always sufficient for defect detection. Rather, 
one has to rely on differences in the spatial 
arrangement of gray level values in the 
neighboring pixels. Defect segmentation 
involves identification of regions with 
uniform texture in a given image. Appropriate 
measures of texture are needed in order to 
decide whether a given region has uniform 
texture [3]. A region in an image has a 
constant texture if a set of local statistics or 
other local properties of texture are constant, 
slowly varying, or approximately periodic [4]. 

Different approaches based on feature 
extraction in the spatial domain have been 
proposed for the detection of local defects on 
textile webs. An adapted wavelet basis has 
high sensitivity to abrupt changes in the 
texture structure caused by defects. Jasper et 
al. [5] demonstrate how adaptive wavelet 
basis can be used to locate defects in fabric. 
Although Jasper et al. [5] did not rely on 
capability of Gabor filters to detect local 
fabric defects, Escofet et al. [6] has 
demonstrated this in their work. 
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The main contributions of this paper are 
summarized below. 
1. 

2. 

3. 

4. 

Bernoulli’s rule of combination is 
proposed to integrate information from 
different channels. This approach offers 
high detection rate and low false alarm. 
Introduction of ‘variable sensitivity’ 
improves the performance of the 
developed algorithm in the presence of 
yarn impurities and for large (physical) 
size images. 
High sensitivity and small convolution 
mask makes this algorithm 
computationally economic, and hence 
increases the on-line performance. 
Supervised defect detection using optimal 
Gabor filters [7] is also presented. 

11. Gabor filter 
In spatial domain a Gabor function is 

modulation product of complex exponential 
and a Gaussian envelope of arbitary duration 
(figure 1 ) .  In frequency it is seen as a shifted 
Gaussian. In general, a two-dimensional 
Gabor function is expressed as [8,9]: 

exp (jq(xcosvI, + ysinq)) (1) 
An important property of Gabor filters is 

that they achieve maximum possible joint 
localization, or resolution in both spatial and 
spatial-frequency domains [ 101. One of their 
drawbacks is that they are non-orthogonal, but 
complete for representation of visual 
information. The Gabor filter owes its feature 
extraction capability to the possibility of 
tuning the orientation of its frequency 
selectivity. The frequency (octave) and 
orientation (radian) bandwidths of the Gabor 
filter is given by [ 113, 

Supervised defect detection in textured 
materials can be performed with a Gabor filter 
optimized with respect to feature separation 
from a known defect. As proposed by Dunn 
and Higgins [7 ] ,  the optimal Gabor filters can 
be constructed from the filters with center 
frequency yielding minimum classification 
error. An example of optimal Gabor filter 
designed to detect fabric defects is shown in 
figure 2. The acquired fabric image is filtered 
with this optimal Gabor filter and defect can 
be segmented by thresholding (figure 2.d). In 
order to cope up with large variety of defects, 
unsupervised defect detection is more suitable 
for web inspection and is detailed in 
following sections. 

111. Feature extraction 
Image features are extracted by power 

spectrum sampling of acquired image. For 
this purpose log-polar spectrum of acquired 
image is divided into four scales 
(co,,co2,co3 and co4) , separated by an octave. 
Sampling points at each of these four 
frequencies is rotated in steps of 45’ to cover 
entire spectrum of image. Gabor filters placed 
at each of these 16 sampling points are 
implemented as convolution masks of smaller 
dimensions, typically 5 x 5 or 7 x 7. A set of 
16 filtered image from these Gabor filters 
form feature vector for defect detection. 

Low frequency features of acquired image 
are used for feature enhancement. Subsequent 
repitition of subsampling and convolution 
with low pass filter generates a set of images 
with varying degree of resolution 
(multiresolution pyramid). The images 
generated from this four stage pyramid 
decomposition are used to normalize 16 
Gabor filtered images. Thus each image from 
image pyramid normalizes four Gabor filtered 
images in each scale. 
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IV. Defect detection 
A defect free image of sample under test 

is used as reference (figure 4). With this 
reference image, a set of 16 feature images (as 
discussed in section 4) are generated. Mean 
(pu,)  and standard deviations (oV)  from each 
of these sixteen images (16 pairs) form the 
basis of locating defect in sample under test. 
Next, the 16 feature images from sample 
under test are transformed to corresponding 
decision images as follows: 

The parameter C determines the sensitivity 
of this algorithm. This largely depends on 
image acquisition conditions and impurities 
present in sample under inspection. 

V. Image fusion 
The task of image fusion module is to 

combine all pixels with high probability of 
being defect (from 16 images) into a single 
image. This is achieved in three stages. In the 
first stage, four images from each of the four 
scales are fused into single image using 
Bernoulli’s rule [ 12,131 of combination. 

A 

j=l 

+43 (X,YR4(X,Yk44 kYR, (X,Y> 
+ 4 4  (X,YY$ (X,Yk4,(X’Y)lp,(X,Y 

j (4) 
Where R, ( x ,  y)  is obtained from 

D, (x, y )  by normalizing its pixel values in 0- 
1 range. In the second stage, the false alarms 
from these four images ( q  ( x ,  y)) are further 
reduced by taking geometric mean of images 
at adjacent scales. In the last stage, the 
arithmetic mean of these three images 
generates a fused image output. 

Finally, the thresholding of this fused 
image produces the binary image of defects in 
sample under inspection. The thresholding 
value depends on texture of material and 
imaging system, and is obtained by 
calibrating the system at the beginning of 
inspection. 

VI. Results 
The imaging subsystem consists of a 385 

x 287 CMOS array connected to parallel port 
of a PC. Twill and plain weave fabric samples 
with most commonly occurring defects were 
gathered from textile factory and used to 
evaluate this algorithm. Some of these results 
are reproduced here. All of these images in 
figure 6 cover 10 cm width and 7.5 cm height 
of the fabric, moving with the velocity of 30 
cm/sec. Due to an increase in area of fabric 
per frame, we have increased the sensitivity 
of the algorithm (C = 1) . The results achieved 
confirm that this algorithm is robust, scalable, 
and offers high detection rate. 

VII. Conclusions 
In this paper an algorithm based on multi- 

channel filtering has been successfully used 
for defect detection in textile web. The 
significant gain in performance are attributed 
to (a) usage of Bernoulli’s principle in image 
fusion, (b) higher sensitivity in conjunction 
with low spatial sampling and, (c) lower 
sensitivity in presence of yarn impurities. 
Furthermore, considerable computational 
saving has been achieved with the use 7 x 7 
masks. This algorithm is also well suited for 
inspection of any other textured materials 
such as timber or plastic. 
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Figure 1: Perspective view of Real and Imaginary components of a Gabor filter in spatial domain. 
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Figure 2: Supervised defect detection using optimal Gabor filters: (a) Fabric sample with defect, (b) 
magnitude frequency response for optimal Gabor filter, (c) filtered image and (d) segmented defect. 

Figure 3: Block diagram of on-line defect detection algorithm. 
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Figure 4: Fabric sample for test (a) without defects, (b) with defects 

Figure 5: Segmented defect for fabric sample shown in figure 3. 
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Figure 6: Various defective fabric test samples (a),(c),(e), and binarized segmented defect (b),(d),(f). 
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