<table>
<thead>
<tr>
<th>Title</th>
<th>On the design and implementation of a class of multiplierless two-channel 1D and 2D nonseparable PR FIR filterbanks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Chan, SC; Pun, CKS; Ho, KL</td>
</tr>
<tr>
<td>Citation</td>
<td>International Conference on Image Processing Proceedings, Thessaloniki, 7-10 October 2001, v. 2, p. 241-244</td>
</tr>
<tr>
<td>Issued Date</td>
<td>2001</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/46259</td>
</tr>
<tr>
<td>Rights</td>
<td>©2001 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.</td>
</tr>
</tbody>
</table>
ON THE DESIGN AND IMPLEMENTATION OF A CLASS OF MULTIPLIER-LESS TWO-CHANNEL 1-D AND 2-D NONSEPARABLE PR FIR FILTERBANKS

S. C. Chan, K. S. Pun and K. L. Ho
Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong.
Email: scchan@eee.hku.hk, kspun@eee.hku.hk, koho@eee.hku.hk

ABSTRACT

This paper proposes a new design and implementation method for a class of multiplier-less 2-channel 1D and 2D non-separable perfect reconstruction (PR) filter banks (FB). It is based on the structure proposed by Phoong et al. and the use of multiplier block (MB). The latter technique allows one to further reduce the number of adders in implementing these multiplier-less FB by almost 50%, compared to the conventional method using sum of powers of two coefficients (SOPOT) alone. Furthermore, by generalizing the 1D to 2D transformation of Phoong et al., new 2D PR FBs with quincunx, hourglass, and parallelogram spectral support are obtained. These nonseparable FBs can be cascaded to realize new multiplier-less PR directional FB for image processing and motion analysis. Design examples are given to demonstrate the usefulness of the proposed method.

I. INTRODUCTION

Perfect reconstruction (PR) filter banks (FBs) have important applications in signal processing, signal coding, and the construction of wavelet basis. Their design and efficient implementation are of great interest [2][5][8][9]. In [2], a class of two-channel biorthogonal FB with the PR condition being structurally imposed was proposed [2].

More precisely, the filter bank is parameterized by two functions \(a(z) \) and \(b(z) \), which can be chosen as FIR or IIR functions, without affecting the PR condition. Therefore, its design and implementation complexities are very low. Moreover, it was shown recently that nonlinear-phase PR FIR filter banks with low system delay can also be derived from this structure. The design of such low-delay and linear-phase PR FIR filter banks can be performed by the commonly used Remez exchange algorithm [5][6]. Another advantage of this class of filter banks is that they can be transformed, via a simple transformation, to obtain 2D PR nonseparable filter banks with quincunx spectral support [2].

In this paper, we shall consider the multiplier-less implementation of such 2-channel PR FBs and their 2D nonseparable generalization. In particular, the coefficients in the FIR functions \(a(z) \) and \(b(z) \) mentioned earlier are represented as sum of powers of two (SOPOT) representations [3], which can be implemented efficiently using only hard-wired shifters and adders. The construction of multiplier-less FIR/IIR FBs and wavelet basis, using this concept, were recently reported by the authors in [6]. It will be shown in this paper that the number of adders required can be further reduced by implementing the SOPOT coefficients of \(a(z) \) and \(b(z) \) using a technique called Multiplier Block (MB) [4].

To reduce the number of adders for implementing \(a(z) \) and \(b(z) \) as MB, we have to implement \(a(z) \) and \(b(z) \) in their transposed form. In this case, instead of multiplying the delayed input samples with the filter coefficients as in the direct form, the input sample is now multiplied with all the filter coefficients. This can be efficiently implemented using a multiplier block. Let's consider a simple example with two filter coefficients: 3 and 21. The SOPOT representations of these two numbers are: \(3 = 2^1 + 1 \) and \(21 = 2^4 + 2^2 + 1 \). This requires 3 adders and 3 shifts. If implemented in a MB, the multiplication of the input with the coefficient 3 will also be generated by decomposing 3 as \(2^1 + 1 \), requiring one addition. The multiplication with 21, however, can be simplified by re-using the intermediate result generated by the first filter coefficient '3' as \(21 = 3 \cdot 7 = 3 \cdot (2^2 - 1) \). Actually, the SOPOT result, after multiplication by 3, is multiplied by 7, which requires one less
adder than generating 21 directly. In principle, it is possible to remove all the redundancy found in the constant multipliers leading to a realization with the minimum number of adders. This can drastically reduce the number of adders required for realizing such FBs when there are large numbers of filter coefficients to be implemented in the transposed form FIR structure [4].

III. DESIGN PROCEDURE AND EXAMPLES

We now introduce a new design method, called random search technique, to search for the SOPOT filter coefficients. The optimization procedure consists of two stages. First, a random search algorithm, to be discussed in the sequel, is used to search for the SOPOT coefficients of $\alpha(z)$ and $\beta(z)$ such that a given performance measure is minimized. Then, the minimum number of adders needed in the MB is determined. The generation of the MB from the SOPOT coefficients follows the algorithms proposed in [4]. Let x_i be the vector containing the real-valued coefficients of $\alpha(z)$ and $\beta(z)$ obtained by the method in [5]. The principle of the random search algorithm is to generate randomly candidate SOPOT coefficients in the neighborhood of x_i so as to search for the optimal discrete solution. More precisely, a new coefficient vector x_{new} is generated by adding to it a random vector to the original coefficient vector x_i as follows

$$x_{new} = x_i + \alpha \cdot x_{SOPOT},$$

where α is a scale factor which controls the size of the neighborhood to be searched, x_{SOPOT} is a vector with its elements being random numbers in the range $[-1, 1]$, and \lceil is the rounding operation which converts its argument to the nearest SOPOT coefficients with maximum number of terms in each coefficient being 1, and dynamic range l_u and l_e. The following objective function, which is the minmax error between the desired frequency response $H(z)$ and the response frequency $H(e^{j\omega}, x)$ calculated using the candidate x in the frequency band of interest $\omega \in \Omega$, is minimized:

$$score = \max_{\omega \in \Omega} \left| H(e^{j\omega}, x) - H_s(e^{j\omega}) \right|.$$

The process is repeated with different vector x so that the SOPOT space in the neighborhood of x is sampled randomly. Since the sampled solutions are close to the real-valued optimal solution, their frequency responses will also be close to the ideal one, but with different hardware complexity. The set that yields the minimum score with a given number of terms is recorded. As this is a random search algorithm, the longer the searching time, the higher the chance of finding the optimal solution. There are several advantages of this algorithm. First of all, with the computational power of nowadays personal computer (PC) especially when the number of adders is large, we can perform the required multiplications. Next, we consider their generalizations to 2D nonseparable FBs.

IV. 2D MULTIPLIER-LESS NONSEPARABLE PR FBs

We consider a low-delay FIR FB with N and M in fig. 5 chosen to be 3 and 8, respectively. Both $\alpha(z)$ and $\beta(z)$ are nonlinear-phase FIR filters. The cutoff-frequencies of the analysis filters are 0.4π and 0.6π, respectively. The filter coefficients are first calculated from the method in [5]. The SOPOT coefficient is then obtained using the random search algorithm described previously, and they are given in table 1. It can be seen from fig. 1 (their frequency responses) that the stopband attenuation of this FB is around 40dB. The searching time, including the design of the MB is less than 5 minutes in a Pentium-400 PC. The required number of adders in the MB for $\beta(z)$ is 10, 8 less than the direct implementation. For $\alpha(z)$, the number of adders required for the MB is 9, again 5 less than the direct implementation. The final implementation requires only 19 adders, saving 13 adders. In other words, a saving of 13/32 = 40.6% of the original adders is achieved by using the MB.

Fig. 2 shows the resultant MB for $\alpha(z)$. Another point worth mentioning is that both MBs are minimum-adder-graph [2], which means that they require the least number of adders to perform the required multiplication. Next, we consider their generalizations to 2D nonseparable FBs.

Example 4.1

Here, we consider a low-delay FIR FB with N and M in fig. 5 chosen to be 3 and 8, respectively. Both $\alpha(z)$ and $\beta(z)$ are nonlinear-phase FIR filters. The cutoff-frequencies of the analysis filters are 0.4π and 0.6π, respectively. The filter coefficients are first calculated from the method in [5]. The SOPOT coefficient is then obtained using the random search algorithm described previously, and they are given in table 1. It can be seen from fig. 1 (their frequency responses) that the stopband attenuation of this FB is around 40dB. The searching time, including the design of the MB is less than 5 minutes in a Pentium-400 PC. The required number of adders in the MB for $\beta(z)$ is 10, 8 less than the direct implementation. For $\alpha(z)$, the number of adders required for the MB is 9, again 5 less than the direct implementation. The final implementation requires only 19 adders, saving 13 adders. In other words, a saving of 13/32 = 40.6% of the original adders is achieved by using the MB.
filters are support we have functions. To design a PR FB with a hourglass spectral support, we can multiply parallelogram support as shown in Fig. 4b is slightly more complicated because we need to determine the form of its parameters of the transformation. First of all, it is noted that by \(M_1 \). This is given by \(\{10\} \), the spectral support sampling matrix, of the quincunx spectral support is similar. In fact, we have support is given by \(e^{j2\pi n} \) and \(p(z) \) are linear-phase/nonlinear-phase FIR and IIR functions. To design a PR FB with a hourglass spectral support, we can multiply \(x(n) \) and \(\tilde{x}(n) \) in the quincunx PR FB by \((-1)^n \) [1]. The design of a PR nonseparable FB with a parallelogram support as shown in Fig. 4b is slightly more complicated because we need to determine the form of its sampling matrix, \(M_r \), the integer vectors \(k_0, k_1 \), and hence the parameters of the transformation. First of all, it is noted that the analysis filter \(\Omega \) of the analysis lowpass filter should be equal to the aliasing-free spectral support of \(x(n) \) if decimated by \(M_r \). This is given by \(\{10\} \), \(\Omega = \sum_{m \in \mathbb{Z}} x(m) e^{-j2\pi m/2} \). For notational convenience, let \(\Omega^{-1} = \{x_0, x_1\} \). Consider the quincunx sampling as an example, the spectral support is a parallelogram defined by the two vectors, \(\omega_0 = \{\pi/2, \pi/2\} \). and \(\omega_1 = \{\pi/2, \pi/2\} \) (Fig. 4a). In general, if \(\omega_0, \omega_1 \) can be determined from the desired spectral support, then \(\omega_0, \omega_1 \) can be computed from \(M = \{\omega_0, \omega_1\}^T/\pi \). Using this formula, one can easily verify that the sampling matrix of the quincunx spectral support is given by \(M_0 = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \). The calculation of the parallelogram support is similar. In fact, we have \(\omega_0 = \{\pi/2, 0\} \) and \(\omega_1 = \{-\pi/2, \pi\} \) and \(M_r = \{M_{x,0}, M_{x,1}\} \), where \(M_{x,0} = \{2, -1\} \) and \(M_{x,1} = \{0, 1\} \). \(k_0 \) and \(k_1 \) are determined to be \(k_0 = [0, 0]^T \) and \(k_1 = [1, 0]^T \). The analysis filters are then given by

\[
H_0(z_0, z_1) = \frac{1}{2} (e^{j\pi n} + e^{j\pi n} \beta(z_0) \beta(z_1)) \]

and \(H_1(z_0, z_1) = -e^{j\pi n} \alpha(z_0) \alpha(z_1) H_0(z_0, z_1) + e^{j2\pi n} + \beta(z_0) \beta(z_1) \) \(\{4\} \)

We now present some design examples.

Example 4.1

The 1-D low-delay multiplier-less PR FB obtained in Example 3.1 is transformed using equations \(\{4\} \) and \(\{5\} \) derived in the previous section to obtain the corresponding 2D multiplier-less FB with Quincunx and parallelogram spectral support as shown in Fig. 4. The FB with a hourglass shape spectral support is obtained by shifting the frequency spectrum of the quincunx FB via the modulation \(e^{j\pi n} \), where \(n_1 \) is the integer index in the vertical direction. Imperfect readers are refer to [1] for more details. The contour plots of their frequency responses are shown in Fig. 7. The design of PR FBs with parallelogram spectral support at orientations of 150, 240 and 330 degrees are similar (one shown in Fig. 7c has a orientation of 60 degrees). By properly cascading these sets of basic PR FBs in a tree structure, as suggested in [1], it is possible to realize new multiplier-less PR directional FBs with very low implementation and design complexities. Due to page limitation, interested readers are referred to [1] for more details of the actual arrangement and their applications in directional image decomposition and motion analysis.

V. CONCLUSION

A new design and implementation method for a class of multiplier-less 2-channel 1D and 2D non-separable perfect reconstruction (PR) filter banks (FB) is presented. It is based on the structure proposed by Phoong et al and the use of multiplier block (MB). The latter technique allows one to further reduce the number of adders in implementing these multiplier-less FB by almost 50%, compared to the conventional method using sum of powers of two coefficients (SOPOT) alone. Furthermore, by generalizing the 1D to 2D transformation of Phoong et al., new 2D PR FB with Quincunx, hourglass, and parallelogram spectral support are obtained. These nonseparable FBs can be cascaded to realize new multiplier-less PR directional FB for image processing and motion analysis. Design examples are given to demonstrate the usefulness of the proposed method.

REFERENCES

Table 1. Filter coefficients for Example 3.1.
Figure 1. Frequency response of the SOPOT FB in Example 3.1.

Figure 2. Multiplier-block for \(a(z)\) in Example 3.1. (\(\gg x\) means shift \(x\) no. of bits towards the LSB while \(\ll x\) means shift \(x\) no. of bits towards the MSB)

Figure 3. The multidimensional maximally decimated 2-channel FB.

Figure 4. (a) Spectral support of quincunx sampling, (b) spectral support for the parallelogram filter, (c) sampling matrix and its associated lattice for quincunx sampling, (d) sampling matrix and its associated lattice for the parallelogram filter.

Figure 5. The PR FB in [2].

Figure 6. 2D PR 2-channel FB after transformation of variables.

Figure 7. Frequency responses of 2D nonseparable PR FB in example 4.1: (a) Quincunx, (b) Hourglass, and (c) Parallelogram.