
Adaptive parallel video coding algorithm

K. K. Leung∗ , N. H. C. Yung, P. Y. S. Cheung
Department of Electrical & Electronic Engineering,

The University of Hong Kong, Pokfulam Road, Hong Kong SAR

 ABSTRACT

Parallel encoding of video inevitably gives varying frame rate performance due to dynamically changing video content and
motion field since the encoding process of each macro-block, especially motion estimation, is data dependent. A
multiprocessor schedule optimized for a particular frame with certain macro-block encoding time may not be optimized
towards another frame with different encoding time, which causes performance degradation to the parallelization. To tackle
this problem, we propose a method based on a batch of near-optimal schedules generated at compile-time and a run-time
mechanism to select the schedule giving the shortest predicted critical path length. This method has the advantage of being
near-optimal using compile-time schedules while involving only run-time selection rather than re-scheduling.
Implementation on the IBM SP2 multiprocessor system using 24 processors gives an average speedup of about 13.5 (frame
rate of 38.5 frames per second) for a CIF sequence consisting of segments of 6 different scenes. This is equivalent to an
average improvement of about 16.9% over the single schedule scheme with schedule adapted to each of the scenes. Using
an open test sequence consisting of 8 video segments, the average improvement achieved is 13.2%, i.e. an average speedup
of 13.3 (35.6 frames per second).

Keywords: Video coding, multiprocessor scheduling, inter-processor communication, data flow graph, pipelining, H.261

1. INTRODUCTION

Variation in video encoding time exists due to data dependent processes of the coding algorithm. For instance, the motion
estimation (ME) may use early-jump-out technique to skip a search position depending on the partially accumulated sum-
absolute-different (SAD)1,2,3. The skipping may also be based on the predicted SAD to compare with a threshold SAD
value. Besides ME, Erol et al2 and Tye et al3 used zero block prediction prior to DCT to eliminate the computation of some
macro-blocks (MB) using the pixels sum absolute value as predictor. Erol reported a speedup of 1.6 using such algorithmic
optimization over a single processor implementation. Together with MMX instruction extension, a speedup of 2, i.e. a frame
rate of 15 frames per second (fps), was reported in doing H.263+ encoding at QCIF resolution on a Pentium MMX 200MHz
PC. Tye reported an implementation on a PCI-board consisting of a TMS320C80 in which 2 parallel processors were used
for encoding and one for decoding. It achieved 7-10 fps for QCIF video. Also for speed enhancement, the ME as proposed
by Akramullah et al4 skips the search points that are outside the 3x3 or 5x5 search window if the minimum SAD found is
smaller than a threshold. Using the visual instruction set, they achieved 12.17 fps on an UltraSPARC-1 workstation of
167MHz for H.263 encoding at QCIF size. All these speed enhancement methods have variable computation time towards
different video content.

For better image quality and faster coding speed, Chung et al5 proposed an adaptive non-linear three-step-search
giving PSNR very close to that of full-search and search time faster than three-step-search. The algorithm stops in the first
step if the position found is the center position or its 8 neighbors. Otherwise, further refinement process is carried out
around the minimum SAD position. Furthermore, the refinement searching terminates sooner if the minimum position from
the first step is closer to the search center. Similarly, Nitta et al6 proposed a hardware architecture for scene adaptive three-
step-search that allows hopping vector, prioritized zero vector and prioritized unchanged vector from the last encoded
vector. The search area can be contracted if the scene is a still image or when there is little motion. For bit rate control,
Tiwari and Viscito7 used an iterative algorithm to compute the nominal quantizer for a frame based on a piecewise linear
model between the quantizer reciprocal and the scene complexity. If the number of bits produced violates the virtual buffer
verifier constraint, then the picture is re-encoded using a modified nominal quantizer. With these scene adaptive algorithms,
it is expected that the encoding time across the MB’s and the frames varies over a wide range.

This variation is the cause for performance degradation on parallel implementation. Owing to this, run-time scheduling
methods have been proposed. For example, He et al8 proposed a parallel MPEG-4 coding algorithm for variable size video

∗ Correspondence: Email: kkleung@eee.hku.hk; Tel: 852-2857-8414; Fax: 852-2559-8738

Visual Communications and Image Processing 2001, Bernd Girod, Charles A. Bouman,
Eckehard G. Steinbach, Editors, Proceedings of SPIE Vol. 4310 (2001) © 2001 SPIE · 0277-786X/01/$15.00284

objects by balancing the number of MB’s over the processors. They achieved 15-30 fps for CIF video using 20 SUN
UltraSPARC connected by a ForeSystems ATM switch. However, the variation in MB computation time is not
compensated and the communication overhead for search area is not included. The load-balancing algorithm proposed by
Yung and Chu9 considered variation in MB encoding time. The algorithm performs computation and communication in
separate phases and tries to balance the computation time over the processors. Simulation results show that 6.45%
improvement can be obtained, i.e. 1 fps improvement from 15.5 fps, using the MB encoding time estimated from the last
frame. Merely balancing the computation may not lead to scalable implementation because there are inter-processor
communication overhead and task precedence constraints that must also be considered.

Some methods are based on distributed schemes that offer flexible processor management. For example, Barbosa et
al10 proposed a multithread configuration with a number of threads running on a number of processor. Whenever a thread
becomes free, it selects a task that is ready to execute from a global task pool. This method has achieved 43 fps MPEG-1
encoding for 352x240 video using purely-temporal parallelism on a SUN Enterprise 10000 system composed of 32
processors and 8GB of shared memory. Although there is no explicit inter-processor communication (IPC) instruction, the
overhead due to synchronization and I/O limits the scalability and causes the speedup to drop from about 9.5 to 6.5 when
the number of threads increases from 16 to 32. On an Ethernet-connected SUN-Classic workstation cluster, Nang and Kim11

implemented a master-slave configuration in which the slave processors request from the master processor computation
tasks to execute. It achieved a frame rate of 7.8 fps for MPEG-1 encoding at 320x240 resolution, with GOP level task
decomposition. The percentage time for communication increases steadily from about 34% to 63% for number of slaves
from 1 to 30. In other words, the efficiency or the percentage time performing useful computation is decreasing due to
excessive IPC overhead. As a matter of fact, it can be shown that the shared network or memory has increasing access time
with the number of processors due to access contention12.

As observed, first, the communication overhead is an important issue that can constitute to substantial performance
degradation if not scheduled efficiently. Second, the parallelization involves not only balancing the computation time, but
also the scheduling of the tasks under the data dependency of the algorithm. Third, run-time scheduling is constrained by the
short time available for making scheduling decision such as task selection heuristic for execution in a ready slave processor.
The system utilization may be low using this simple heuristic. In fact, multiprocessor scheduling is an NP-hard problem13,14.
Currently, compile-time iterative scheduling algorithms are able to provide only near-optimal solution under realistic model
with consideration of IPC and resource limitations15,16. Moreover, the schedule generation time is long compared to the
frame encoding time. Thus, it is inherently challenging to consider run-time optimization of parallel video coding.

Therefore, we are motivated to tackle this problem. Our approach is based on a run-time selection scheme with a
number of compile-time schedules. This method has the advantage of being near-optimal using compile-time schedules and
simultaneously, involving only run-time selection rather than re-scheduling such that the run-time overhead can be reduced.
The data communication and computation for run-time selection are also included in the algorithm being scheduled.
Implementation of a parallel H.26117 encoder on the IBM SP2 multiprocessor system gives an average speedup of about
13.5 (frame rate of 38.5 fps) for a CIF sequence consisting of segments of 6 different scenes. This is equivalent to an
average improvement of about 16.9% over the single schedule scheme with schedule adapted to each of the scenes. Using
an open test sequence consisting of 8 video segments, the average improvement achieved is 13.2%, i.e. an average speedup
of 13.3 (35.6 fps).

This paper is organized as follows: Section 2 presents the model for scheduling and derives the evaluation process of
the schedule performance. Section 3 illustrates the effect of task execution time variation and introduces the run-time
selection method for video coding. Section 4 outlines the experiments, test conditions and test results together with detailed
discussions. Finally, this paper is concluded in Section 5.

2. MODEL FOR MULTIPROCESSOR SCHEDULING

2.1. Data flow graph

In order to achieve true parallel performance, a realistic model for scheduling is crucial15. We adopted the data flow graph
(DFG) to represent the coding algorithm since it highlights the data dependency between the coding tasks. A parallel
program is described by a DFG G(VT∪ VD,ETD∪ EDT) where VT represents a set of non-preemptive computation tasks while
VD represents a set of data objects. ETD (or EDT) contains a set of directed edges connecting vertices from VT to VD (or VD to
VT), which represents the production (or referencing) of data objects by the tasks. For example, a task can be the MB
encoding function, which references data objects such as the input MB and reference MB’s to produce data objects such as
the encoded bit-stream and reconstructed MB. G may be an iterative DFG such as video encoding in which an iteration

Proc. SPIE Vol. 4310 285

corresponds to the encoding of a frame. The unfolding of G induces an acyclic DFG G(VT∪ VD,ETD∪ EDT) where VT∪ VD

contains a sequence of isomorphic and disjoint instances of VT∪ VD and ETD∪ EDT is the set of directed edges between the
vertices in VT∪ VD. For Tx∈ VT and Dy∈ VD, Tx,i and Dy,i denote respectively the instances of Tx and Dy in the ith iteration
(i=1,2,…). The edge set ETD∪ EDT is formed from ETD∪ EDT based on the dependence distance d of the data objects. For Tx,
Tz∈ VT and Dy∈ VD, if (Tx,Dy)∈ ETD and (Dy,Tz)∈ EDT, then (Tx,i,Dy,i)∈ ETD and (Dy,i,Tz,i’)∈ EDT where i=i’-d(Dz). It means that Tz

references the Dy in the {d(Dy)}
th previous iteration. An example DFG is depicted in Fig. 1. A summary of all the symbol

definitions can be found in the Appendix.

T0

T1 T2

T3

D0 (from P0)

D2D1

D3
D4

D5 (to P1)

T0

T1 T2

T3

T5 T6

T8T7

T4

T9

Computation task

Data object

Computation task

Communication task

T4 = (D0 , T0)
T5 = (D1 , T1)
T6 = (D2 , T2)
T7 = (D3 , T3)
T8 = (D4 , T3)
T9 = (T3 , D5)

DFG G:
Communication task graph GC:

Figure 1. Data flow graph and transformation to communication task graph

2.2. Platform model

The platform model (SR,SP,SC) consists of a set SR of resources such as processors and communication links. SP is a set of
processors connected with a communication network of a given topology. Between each pair of processors, there is a static
circuit-switched communication channel made up of a number of resources in SR. Each data transfer is non-preemptive such
that the channel resources are exclusively occupied throughout the duration of transfer. For different channels, if they share
resources in common, the data transfers through them have to occupy non-overlapped time duration. For each computation
task T, the execution time, ET(T), is assumed to be known a priori. For a data transfer, the execution time may be modeled
by the channel setup time, the product of the effective channel bandwidth and the data size.

2.3. Communication task graph

For scheduling of communication and computation, the communication task graph GC(VT∪ VCT,EC) is introduced, in which
VCT is a set of communication tasks and EC is the set of directed edges between the tasks, either computation or
communication. The communication tasks are formed from the input DFG considering the edges incident on the data
objects. For Dy∈ VD and Tx,Tz∈ VT, if (Tx,Dy)∈ ETD and (Dy,Tz)∈ EDT, then a unique communication task Tc is generated for the
edge (Dy,Tz). The dependence distances between Tx, Tc and Tz are correspondingly d(Tx,Tc)=d(Dy) and d(Tc,Tz)=0. It means
that Tc transfers the instance of Dy produced by Tx in the {d(Dy)}

th previous iteration. On the other hand, if Dy has no outlet
edge, then a unique communication task is generated for the inlet edge of Dy. Fig. 1 lists the communication task of the
example DFG. Unfolding of GC induces an acyclic task graph GC(VT∪ VCT,EC) where VT∪ VCT contains a sequence of
instances of VT∪ VCT. and EC is the set of directed edges between the vertices in VT∪ VCT. For Tx,Ty∈ VT∪ VCT, we have
(Tx,Ty)∈ EC ⇔(Tx,i,Ty,i’)∈ EC and i=i’-d(Tx,Ty).

2.4. Schedule characterization

In the execution of an iterative program, each loop consists of one instance of each task. All the loops execute according to
the same schedule, which can be characterized by the tuple (RI,Map,EDS,Seq). For T∈ VT∪ VCT, RI(T) is defined as the
relative iteration index of T, i.e. the instance of T in the jth loop belongs to iteration j+RI(T). Map(T) is defined as the
processor mapping of T for T∈ VT. EDS is a set of directed edges that represents the data forwarding relation between
communication tasks. For Tx,Ty∈ VCT, if (Tx,Ty)∈ EDS, then Ty uses, as its source, the data object transferred and buffered in
the destination processor of Tx. As such, the source processor of Ty becomes the destination processor of Tx, and Tx becomes
a predecessor of Ty. Seq is defined as the order of the tasks to be scheduled. It is a topological ordered sequence that satisfies
the precedence relation among the tasks. The performance of the schedule is evaluated with the help of several intermediate
task graphs. First, the precedence relations between the tasks are determined with respect to their relative iteration indices.

 Proc. SPIE Vol. 4310286

Then, an augmented precedence graph GP’ is derived from the precedence relations of the precedence graph GP and the
platform resource constraints.

2.4.1. Precedence graph GP

The precedence relation of the tasks in the schedule is represented by the precedence graph GP(VT∪ VCT,EP), which is
derived from GC and RI. In the jth loop, the tasks Tx and Ty belong to iterations i=j+RI(Tx) and i’=j+RI(Ty) respectively. Tx,i is
a predecessor of Ty,i’ ⇔ (Tx,i,Ty,i’)∈ EC ⇔ (Tx,Ty)∈ EC and i=i’-d(Tx,Ty) ⇔ (Tx,Ty)∈ EC and RI(Tx)=RI(Ty)-d(Tx,Ty). Therefore,
(Tx,Ty)∈ EP ⇔ (Tx,Ty)∈ EC and RI(Tx)=RI(Ty)-d(Tx,Ty). Note that EP contains a subset of the edges of EC. Thus, the
precedence constraints can be alleviated by properly overlapping successive iterations in the schedule. Fig. 2 depicts the
precedence graphs with T0, T4, T5, T6 having a RI of 0 while T1, T2, T3, T7, T8, T9 having a RI of -1.

T0, j

T1, j-1 T2, j-1

T3, j-1

T5, j T6, j

T8, j-1T7, j-1

T4, j

T9, j-1

Ti, j

Ti, j

Computation task Ti of
iteration j

Communication task Ti of
iteration j

Precedence edge

(a) Iteration j (b) Iteration j-1

Figure 2. Precedence graphs

2.4.2. Execution time-line generation

Based on a given schedule, the execution time line is generated by traversing and scheduling the tasks in the order of Seq
one after another. A communication task is scheduled to the resources of the channel between the source and the destination
processors. Due to the serialization of the tasks to be executed in each resource, and the data forwarding between
communication tasks, there exist precedence relations in addition to that of GP, which can be represented by an augmented
precedence graph GP′. That is, (Tx,Ty)∈ EP′ if (Tx,Ty)∈ EP, or (Tx,Ty)∈ EDS, or Tx is just before Ty in some resource. The overall
make-span of the schedule, or the schedule length, is equal to the critical path length of GP′ given by

}{)()(max CTT VVTTETTtlevelngthScheduleLe ∪∈+= , (1)

where the function tlevel(T) is the start time of T. To determine tlevel, the tasks can be traversed in the order of Seq by using

}{),()()(,0max)(’Pppp ETTTETTtlevelTtlevel ∈+= . (2)

3. RUN-TIME SCHEDULE SELECTION FOR VIDEO CODING

3.1. Effect of task execution time variation

To illustrate the effect of task execution time variation on the schedule length, Table 1 shows an example schedule (Sch. 1)
with the timeline depicted in Fig. 3(a). The schedule length is 5 time units. If the execution times of T1 and T2 are
exchanged, the schedule length is increased to 6 time units as shown in Fig. 3(b). The increase in ET(T1) causes delay to the
start time of T7 and its successor tasks such as T5, T6, T7, T8. It also leads to high idling time of the processors. It should be
noted that the precedence from T7 to T5 and T8 is not due to data dependency as there is no precedence edge in the GP in Fig.
2. Instead, this precedence is due to resource constraint. By re-scheduling the task sequencing, another schedule (Sch. 2) as
depicted in Table 2 has the schedule length reduced as shown in Fig. 3(c). In this schedule, T8 is scheduled before T7, thus
filling the idling time of P1 and P3. T6 is also scheduled before T5 that fills the idling time of P0 and P3. On the other hand, if
T1 and T2 have not exchanged the execution time, then Sch. 2 is less optimized than Sch. 1 as depicted in Fig. 3(d). This
shows that the variation in task execution time can cause significant performance reduction and that the task sequencing can
be modified to restore the performance. In fact, the optimization of a schedule is based on a set of tasks and their execution
time. The schedule so generated is specifically optimized to the given execution time.

3.2. Video coding DFG with run-time selection

Fig. 4 depicts the run-time schedule selection scheme. The NSP algorithm15 is first used to generate a number of compile-
time schedules each based on the execution time of a training image. During run-time, the task execution time as measured

Proc. SPIE Vol. 4310 287

is used to evaluate the schedules to select the one giving the shortest frame time to encode the next frame. Fig. 5 shows the
DFG for video encoding. We assume that the input frames originate from an I/O device attached to processor P0. The output
in the form of bit-stream is delivered in processor P1. Both P0 and P1 are dedicated for these video I/O tasks and the
associated data distribution and collection tasks. The encoding of each MB includes functions from motion estimation to
variable length encoding to form the encoded MB, and the inverse counterparts of these functions to generate the decoded
MB. The task HDVLC performs the VLC of all the headers and concatenation of encoded MB’s. This task is executed
sequentially due to the spatial data dependency among the MB headers. As shown in the figure, the encoding of each MB
needs to reference the decoded MB’s of the last frame around the position of the current MB. Thus, the dependence distance
of all the decoded MB’s is one.

P0

P1

P2

P3

Ti, j

Ti, j

Computation task
Ti of iteration j

Communication task
Ti of iteration j

Idling

T0, j Time
T6, j

T3, j-1

T5, j

T8, j-1

T5, j

T8, j-1 T6, j

T7, j-1

T7, j-1

T2, j-1

T1, j-1

P0

P1

P2

P3

P0

P1

P2

P3

P0

P1

P2

P3

(a) A pipelined and optimized schedule (Sch. 1) with overlapping between successive loops
(j-1)th loop

T0, j T6, j

T3, j-1

T5, j

T8, j-1

T5, j

T8, j-1 T6, j

T7, j-1

T7, j-1

T2, j-1

T1, j-1

T0, j T6, j

T3, j-1

T5, j

T8, j-1

T5, j

T8, j-1 T6, j

T7, j-1

T7, j-1

T2, j-1

T1, j-1

T0, j T6, j

T3, j-1

T5, j

T8, j-1

T5, j

T8, j-1 T6, j

T7, j-1

T7, j-1

T2, j-1

T1, j-1

T0, j+1 T6, j+1

T3, j

T5, j+1

T8, j

T5, j+1

T8, j
T6, j+1

T7, j

T7, j

T2, j

T1, j

jth loop

T0, j+1 T6, j+1

T3, j

T5, j+1

T8, j

T5, j+1

T8, j
T6, j+1

T7, j

T7, j

T2, j

T1, j

jth loop

T0, j+1 T6, j+1

T3, j

T5, j+1

T8, j

T5, j+1

T8, j
T6, j+1

T7, j

T7, j

T2, j

T1, j

jth loop(j-1)th loop

(j-1)th loop

T0, j+1 T6, j+1

T3, j

T5, j+1

T8, j

T5, j+1

T8, j
T6, j+1

T7, j

T7, j

T2, j

T1, j

jth loop(j-1)th loop

(b) When ET(T1) and ET(T2) are exchanged, i.e. ET(T1)=3 & ET(T2)=2, the length of Sch. 1 is lengthened.

(c) With ET(T1)=3 and ET(T2)=2, a second schedule (Sch. 2) that is more optimized than Sch. 1 .

(d) With ET(T1)=2 and ET(T2)=3, Sch. 2 is less optimized than Sch. 1.

Figure 3. Effect of task execution time variation on schedule length

Task T T0 T1 T2 T3 T4 T5 T6 T7 T8 T9

Map P0 P2 P3 P1 - - - - - -
RI 0 -1 -1 -1 0 0 0 -1 -1 -1

Seq T4 T0 T2 T1 T7 T5 T8 T6 T3 T9

Table 1. Schedule 1

Task T T0 T1 T2 T3 T4 T5 T6 T7 T8 T9

Map P0 P2 P3 P1 - - - - - -
RI 0 -1 -1 -1 0 0 0 -1 -1 -1

Seq T4 T0 T1 T2 T8 T6 T7 T5 T3 T9

Table 2. Schedule 2

 Proc. SPIE Vol. 4310288

NSP
(Compile-time

scheduler)

Run-time
Schedule
Selection

Schedule
for next
frame

Schedule 1

Schedule 2

Schedule n

Data flow graph
for video coding

Execution time of training images
& platform communication
bandwidth, setup time

Measured task execution
time of previous frame

Figure 4. Run-time schedule selection scheme

ReadFrame

HDVLC

Input frame
(From P0)

Input MBs

Encoded MBs

Output bit-stream
(To P1)

Encoding of a MB

Data object

Computation task

Selection of
schedule

Measured task
execution time

Next
schedule

From
P0

From
P1

From
Pp-1

To P0 To P1 To Pp-1

Decoded MBs

Note : All decoded MBs have
dependence distance of 1

Figure 5. DFG for video coding

Apart from the video coding tasks, there is one more task for schedule selection. Processor P2 is dedicated to execute this
task. It evaluates the compile-time schedules using (1) and (2) by substituting the task execution time measured and
collected from the other processors. The schedule giving the shortest frame time is sent to the processors. In practice, a copy
of the schedules is resident in each processor so that it requires only the schedule identifier to be transferred.

3.3. Schedule generation

There are two limitations to the schedules for run-time selection. First is the constraint on the task processor mapping. If the
schedules have different Map, then it requires communication overhead for data relocation upon schedule switching. Since
the schedules are generated based on the assumption of static scheduling, any inter-loop data referencing assumes static
processor mapping of the computation tasks and the data objects produced from them. With different Map, some of the
communication tasks have different source processor in different schedules. So, there is explicit communication for
relocation of the data objects involved.

The second limitation is on the relative iteration indices. All the schedules must have identical setting of RI for run-
time schedule selection although it is possible to have different RI for different tasks. In other words, no matter which

Proc. SPIE Vol. 4310 289

schedule is selected to execute the next loop, the instance of each task is determined as a continuation of the instance from
the current loop. Otherwise, if the schedules have different RI setting, then some of the tasks may have missing or
duplicated instances.

In our approach, we adopt a constant processor mapping scheme for the tasks so as to eliminate the data relocation
upon schedule transition. Essentially, the MB’s are ordered from top to bottom and left to right in each row. Then groups of
4 consecutive MB’s each are allocated to the processors in a round robin fashion with the aim to balance the computation
time over the processors. The setting of RI is fixed in a way such that when the MB’s of the current frame are being
encoded, the next frame is read and distributed from P0. In parallel, the encoded MB’s of the last frame are collected to P1

for bit-stream output. As such, there is a latency of 3 frames encoding time from frame reading to the output of bit-stream.
This pipelined setting can eliminate the precedence constraints from the input MB communication tasks to the MB encoding
tasks. Similarly, the precedence constraints from the MB encoding tasks to the encoded MB communication tasks are also
eliminated. This helps to break down the computation critical path of the DFG.

With fixed Map and RI, the schedules differ only in the Seq and EDS components. The NSP algorithm is executed to
improve a given schedule by successive modification to these components under this scheme. For each video scene, a
compile-time schedule is generated. It requires the MB computation time of a representative frame of the scene. To find the
representative frame, consider a particular MB position, the computation time is obtained by taking the average MB
encoding time measured over a training sequence of frames at that particular position.

4. EXPERIMENTS AND DISCUSSIONS

4.1. Evaluation conditions

To illustrate the performance of the scheme, implementation was done on the IBM SP218. A parallel encoder was built from
a H.261 encoder from Hung19. In this implementation, the computation time of a MB depends largely on the ME search
time, which has considerable variation towards different video content due to the use of early-jump-out technique. For
benchmarking, all the task execution time and frame time were measured in units of microsecond by calling gettimeofday.
The evaluation used a video sequence consisting of 6 scenes each consisting of 50 frames in CIF resolution, i.e. a total of
300 frames. In the Multiple Schedules (MS) scheme, there are six schedules, each generated based on the representative
frame encoding time of one of the scenes.

For each scene, a compile-time schedule was generated by executing NSP for 10 times using 10 randomly generated
schedules as seeds. Then the best schedule was adopted. Various numbers of processors were included in the test. As a total,
there were 360 random schedules used to generate 360 near-optimal schedules, from which 36 were picked corresponding to
6 scenes and 6 different number of processors, i.e. 4, 8, 12, 16, 20, 24.

The schedules were used to encode the 300 frames of training sequence as well as an open test sequence composed of
8 segments each consisting of 30 frames. Besides testing for the MS scheme, each of the 6 schedules was also tested
individually in a single schedule scheme. During the test, all the processors are synchronized before each frame and the
frame time is taken to be the finish time of the latest task relative to the synchronization point. To eliminate the effect of the
Unix OS intermittent intervention, the test has 8 runs and the median frame time over the 8 runs is taken for each frame.

4.2. Results and discussions

The speedup curves of the 6 schedules for the training sequence with increasing number of processors are depicted in Fig. 6.
For number of processors less than 12, the curves are closer to each other. For higher number of processors, the curves
become more diverges. For example, at p=24, the schedule from “Miss A” has the widest spread of speedup from about 9.29
(37.1 fps) to 14.63 (29.8 fps). The schedule from “Weather” has the narrowest range of about 9.97 (37.1 fps) to 12.47 (25.4
fps), which is also a substantial variation of speedup. The schedule length is the critical path length in the augmented
precedence graph. With more processors, the critical path is shorter and each path contains smaller number of MB’s.
Therefore, the lengths of the paths are more sensitive to variation in the MB encoding time. The schedules then have more
diverged frame time for different schedules. Note that the speedup is relative to the sequential encoding time.

From Fig. 6(a), the schedule from “Akiyo” shows decreased or nearly unchanged speedup from p=20 to 24 for the
scenes “Bream”, “Miss A”, “News” and “Salesman”. This schedule shows high processor idling time towards frames of
these scenes at p=24. In fact, the “Akiyo” scene has a very different spatial distribution of encoding time from that of these
scenes. For example, the spatial encoding time distribution for “Akiyo” and “Bream” are depicted in Fig. 7. The background
MB’s of “Akiyo” take less than 0.6ms to encode while that of “Bream” take more than 1.2ms. It is because the “Akiyo”

 Proc. SPIE Vol. 4310290

scene has an artificial black background such that the pixels have identical luminance value. In performing ME, the SAD is
then exactly equal to zero at the search center such that the ME algorithm can skip all the other search points. For “Bream”,
the background has a uniform dark intensity with slight variation but the luminance is not exactly identical over the pixels.
In performing ME, all the search positions have non-zero SAD with very small variations. The algorithm has to completely
evaluate the SAD of each search point before it can determine whether to skip or accept. This explains why the background
takes higher encoding time than the foreground. Since the schedule from “Akiyo” has a critical path containing many MB’s
in its background locations. When substituted with the encoding time of “Bream”, the critical path becomes much longer.
Similar to “Bream”, the scenes “Miss A” and “Salesman” also have a background with high encoding time. The “News”
scene differs from “Akiyo” in the foreground in that “News” shows two persons side-by-side rather than one in the middle.

0

2

4

6

8

10

12

14

16

4 8 12 16 20 24

No. of processors

Sp
ee

du
p

Akiyo Bream

Miss A News

Salesman Weather

0

2

4

6

8

10

12

14

16

4 8 12 16 20 24

No. of processors

Sp
ee

du
p

Akiyo Bream

Miss A News

Salesman Weather

Figure 6(a). Speedup of Sch. from “Akiyo” for the 6 scenes Figure 6(b). Speedup of Sch. from “Bream” for the 6 scenes

0

2

4

6

8

10

12

14

16

4 8 12 16 20 24

No. of processors

Sp
ee

du
p

Akiyo Bream

Miss A News

Salesman Weather

0

2

4

6

8

10

12

14

16

4 8 12 16 20 24

No. of processors

Sp
ee

du
p

Akiyo Bream

Miss A News

Salesman Weather

Figure 6(c). Speedup of Sch. from “Miss A” for the 6 scenes Figure 6(d). Speedup of Sch. from “News” for the 6 scenes

0

2

4

6

8

10

12

14

16

4 8 12 16 20 24

No. of processors

Sp
ee

du
p

Akiyo Bream

Miss A News

Salesman Weather

0

2

4

6

8

10

12

14

16

4 8 12 16 20 24

No. of processors

Sp
ee

du
p

Akiyo Bream

Miss A News

Salesman Weather

Figure 6(e). Speedup of Sch. from “Salesman” for the 6 scenes Figure 6(f). Speedup of Sch. from “Weather” for the 6 scenes

At p=24, each schedule shows the best speedup for its training video segment. For example, the schedule from
“Akiyo” has a speedup of about 12.96 (49.5 fps) for “Akiyo” segment while the other 5 schedules are in the range from
10.02 (38.4 fps) to 11.07 (42.4 fps). Similarly for the “Bream” segment, the schedule from “Bream” gives speedup of about
14.50 (29.1 fps) while the others in the range 10.92 (22.0 fps) to 13.43 (27.0 fps). Also observed is that some video
segments have higher average speedup due to their higher sequential encoding time. For example, “Bream” has a higher
average speedup than “Akiyo” at p=24. Obviously from Fig. 7(a) and (b), “Bream” has a higher sequential encoding time
than “Akiyo”.

The utilization of the processors is given by the system efficiency, which is defined as the ratio of speedup to p. Fig.
8(a) & (b) depict respectively the speedup and efficiency of MS. It is found that MS gives a more bunched-up speedup up to

Proc. SPIE Vol. 4310 291

24 processors. At p=24, the speedup range is 12.30 (48.5 fps) to 14.75 (29.8 fps) and the corresponding efficiency range is
51.25% to 61.47%. The speedup comparison at p=24 is depicted in Fig. 9(a) & (b). From the data, MS is at most 0.5% lower
than the best for all the video segments. In the 8 repeated tests, MS can select the corresponding schedule that was trained
for the frame under encoding for about 96.2% of the time. About 2% of the mismatched selections occur in the frames after
scene changes as the selection is based on the measured execution time of the second previous frame. Therefore, more
mismatched selections are expected with more frequent scene changes. The remaining 1.8% mismatched selection occurs in
some isolated frames with outlying long execution time, which leads to inaccurate estimation. This is most likely caused by
the Unix OS overhead.

Spatial encoding time (ms) of Akiyo

1.2-1.8

0.6-1.2

0-0.6

Spatial encoding time (ms) of Bream

1.2-1.8

0.6-1.2

0-0.6

Figure 7(a). Spatial encoding time of Akiyo scene Figure 7(b). Spatial encoding time of Bream scene

0

2

4

6

8

10

12

14

16

4 8 12 16 20 24

No. of processors

Sp
ee

du
p

Akiyo Bream

Miss A News

Salesman Weather

0

10

20

30

40

50

60

70

4 8 12 16 20 24

No. of processors

E
ff

ic
ie

nc
y

(%
)

Akiyo Bream

Miss A News

Salesman Weather

Figure 8(a). Speedup of MS for the 6 scenes Figure 8(b). Efficiency of MS for the 6 scenes

0

2

4

6

8

10

12

14

16

A
ki

yo

B
re

am

M
is

s
A

N
ew

s

S
al

es
m

an

W
ea

th
er

Video segments

Sp
ee

du
p

at
 2

4
pr

oc
es

so
rs

Multiple schedule

Sch. from "Akiyo"

Sch. from "Bream"

Sch. from "Ms A"
0

2

4

6

8

10

12

14

16

A
ki

yo

B
re

am

M
is

s
A

N
ew

s

S
al

es
m

an

W
ea

th
er

Video segments

Sp
ee

du
p

at
 2

4
pr

oc
es

so
rs

Multiple schedule

Sch. from "News"

Sch. from "Salesman"

Sch. from "Weather"

Figure 9(a). Speedup comparison at p=24 Figure 9(b). Speedup comparison at p=24

The average speedup of MS over the whole training sequence is depicted in Fig. 10(a). A boundary curve is added for
the schedules under the current MB allocation. This curve corresponds to the ideal case without communication overhead
and task precedence constraint but under the current MB allocation scheme. It is found that there is slight bending
downward at p=12. It is due to uneven distribution of computation load over the processors causing processor idling. In the
implementation, groups of 4 neighboring MB’s are merged to form coarser grain tasks in order to reduce the time for
scheduling and run-time schedule evaluation as well as to enhance the locality of decoded MB access between neighboring
MB’s. The linear speedup of perfect load balance is higher than the measured by more than 3 because the scheme used 3
master processors dedicated for centralized communication. These masters have little computation to perform. For instance,

 Proc. SPIE Vol. 4310292

the time for schedule evaluation and HDVLC are approximately 5.59ms and 7.5ms respectively, which is well below the
33ms real-time requirement. This scheme is justified because, if there is only one master processor, then the master could
become a bottleneck when large number of processors are used. As depicted in Fig. 10(b), the efficiency of the
implementation is only about 24% at p=4, which shows that the master processors are inefficiently utilized. It is because
they were not scheduled with any MB encoding tasks although there is no restriction of doing so. After p=4, the efficiency
jumps to over 50% and increases to about 58.9% at p=16 as there are more processors for parallel encoding. Then the
efficiency tends to level and drops slightly to about 56.1%. One reason for the drop is the data partitioning that becomes
coarser with increasing number of processors, which is evidently shown in the drop of the ideal efficiency curve at p=24.

0

5

10

15

20

25

4 8 12 16 20 24

No. of processors

Sp
ee

du
p

MS

Ideal (current task allocation)

Ideal (perfect load balance)

0

10

20

30

40

50

60

70

80

4 8 12 16 20 24

No. of processors

E
ff

ic
ie

nc
y

(%
)

MS

Ideal (current task allocation)

 Figure 10(a). Average speedup of MS over whole sequence Figure 10(b). Average efficiency of MS over whole sequence

For the open test sequence, the speedup comparison at p=4 is depicted in Fig. 11(a) & (b). As observed, MS gives the
best speedup for the “Akiyo”, “Miss A” and “Weather” segments and second best for the other 5 segments with maximum
deviation of about 0.16 (1.13%) from the best. The reason that MS cannot select the best schedule is the error in frame time
estimation. In some cases, this error is larger than the frame time difference between the best schedule and the others. For
example, the schedule from “Miss A” is the best for the “Claire” segment. However, MS selects the schedule from “Bream”
for 29 frames due to under-estimation of the frame time by about 0.74ms (i.e. 2.3%) for the “Bream” schedule and over-
estimation by 1.33ms (i.e. 4.3%) for the “Miss A” schedule. Also, the difference in frame time between these two schedules
is only 0.69ms. Therefore, the estimation error is larger than the difference. One reason for the under and over-estimation is
due to over-simplified modeling of the inter-processor communication network as a complete network. There exists
buffering of some of the messages such that the sender can complete earlier than expected. On the other hand, some
messages have longer transmission due to contention within the network.

0

2

4

6

8

10

12

14

16

A
ki

yo

B
re

am

M
s

A

N
ew

s

S
al

es
m

an

W
ea

th
er

C
hi

ld

C
la

ir
e

Video segments

Sp
ee

du
p

at
 2

4
pr

oc
es

so
rs

Multiple schedule

Sch. from "Akiyo"

Sch. from "Bream"

Sch. from "Ms A"

0

2

4

6

8

10

12

14

16

A
ki

yo

B
re

am

M
s

A

N
ew

s

S
al

es
m

an

W
ea

th
er

C
hi

ld

C
la

ir
e

Video segments

Sp
ee

du
p

at
 2

4
pr

oc
es

so
rs

Multiple schedule

Sch. from "Akiyo"

Sch. from "Bream"

Sch. from "Ms A"

Figure 11(a). Open test speedup comparison at p=24 Figure 11(b). Open test speedup comparison at p=24

Fig. 12(a) & (b) depicts the frame rate results of MS for both the close and open tests. Comparing Fig. 8(a) and Fig.
12(a), roughly speaking, scenes such as “Bream” and “Miss A” have a comparably low frame rate but a high speedup at
p=24. Whilst scenes such as “Akiyo”, “News” and “Weather” have a high frame rate but low speedup. It should be noted
that the parallel frame rate is an absolute performance metric, which is reference to the sequential encoding time. In this
case, “Bream” and “Miss A” have similar sequential encoding time that is nearly two times that of “Akiyo”, “News” and
“Weather”. Also observed is that MS has resulted in reduced frame rate variation relative to the average frame rate. For
instance, from the close (or open) test results, the ratio of the frame rate span to the average frame rate over the 6 scenes is

Proc. SPIE Vol. 4310 293

decreased from about 0.62 to 0.51 (0.82 to 0.67) for p from 4 to 24. For each scene, MS can effectively select the best or
second best schedule and therefore the speedup and frame rate are more converged towards the high end.

0

10

20

30

40

50

60

4 8 12 16 20 24

No. of processors

F
ra

m
e

ra
te

 (
fp

s)

Akiyo Bream

Miss A News

Salesman Weather

0

10

20

30

40

50

60

4 8 12 16 20 24

No. of processors

F
ra

m
e

ra
te

 (
fp

s)

Akiyo Bream
Miss A News
Salesman Weather
Child Claire

Figure 12(a). Close test frame rate of MS Figure 12(b). Open test frame rate of MS

5. CONCLUSIONS

From the results, we find that first, consideration of computation and communication scheduling in video coding algorithm
parallelization is effective in minimizing the frame time. Second, further improvement can be obtained using multiple
schedules with adaptive runtime selection. Third, for runtime schedule selection, the additional computation and
communication overhead can be considered to be part of the algorithm for parallelization. In fact, the number of schedules
may be increased to include wider spectrum of video scene computation characteristics at the cost of higher evaluation
overhead, which can be tackled with multiple master processors20. Fourth, since the scheduling algorithm is generally
applicable to arbitrary DFG, this method is equally applicable to other coding standards and possibly other video processing
algorithms.

APPENDIX: DEFINITION OF NOTATIONS

DFG G(VT∪ VD, ETD∪ EDT) :

VT, VD The sets of computation tasks and data objects.

ETD, EDT The sets of directed edges from VT to VD and vice versa.

d(D) Dependency distance of data object D.

VT, VD The set of computation tasks and data objects in the unfolded version of G, i.e. G.

ETD, EDT The set of directed edges from VT to VD and vice versa in G.

Communication task graph GC(VT∪ VCT, EC) :

VCT The set of communication tasks.

EC The set of directed edges in GC.

d(Tx, Ty) The dependence distance from Tx to Ty, (Ty is dependent on Tx)

VT∪ VD The set of tasks in the unfolded communication task graph GC.

EC The set of directed edges in GC.

Platform model :

SR, SP The sets of resources and processors, SP⊂ SR.

SC The set of channel resources between pairs of processors.

P The number of processors.

Solution characterization :

RI(T) The relative iteration index of task T.

Map(T) The processor to which computation task T is mapped onto.

Seq(i) The ith task in the topological ordered sequence that satisfies precedence of GP.

EDS The set of directed edges that represent the data forwarding relation between communication tasks.

 Proc. SPIE Vol. 4310294

Precedence graph GP(VT∪ VCT, EP) :

EP The set of directed edges in GP.

Augmented precedence graph GP′ (VT∪ VCT, EP′) :
EP′ The set of directed edges in GP′.
ET(T) The execution time of T.

tlevel(T) The start time of T (also the longest path length in GP′ from an entry task to T).

ACKNOWLEDGMENT

The authors would like to express their sincerely gratitude to the Computer Center at the University of Hong Kong for their
support and advice on the use of the IBM SP2 system.

REFERENCES

1. D.-Y. Hsiau, J.-L. Wu, “Real-Time PC-Based Software Implementation of H.261 Video Code”, IEEE Trans. on
Consumer Electronics 43, No. 4, pp. 1234-1244, Nov. 1997.

2. B. Erol, F. Kossentini, H. Alnuweiri, “Implementation of a Fast H.263+ Encoder/Decoder”, Conf. Record of the 32nd

Asilomar Conf. on Signals, Systems and Computers, Vol. 1, pp. 462-466, 1998.
3. B. Tye, K. Goh, W. Lin, G. Powell, T. Ohya, S. Adachi, “DSP Implementation of Very Low Bit Rate

Videoconferencing System”, Proc of the Int’l Conf. on Information, Communications and Signal Processing, ICICS,
pp. 1275-1278, Sept. 1997.

4. S. M. Akramullah, I. Ahmad, M. L. Liou, “Optimization of Software-based Real-time H.263 Video Encoding”, Proc. of
the SPIE, Vol. 3653, pp. 727-735, Jan. 1999.

5. H. Y. Chung, P. Y. S. Cheung, N. H. C. Yung, “Adaptive search center non-linear three step search”, Proc. of Int’l
Conf. On Image Processing, Vol. 2, pp. 191-194, 1998.

6. K. Nitta, T. Minami, T. Kondo, T. Ogura, “Motion estimation/motion compensation hardware architecture for a scene-
adaptive algorithm on a single-chip MPEG2 MP@ML video encoder”, Proc. of the SPIE, Vol. 3653, pp. 874-882,1999.

7. P. Tiwari, E. Viscito, “A parallel MPEG-2 video encoder with look-ahead rate control”, Proc. of the IEEE Int’l
Conference on Acoustics, Speech and Signal Processing, Vol. 4, pp. 1994-1997, 1996.

8. Y. He, I. Ahmad, M. L. Liou, “A Software-Based MPEG-4 Video Encoder Using Parallel Processing”, IEEE Trans. on
Circuits & Systems for Video Technology 8, No. 7, pp. 909-920, Nov. 1998.

9. N. H. C. Yung, K. C. Chu, “Fast and Parallel Video Encoding by Workload Balancing”, Proceeding of the IEEE
SMC’98, pp. 4642-4647, Oct. 1998.

10. D. M. Barbosa, J. P. Kitajima, W. Weira Jr., “Parallelizing MPEG video encoding using multiprocessors”, Proc. of the
Brazilian Symp. on Computer Graphics and Image Processing, pp. 215-222, 1999.

11. J. Nang, J. Kim, “An Effective Parallelizing Scheme of MPEG-1 Video Encoding on Ethernet-Connected
Workstations”, Proc. of Advances in Parallel and Distributed Computing, pp. 4-11, 1997.

12. K. K. Leung, N. H. C. Yung, “Generalized parallelization methodology for video coding”, Proc. of the SPIE, Vol.
3653, pp. 736-747, 1999.

13. M. R. Garey, D. S. Johnson, Computers and Intractability, A Guide to the Theory of NP-Completeness, W. H. Freeman
and Co., 1979.

14. D. Fernandez-Baca, “Allocating modules to processors in a distributed system”, IEEE Trans. on Software Engineering
15, No. 11, pp. 1427-1436, Nov. 1989.

15. K. K. Leung, N. H. C. Yung, P. Y. S. Cheung, “Novel Neighborhood Search for Multiprocessor Scheduling with
Pipelining”, Proc. of the 4th HPC-Asia, Vol. 1, pp. 296-301, May 2000.

16. L. Wang, H. J. Siegel, V. P. Roychowdhury, A. A. Maciejewski, “Task Matching and Scheduling in Heterogeneous
Computing Environments Using a Genetic-Algorithm-Based Approach”, Journal of Parallel & Distributed Computing
47, pp. 8-22, 1997.

17. “ITU-T recommendation H.261: video codec for audiovisual services at px64 kbits”, International Telecommunication
Union, 1990.

18. T. Agerwala, et al, “SP2 system architecture”, IBM Systems Journal 34, No. 2, pp. 152-184, 1995.
19. A. C. Hung, “PVRG-P64 Codec 1.1”, Portable Video Research Group (PVRG), Stanford University, 1993.
20. N. H. C. Yung, K. K. Leung, “Parallelization of the H.261 video coding algorithm on the IBM SP2 multiprocessor

system”, Proc. of the 3rd IEEE Int’l Conf. Algorithms & Architectures for Parallel Processing, pp. 571-578, Dec. 1997.

Proc. SPIE Vol. 4310 295

