<table>
<thead>
<tr>
<th>Title</th>
<th>Improved roundoff noise performance in a direct-form IIR filter using a modified delta operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Wong, N; Ng, TS</td>
</tr>
<tr>
<td>Citation</td>
<td>Proceedings - IEEE International Symposium On Circuits And Systems, 2001, v. 2, p. II773-II776</td>
</tr>
<tr>
<td>Issued Date</td>
<td>2001</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10722/46232</td>
</tr>
<tr>
<td>Rights</td>
<td>Creative Commons: Attribution 3.0 Hong Kong License</td>
</tr>
</tbody>
</table>
Among various direct-form delta operator filters, the delta direct-form II transposed (δDFII) has been shown to produce the lowest roundoff noise in finite-word-length implementations. Recent analyses focus on the optimization of the free parameter Δ of the delta operator, with scaling of the structure to prevent arithmetic overflow. This paper proposes a modified δDFII second-order section in which the Δs at different branches are separately optimized to further suppress roundoff noise gain. Noise variance plots against pole locations are presented. Closed-form expressions for the optimal filter coefficients are derived and reduction of noise gain is confirmed by numerical examples.

1. INTRODUCTION

Delta operator realized digital filter structures have attracted increasing attention in this decade due to their good numerical properties when compared to traditional delay structures [1]-[8]. This is especially true when the sampling rate is much higher than the underlying signal bandwidth in which the z-plane poles cluster towards unity. By replacing the conventional z^{-1} operator with the inverse delta operator δ^{-1} = Δz^{-1}/(1−z^{-1}), certain ill-conditioned numerical issues can be overcome. Moreover, delta operator filters are generally accompanied with better roundoff noise performance and more robust coefficient and frequency sensitivities [1], [2]. Although an δ^{-1} operator is more complicated to implement in terms of hardware, its excellent numerical properties allow the use of shorter word-length, which results in moderate complexity or even gross savings in silicon area [6].

Extensive study of different direct-form delta structures has been carried out in [4]. It was found that the delta direct-form II transposed (δDFII) exhibits the best roundoff noise properties among various delta structures. Focus has been put on the optimization of the free parameter Δ of the delta operator to achieve minimum roundoff noise gain at the output. The basic second-order δDFII section was studied in detail [3], [4].

In this paper, instead of limiting to optimizing a single Δ within the second-order δDFII section, the concept of separately optimizing the Δs in each δ^{-1} operator is introduced. It will be shown that this approach enables further reduction of roundoff noise gain. Simple and readily computable expressions for the optimal filter coefficients are derived.

To begin with, Section 2 of this paper describes the transformation of a conventional second-order direct-form II transposed (DFII) filter into its corresponding δDFII counterpart. Signal and noise transfer functions are then given. The graphical approach in Section 3 shows how the noise variance in a δDFII structure behaves as filter poles approach unity in the complex z-plane. Section 4 presents the derivation of the optimal Δ in each branch. Numerical examples are given in Section 5 and Section 6 concludes this paper.

Before proceeding, it should be noted that the L_p-norm [9] of a transfer function F is defined as

\[\|F\|_p = \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} |F(e^{j\omega})|^p d\omega \right)^{1/p}. \]

In fixed-point implementations, the noise variance for (B+1)-bit quantization with rounding is [10]

\[\sigma_n^2 = 2^{-p}/12. \]

Assuming additive uncorrelated white noise process, the noise variance \(\sigma_n^2 \) seen at the output of a linear system F is related to the \(L_p \)-norm and \(\sigma_n^2 \) by

\[\sigma_n^2 = \sigma_v^2 \|F\|_p^2. \]

2. STRUCTURAL TRANSFORMATION

Suppose a transfer function in the z-domain, represented by (4), is obtained under certain sampling conditions. It can be transformed into an equivalent delta structure by substituting \(z = 1 + \Delta \) where \(\Delta \) is a positive constant.

Fig. 1(a) and 1(b) show how a DFII structure is converted into a δDFII implementation. Fig. 1(c) incorporates the scaling constant g to prevent arithmetic overflow. This is necessary since finite-word-length arithmetic is used in practice. This basic second-order δDFII building block was studied extensively for roundoff noise minimization in previous work [3], [4], in which the same \(\Delta \) occurs in both δ^{-1} operators.

\footnote{The notion of using different Δs also appeared in [5] but optimization with respect to them has not been done.}
In our analysis, two separate Δ_s, Δ, and Δ, as in Fig. 1(b) and 1(c), are used to allow more degree of freedom for optimization. If less-than-double-precision fixed-point arithmetic is used after each coefficient multiplication (therefore the roundoff quantization error sources e_s to e_s), the summation nodes S_i, S_i, and S_i (called branch nodes [9]) have to be scaled to prevent overflow. Their signal transfer functions without scaling [i.e., $g=1$ in Fig. 1(c)] are given in (4)-(6). A common overflow prevention strategy is to use L_∞-norm scaling. Using the convention (also throughout this paper) that a tilde-topped transfer function represents its z-dependent part after any prefixing constants, the scaling factor will be

$$g = \max\left(\|F_0\|_\infty,\|F_i\|_\infty,\|F_i\|_\infty \right)$$

$$g = \max\left(\|F_0\|_\infty,\|F_i\|_\infty,\|F_i\|_\infty \right). \quad (7)$$

Assuming noise from the back scaling by g before the output Y [see Fig. 1(c)] is absorbed into the next section, transfer functions from different roundoff quantization noise sources due to coefficient multiplication are given as follows,

$$G_0 = \frac{Y}{e_s} = g \frac{z^{-1}(1-z^{-1})}{1+a_zz^{-1}+a_zz^{-2}}, \quad (8)$$

$$G_1 = \frac{Y}{e_s} = g \frac{z^{-1}(1-z^{-1})}{1+a_zz^{-1}+a_zz^{-2}}. \quad (9)$$

$$G_2 = \frac{Y}{e_s} = g \frac{z^{-1}(1-z^{-1})}{1+a_zz^{-1}+a_zz^{-2}}, \quad (10)$$

Modeling rounding quantization noise as an additive uncorrelated white noise process, superposition holds and the output noise variance is expressed as a sum of noise powers,

$$\sigma^2_{\text{eq}} = \sigma^2\frac{Y}{e_s} g^2 (\|G_0\|^2_2 + \|G_1\|^2_2 + \|G_2\|^2_2) \Delta_s^2 \Delta_s^2. \quad (11)$$

A word-length-independent noise gain term can therefore be defined as the ratio $\sigma^2_{\text{eq}} / \sigma^2\Delta_s^2$. Minimization of this term is carried out in Section 4.

3. GRAPHICAL NOISE ANALYSIS

As noted in Section 1, the noise gain is proportional to the squared L_∞-norm of the noise transfer function, e.g. the noise power produced by e_s is $\sigma^2\Delta_s^2 |\|G_0\|^2_\infty|$. Form (8)-(12), it is seen that the noise transfer functions are dependent on the poles. As the filter coefficients are real, the poles are complex conjugates, say, $re^{j\theta}$ and $re^{-j\theta}$. Ignoring the effects of the noise gain prefixing constants g, Δ_s and Δ, which are filter-dependent, it is possible to derive closed-form solutions.

$$\begin{align*}
F_0 &= \frac{Y}{X} = \frac{S_0}{X}, \quad (4) \\
F_1 &= \frac{S_1}{X} = \Delta_1^2 + b_1z^{-1} + b_2z^{-2}, \quad (5) \\
F_2 &= \frac{S_2}{X} = \Delta_1^2 + b_1z^{-1} + b_2z^{-2}, \quad (6)
\end{align*}$$

II-774
for the norms as functions of poles. Application of Parseval’s theorem and Cauchy’s residue theorem [10] gives

$$\left\| \tilde{G}_n \right\|_2^2 = \frac{2(r^2 - 2r + 3)}{(r^2 - 1)(1 + r^2 + r^2)}$$ (14)

$$\left\| \tilde{G}_m \right\|_2^2 = \left\| \tilde{G}_s \right\|_2^2 = \frac{2}{(1 - r^2)(1 + r^2 + r^2)}$$ (15)

$$\left\| \tilde{G}_m \right\|_2^2 = \left\| \tilde{G}_s \right\|_2^2 = \frac{1 + r^2}{(1 - r^2)(1 - 2r^2 + r^2)}$$ (16)

From (14)-(16), the pole location dependence of the noise gain can be easily visualized. This is useful for a qualitative perspective for narrow-band lowpass filters design, as the poles will cluster towards unity in the complex plane when the sampling rate is raised. Fig. 2 shows the plots of (14)-(16) in a domain on the right half of the complex-plane unit circle up to a radius of 0.99. Now the effect of filter structure on the noise gain can easily be seen. Plot of (16) reveals that e_1, e_2, and e_6 see the maximum gain when the poles move towards unity due to the all-pole transfer functions (10) and (12). To maintain a desired signal-to-noise ratio, the word-length must be increased [see (2) and (3)]. Plot of (15) shows that e_1, e_2, and e_6 still see increasing gain around unity but the increase is much smaller due to the single zero in (9) and (11). Plot of (14) in fact shows a decreasing trend and a limiting gain of 3 dB at unity, thereby indicating that e_1 sees the minimum gain. This is accounted for by the double zeros in (8).

For the DFIIt structure in Fig. 1(a), all quantization noise sources E_0 through E_4 experience a gain with the form of (16) [10]. Even with two more sources e_1 and e_6 in the δDFIIt structure, its noise variance sum is still much lower than that of the DFIIt structure. By using double-precision in the δ^{-1} operators, e_1 and e_6 can further be eliminated. Therefore it is qualitatively verified that δDFIIt is superior to DFIIt in terms of roundoff noise gain.

4. NOISE MINIMIZATION

This section performs the minimization of (13) under the scaling constraint of (7). First, because (7) contains two free variables, Δ_1 and Δ_2, a trick is made to transform them into one common variable Δ by putting

$$\Delta_1 = \Delta k_1^{-1}, \Delta_2 = \Delta k_2^{-1}.$$ (17)

The scaling factor in (7) becomes

$$g = \max \left(\left\| F_0 \right\|, \left\| \tilde{F}_1 \right\| k_1 \Delta_k^{-1}, \left\| \tilde{F}_2 \right\| k_2 \Delta_k^{-2} \right).$$ (18)

This expression is a max-function dependent on Δ and there are three possible regions of Δ corresponding to the three possible maxima. Using a similar approach as in [4], each argument in (18) is set to be the maximum and solved for its valid region, three regions are obtained, namely

- Region 1 where $g = \left\| F_0 \right\|$

$$\approx \Delta \geq \max \left(k_1 \left\| \tilde{F}_1 \right\| / \left\| F_0 \right\|, \sqrt{k_1 \left\| \tilde{F}_2 \right\| / \left\| F_0 \right\|} \right).$$ (19)

Substituting g into (13) results in an expression with positive powers of Δ, thus noise is minimized by choosing Δ to be the lower bound.

- Region 2 where $g = \left\| \tilde{F}_1 \right\| k_1 \Delta_k^{-1}$

$$k_1 \left\| \tilde{F}_1 \right\| / \left\| F_0 \right\| \geq \Delta \geq k_1 \left\| \tilde{F}_2 \right\| / \left\| \tilde{F}_1 \right\|.$$ (20)

In this case, the optimum Δ that minimizes the gain ratio lies somewhere within the region.

- Region 3 where $g = \left\| \tilde{F}_2 \right\| k_2 \Delta_k^{-2}$

$$\min \left(\sqrt{k_1 k_2 \left\| \tilde{F}_1 \right\| / \left\| F_0 \right\|, k_1 \left\| \tilde{F}_2 \right\| / \left\| \tilde{F}_1 \right\|, \left\| \tilde{F}_2 \right\| / \left\| F_0 \right\|, \right\}| \geq \Delta \geq 0.$$ (21)

Using similar argument, the optimum Δ in this region occurs at the upper bound.

Previous analyses [3], [4] implicitly set $k_1 = k_2 = 1$, and the optimum was chosen by comparing the effect of the local minima in different regions on the noise gain. In [3] and [4], the optimal Δ is given by

$$\Delta_n = \max \left(\left\| F_1 \right\| / \left\| F_0 \right\|, \sqrt{\left\| \tilde{F}_1 \right\| / \left\| F_0 \right\|} \right).$$ (22)

In our approach, the sub-optimals in the three regions are brought to converge to a global optimal on the real number line by setting

II-775
Table 1. Various expressions for the δDFIIt structure.

<table>
<thead>
<tr>
<th>Polynomial</th>
<th>Section A1</th>
<th>Section A2</th>
<th>Section A3</th>
<th>Section B1</th>
<th>Section B2</th>
<th>Section B3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denominator a_0,a_1</td>
<td>-1.93504729</td>
<td>-1.38611453</td>
<td>-1.80612859</td>
<td>-1.99512547</td>
<td>-1.98835375</td>
<td>-1.98540165</td>
</tr>
<tr>
<td>Numerator b_i ($b_0=b_2=1$)</td>
<td>-1.25901348</td>
<td>0.96471582</td>
<td>0.88788503</td>
<td>0.81824041</td>
<td>0.99610130</td>
<td>0.98938327</td>
</tr>
<tr>
<td>Noise gain in dB using (22)</td>
<td>15.0978</td>
<td>10.7450</td>
<td>8.7220</td>
<td>24.1235</td>
<td>19.9887</td>
<td>19.0695</td>
</tr>
<tr>
<td>Improvement in dB</td>
<td>0.05483</td>
<td>0.7759</td>
<td>1.6890</td>
<td>0.01263</td>
<td>0.3854</td>
<td>1.6005</td>
</tr>
</tbody>
</table>

Table 2. Noise gain comparison for two example sixth-order lowpass filters.

From (17), the optimal Δ_1 and Δ_2 (denoted by asterisks) are

$$\Delta_1^* = k_1 \| \tilde{F}_1 \| \| \tilde{F}_0 \|, \quad \Delta_2^* = k_2 \| \tilde{F}_2 \| \| \tilde{F}_0 \|. \quad (23)$$

From (17), the optimal Δ_1 and Δ_2 (denoted by asterisks) are

$$\Delta_1^* = k_1 \| \tilde{F}_1 \| \| F_0 \|, \quad \Delta_2^* = k_2 \| \tilde{F}_2 \| \| F_0 \| . \quad (24)$$

With (24), optimal filter coefficient expressions and the noise variance in the proposed δDFIIt section [Fig. 1(c)] can be obtained (see Table 1). For efficient hardware implementation, the optimized Δs can be rounded to the nearest powers of two such that scaling can be accomplished by simple bit shifting.

5. NUMERICAL EXAMPLES

Several second-order sections are taken from [4] to test against the proposed approach. Sections A_i and sections B_i $(i=1,2,3)$ are cascade sections for two sixth-order narrow-band lowpass filters. Each section is pre-scaled using its L_2-norm with scaling embedded into the numerator coefficients. To eliminate the effect of word precision on the output noise variance, the word-length-independent noise gain σ_i^2/σ_0^2 is evaluated for each section.

Two approaches, namely the Δ in (22) and the proposed Δ_i in (24), are tested. From Table 2, it is clear that there is always reduction in roundoff noise gain in the proposed structure. When each three sections are cascaded, in whichever order, the total reduction in noise gain will further be improved. In fact, as noted in Section 3, even bigger improvement can be observed when the pole angles in a second-order section come closer to zero (e.g., in the case of very narrow-band filters). From the viewpoint of circuit implementation, a fixed Δ may save complexity in DSP coding. However, for ASIC design, the advantage of separate Δ optimization over a fixed Δ is certainly worthwhile.

6. CONCLUSION

In this paper the concept of optimizing different Δs in a second-order δDFIIt section has been introduced. This approach leads to further minimization of output roundoff noise gain as compared to using a single optimal Δ only. The theoretical minimum noise gain and expressions for the optimal filter coefficients have been derived analytically. Qualitative graphical noise analysis has been presented. Using numerical examples, roundoff noise performance of this modified structure has been demonstrated to be better than the best results obtained so far.

7. REFERENCES