A Novel Push-and-Pull Hybrid Data Broadcast Scheme for Wireless
Information Networks

Jian-Hao Hu, Kwan L. Yeung, Gang Feng and K.F. Leung
Department of Electronic Engineering
City University of Hong Kong
Hong Kong, PRC
Tel: (852) 2788-7730 Fax: (852) 2788-7791
E-mail: {jhhu, kyeung, gfeng} @ee.cityu.edu.hk

Abstract: A new push-and-pull hybrid data broadcast scheme is
proposed for providing wireless information services to three types
of clients, general, pull and priority clients. Only pull and priority
clients have the back channel for sending requests to the broadcast
server. There is no scalability problem with the hybrid scheme
because the amount of pull and priority clients is very small. Based
on the requests collected from pull and priority clients, the server
estimates the interest pattern changes of the whole client population.
Then the broadcast schedule on the push channel for the next
broadcast cycle is adjusted. Besides push channel, a small amount
of broadcast bandwidth is allocated to a pull channel. The data to
be broadcast on the pull channel is decided by the server in real-
time and priority is given to requests from priority clients.
Simulations show that with a time-varying client interest pattern, the
average data access time for all three types of clients can be
minimized. Because of the priority in using the pull channel, priority
clients can achieve the lowest access time and pull clients can
achieve a lower access time than general clients. To further improve
the performance, the hybrid scheme with local client cache is also
investigated.

1. Introduction

The advances in Internet and wireless networks have fueled the
development of a wide range of data dissemination based
applications. These applications involve information feeds (e.g.,
stock, weather forecast), traffic information, electronic personalized
newspaper, software distribution and entertainment delivery. Using
the traditional client-server unicast approach is not effective for data
dissemination applications because these applications are
tremendous in scale, have a high-degree of overlap in client interests,
and are asymmetrical communications (heavy traffic from the
information server to clients). In wireless networks, data broadcast is
independent of the client population and thus it plays an important
role in dissemination based applications. Owing to the high-degree
of overlap in client interests, data broadcast can achieve high
bandwidth utilization and fast data response time. There are two
basic architectures for a data broadcast system, push-based broadcast
and pull-based broadcast [6,10,11,14].

From the clients’ viewpoint, an efficient data broadcast scheme
should have a fast data access time (or response time) and a low
mobile power consumption (due to small/light-weighted batteries
used in client terminals). The data access time is the time elapsed
from the moment that a client makes a query to the moment that the
requested data item is fetched/received. For time-critical applications
such as on-line stock price service system, the access time should be
guaranteed. To reduce the inconvenience caused, an efficient data
broadcast scheme should also minimize the power consumption of
mobile terminals.

The pull-based algorithm proposed in [1] cannot meet the large-scale
population requirement. The RXW algorithm developed in [3] can
provide excellent average access time performance for a large-scale

system, but it cannot guarantee the access time for individual classes
of clients, and thus it is not suitable for clients with time-critical
applications. Several index tree algorithms are studied in [1,2). They
can give a near optimal performance for push-based systems. But the
excellent performances are obtained based on the assumption that
the system can correctly estimate the interest pattern of all clients. In
order to reduce mobile terminal power consumption, efficient index
and signature schemes are proposed in {7,9,13]. A novel balancing
push and pull for data broadcast is proposed in [8]. The results in [8]
show that a client back channel can provide significant performance
improvement in the broadcast environment, but unconstrained use of
the back channel can result in scalability problems due to server
saturation/overload. This balancing broadcasting system again
cannot support clients with time-critical applications since it
provides no access time guarantee for such services. In order to get
low access time and power consumption, mobile caching scheme is
studied in [4,5). This is because if the requested data can be found at
the local cache, the access time will be minimized. Recently a fault-
tolerant broadcast scheme is proposed in [12] to provide error-free
data transmission in wireless channel. These techniques are useful
for data broadcast system realization, but they cannot solve all the
problems in push-based or pull-based systems addressed above.

In this paper, a new data broadcast scheme is proposed with all the
requirements for an efficient broadcasting system in mind. We call it
push-and-pull hybrid data broadcast, or hybrid scheme in short.
Unlike existing schemes in the literature, three classes of clients with
different access time requirements are supported. They are general
clients, pull clients and priority clients, where the priority clients
have the highest priority and the general clients have the lowest.
Using the hybrid scheme, the system can provide a very short data
access time for priority clients and thus time-critical applications can
be efficiently supported. In the next section, the hybrid scheme is
described in details. In Section 3, we present the broadcast server
model and the client model for simulations in Section 4. To study the
time-varying client interest pattern, a new model that captures both
continuous variation and burst variation in clients’ interest pattern is
proposed. In Section 4, simulation results show that the hybrid
scheme is very effective in reducing the data access time for each
class of clients. Finally, we conclude the paper in Section 5 by
highlighting some further possible research topics in this area.

2. Push-and-Pull Hybrid Data Broadcast Scheme
2.1 Broadcast Cycle Structure

In a data broadcast system, the server periodically broadcasts all data
items in the database to the clients via the wireless channel. A
broadcast cycle is defined as the interval that every data item in the
database has been pushed out (i.e. broadcast) for at least once. The
time required for broadcast one data item is called a data slot. Using
the hybrid data broadcast scheme, each broadcast cycle consists of
interleaved push data slots and pull data slots as shown in Fig. 1.
The push slots are organized into many equal-sized segments. At the
end of each segment, a pull slot is attached. The data items broadcast

1778
0-7803-6283-7/00/$10.00 © 2000 IEEE

Pushed Pushed Pushed Pushed Pushed
ltemt Item2 Item n ftem n+1 ftem N
< Segment 1 %\ Segment

Broadcast Cycle

Index

Fig.1. The frame structure of a broadcast cycle.

on the push slots, or pushed data items, in the current cycle have
been pre-scheduled by the server in the previous broadcast cycle.
The scheduling of pushed data items is based on the collected client
request statistics from the back channel (to be described in more
details later on). The data items broadcast on the pull slots, or pulled
data items, are scheduled in real-time. That is, if the next broadcast
slot is a pull slot, the server selects a data item to broadcast based on
the requests received up to the current slot. It should be noticed that
the bandwidth assigned to pushed data is much larger than that of the
pulled data.

In this paper, we consider a broadcast system that supports three
classes of clients: general, pull and priorty clients. All clients can
listen to server broadcasting on both push and pull slots. General
clients are low power consumption terminals with the least stringent
data access time requirement. They cannot access the back channel
for sending requests to the server. For pull and priority clients, the
server can schedule the requested data item for broadcasting using
pull slots based on the requests received from the back channel. Thus
pull and priority clients can get a better access time performance.
Priority clients are targeted for users with time-critical applications
such as frequently updated stock market price services. They have
the most stringent requirement on data access time. Therefore data
items requested by a priority client will be broadcast over the pull
slots with a higher priority than pull clients. Without loss of
generality, we assume that the number of general clients in the
system is far more than that of the pull clients, and the number of
pull clients is more than that of the priority clients. It should be noted
that there is no scalability problem using the hybrid scheme, as the
system only allows a very small client group to have the capability
for requesting data items.

The segment index shown in Fig. 1 contains the schedule
information of which data item is to be broadcast in the push slots of
the current segment. A mobile only needs to wake up and listens to
the segment index and then sleeps for the rest of the time until the
required data item is broadcast. This helps to minimize the client’s
active time and thus reduce its power consumption. For the
remaining discussion in this paper, we only focus on the data access
time performance while assuming this index is always attached
without explicitly mentioning it again.

2.2 Broadcast Disk Scheduling

Based on the clients’ interest pattern, we assign data items into
different groups (or, disks) with different broadcasting frequencies.
The data items on the popular/hot disk are broadcast with a higher
frequency. Fig. 2 shows an example of 10 data items in a database.

Database

[ofaf2f3]4]5[6]7]8]9]

Hot

Disks

D

[€—Segment—)

Cold

Pulled Data Items
Fig.2. Broadcast schedule of the hybrid scheme.

They are ranked such that data item 0 is most popular (hot) and data
item 9 is least popular (cold). We group them into two disks, where
items 0 and 1 on disk D, and the remaining items on disk D,. Let the
relative disk broadcast frequency ratio be 2:1. The resulting
broadcast cycle consists of 4 segments and 16 broadcast slots. Each
segment has 4 slots, where the first 3 slots are for pre-scheduled
pushed data items and the last slot is for pulled data item. Focusing
only on the push slots in a broadcast cycle, data items on D, are
broacast twice while those on D, are broadcast once. The data items
broadcast in the pull slots in Fig. 3 are selected by the scheduling
algorithm RPW to be described in Section 2.3.

Assume that there are N data items with access probabilities A,
Az,..., Ay respectively. If their broadcast frequencies are f;, fo,..., fu
then the expected data access time for a pure push-based scheme is:

N
T, = _TAE.’}'.
253,
where T is the broadcast cycle length.

In practice, the clients’ interest pattern is time-dependent and is very
difficult to correctly estimate. A good broadcast scheduling should
therefore adapt to the clients’ interest pattern variation. In the
proposed push-and-pull hybrid scheduling scheme, we use the
request statistics received from the pull clients in the current
estimation window (e.g. current broadcast cycle) to estimate the
access probabilities of the data items in the next window. Then the
broadcast schedule on the push channel in the next window is
adjusted by swapping the currently-most-popular data items in the
cold disk with the currently-less-popular items in the hot disk. Of
course, estimation noises/errors exist. As we are going to show in
Section 4, the proposed hybrid scheme is robust to estimation noises.
To smooth out the instantaneous variations in clients’ data access
pattern, a larger window size for collecting requests from pull clients
is preferred. The tradeoff is that the system becomes less responsive
to changes.

2.3 RPV Scheduling for Pull Channel

Next we describe how the requests from both pull and priority
clients are processed by the server. We modify the method used in
[3], which does not consider multiple client classes. We call the new
method RPW algorithm. Using the RPW algorithm, the server
maintains three tables: Request table, Priority table and Waiting-time
table, for all data items in the database. The request table records the
number of requests for each data item. The priority table records the
aggregated priority of the clients requested for each data item. The
waiting-time table records the waiting time of the first (unsatisfied)
request for each data item. If one data item is broadcast (using either
push or pull data slots), the corresponding entries in all three tables
will be cleared/reset. When a pull slot arrives, the server selects the
item with the maximum RPW value to broadcast, where RPW is
given by
RPW = (RxW)",

where R is the number of requests for an item, W is the waiting time
since the first request for this item arrives, P is the sum of the
priorities of all the clients who have requested for this data item. In
this paper, we have assumed P=0 for a pull client and P=1 for a
priority client. Since the primary reason of using P as an exponent in
the above expression is to give priority to priority clients, the exact

1779

mifo v v

3.1 Client Model

The parameters that describe the operation of the three classes of
clients are summarized in Table 1.

Table 1 Client Parameter Description.

wx
. Req.
{cacbe] ..
Pilter rilter

priority Pull
Client

priority Table &

Toterest ||ysing e ime Tabl

Pattern
Estinatio
Iy

§

Fig.3. Data broadcast model.

value of P is not crucial as long as it can distinguish the priority
among different classes of clients.

The basic idea of RPW algorithm is to select the data item which has
the largest number of requests, with the longest request waiting time,
and with the highest agregated priority. Since the broadcast period is
divided into small segments and the priority of pull client is zero.
The request from priority clients is responded within a very short
time interval and thus is good for time-critical applications. When
priority traffic is heavy, the pull channel will be dominated by the
traffic from priority clients. The requests from pull clients can then
be serviced by the push data slots, which are scheduled based on the
estimation of clients’ interest pattern. When the priority traffic is
low, the pull channel can be used by pull clients to improve their
access time performance. Therefore, the access time performance of
pull clients is less than that of the priority clients but is better than
general clients.

2.4 Cache Replacement Algorithm at Mobile Terminal

We consider using cache at each mobile terminal to reduce the
access time and mobile power consumption in this section. Since the
pushed data broadcast is scheduled based on the client interest
pattern, popular data items can be easily identified and stored at the
local cache for achieving a higher cache hit probability. However, if
the server’s broadcast schedule is poorly matched with the client
interest pattern, the use of the cache usually can not lead to obvious
performance improvement.

Several cache replacement algorithms have been proposed in the
literature. In this paper, we adopt the PIX cache replacement
algorithm [14]. Using the PIX algorithm, a client keeps track of its
access probability for each data item (denoted by P) using its access
history. The broadcast frequency of each data (denoted by X),
obtained by listening to the push channel, is also recorded. When a
new data item is received and the cache is full, its P/X ratio is
compared with the P/X ratios of all cached data items. The one that
gives the lowest P/X ratio will be replaced from the client’s cache.
For more details, please refer to [14]. As we are going to show in
Section 4, PIX gives an excellent performance using the proposed
hybrid data broadcast scheme.

3. Modeling Data Broadcast System

The data broadcast simulation model used for studying the hybrid
scheme is shown in Fig. 3. The priority clients and pull clients filter
every request by checking with its cache (if available) before
submitting the request to the server using the back channel. The
server broadcasts a data item either according to the pre-determined
broadcast schedule using push slots, or as a response to the request
of the pull and the priority clients using pull slots. The selected data
items are then merged together by the Push/Pull multiplexer before
sending/writing onto the broadcast disk following the broadcast
cycle structure shown in Fig. 1.

CacheSize | Client cache size (in terms of data items it can store)
Aouiing Request arrival rate of the pull clients
Apriority Request arrival rate of the priority clients
Noise % Error in estimation of interest pattern deviation for
general clients
2] Zipf distribution parameter (used for model clients’
interest pattern)

Now let us consider the aggregated stream of requests generated by
the whole client population (including that from the general clients
although their requests can not reach the server). Let the aggregated
request arrival process follow a Poisson process with mean A
requests per broadcast slot. Let a client request for data item i with
probability b;, where Z'” bi=1 Hence the requests for item i are

generated according to a Poisson process with rate A,=b;A. Let the
data item access probabilities for all clients obey the Zipf probability
distribution, such that

-0 i — 9
b= '(;91))
N
The Zipf distribution (with parameter 6) is frequently used to model
the skewed (i.e., non-uniform) interest patterns.

In the proposed hybrid scheme, we use the statistics of the pull
clients’ requests collected from the back channel to estimate the
interest pattern of all clients in the system. Although the clients have
high-degree of interests overlapped, there are noises/errors in the
estimation. The effect of estimation noises to the scheduling scheme
performance is studied in Section 4. Since we have assumed that the
priority clients have higher priority using the pull slots. The request
arrival rate of priority clients Ay, Will affect the data access time
performance of the pull clients. Simulation details are referred to
Section 4.

3.2 Server Model

The parameters that describe the operation of the server are
summarized in Table 2. We assume all data items are of equal size.
Time on the broadcast channel is divided into slots where each slot
can accommodate one data item. The server broadcasts data items in
the range of 1 to DBSize using the proposed hybrid scheme in
Section 2.

Table 2 Server Parameter Description

DBSize Number of data items in database.
NumDisk | Number of disks.
DiskSize; Size of disk i (i.e. the number of data items it can store).
RelFreq; | Relative broadcast frequency of disk i.
PullRatio | Ratio between the pushed data slots to pulled data slots.
SegLgh The length of a broadcast segment.

Variation_Spd | The slow variation speed of the clients’ interest pattern.

Burst_Variati | The burst variation (in data items) of the clients’ interest
on pattern.

Resch_Wnd | The window width for re-scheduling a broadcast cycle.

Shifi(t)

The amount of shift (in data items) in clients’ interest

pattern at time #.

According to the estimation of clients’ interest pattern, we assign the
hottest data items to disk #1, the next hottest items to disk #2, and so
on so forth (as shown in Fig. 3). The clients’ interest pattern is time-
dependent and is impossible to have an exact model for it. In this
paper, we argue that for a practical system, the variation of the

1780

clients’ interest pattern consists of two components: slow speed shift
in interest pattern and occasional burst variation.

We use Burst_Variation, Variation_Spd and Shift to model the
variation of the clients’ interest pattern. The relationships among
these parameters are summarized by the following equation:

Shift (1) = mod ([_L'Variation _ Spd (x)dx] + 6))
Burst _ Variation (1), N)+ Noise * DBSize

where [x]=k, for k-1<x<k It is the accumulated slow shift in
clients’ interest pattern from time 0 (i.e. system starts) to time t.
Noise represents the percentage error in estimating the shift in
clients’ interest pattern. Consider a database with 1000 data items, a
noise level of 20% means that the server inaccurately estimates the
access probability of data item 1 to be that of item 201, item 2 to be
item 202, and so on so forth.

If Shift(1) = A at a given time ¢, the access probability for data item i
will be:

b,.' =b,
k=i+Afori=1,2,.,N-4
k=i+A—N for i=N-4A+,..,N
where b, is the access probability for data item k at the moment

when the system starts to broadcast. It should be noted that this
model only captures the shift in the clients’ interest pattern.

The server records the request information of the pull clients during
the Resch_Wnd, and re-arrange the data items in the disks. Then the
server will clear the old estimation information and start to get new
information in the next Resch_Wnd. In order to have a responsive
system that is free of system oscillation, we set Resch_Wnd to one
broadcast cycle, the smallest possible duration. After each broadcast
cycle, only a small portion of the data items in the hot disk will be
swapped with the items in the cold disk. In Section 4, we limit up to
2 data items can be swapped in and out in each broadcast cycle.

4. Performance Evaluations

In this section, we use simulations to study the performance of the
hybrid scheme in data broadcast with time-varying client interest
patterns. The primary performance metric is the data access time in
broadcast slots. The server database size is 1000 items and a two-
disk broadcast is used. The size of the fast disk is 200 items, and the
slow disk is 800 items. The relative broadcast frequencies of the two
disks are 2:1. Two PullRatios, 10:1 and 10:2, are used. For PullRatio
= 10:1, each segment has 10 push data slots and one pull data slot.
Then the total broadcast cycle consists of 1760 slots. Similarly, for
PullRatio = 10:2, each segment has 10 push slots and 2 pull slots.
The total broadcast cycle length becomes 1820 slots. The
Resch_Wnd is set to one broadcast cycle, i.e. 1760 slots for 10:1 and
1820 slots for 10:2. The estimation noise/error is set to three
different levels, 0%, 10% and 20%. The performance of both pure
push-based scheme, i.e. all clients can only listen, and pure pull-
based scheme, i.e. all clients can send requests via the back channel,
are studied for comparison.

First we consider the case that the clients’ interest pattern has a slow
continuous shift over the time, i.e. we set the Burst_Variation to 0.
The interest pattern variation speed, Variation_Spd, is set to 0.0003
items/slot. The request arrival rates from pull clients and priority
clients are fixed at 10 items/slot and 0.01 items/slot. Fig. 4 shows the
data access time of the three classes of clients against time, or the
number of broadcast cycles. From Fig. 4, we can see that the data
access time using the hybrid scheme remains steady for all three
classes of clients, while that of using pure push-based scheme
increases. We can also see that as the PullRatio changes from 10:1 to

700 Push Based
—a—10:1 0%
—o—— 102 10

600

500 ——a— 101 207
aodfhAAAaAASdAddAg D 020
‘: 0 090 6. 0.0 0 ¢ 06606 ¢ 8 o - 10210%
fambBaBE s e s M
- v evrrr - B

——»———10:1 pult
T ———102pull

- Pull Based
——e—— 10:1 priority
H—l————lO:Zpriovity

04 . .

100 4

0 W——- W} »
2

0

Fig. 4 Data access time performance with slowly varying client
interest pattern.

Push Bosed
—a—10:1 0%
—o——10:1 10X
—a—10:120%

- -@ - 10208

. -o - 10:210%

= - - & - 102208

g ———10:1 pult

< e 10:2 pult
- Pull Bosed

~———— 10:1 priority
——%— 10:2 priority
——@&——No voriation

Fig. 5 Data access time porfermance with burst variation in client
interest pattern.

10:2, the access time performance of the general clients slightly
increases. The data access times of the priority clients are 5.3 and 4.6
slots for PullRatios=10:1 and 10:2. This represents a significant
performance improvement over pull clients, general clients, as well
as clients using either pure pull-based or pure push-based schemes.
Therefore, the short access time allows the priority clients to use
time-critical applications.

Fig. 5 shows the access time performance of the three types of
clients with burst variation in clients’ interest pattern. In this case,
we set Variation_Spd to 0, and Burst_Variation equal to 100 data
items. We let burst variation occur at the end of the first broadcast
cycle. From Fig. 5 we can see that the access time of using pure
push-based scheme increases from 318.4 to 728.9 at the second
broadcast cycle and remains at that level. The access time of the
general and pull clients using the hybrid scheme increases slightly
and then gradually reduces to the level before the burst variation
occurs. This is due to the broadcast schedule is re-calculated based
on the interest pattern estimation. Since priority clients dominate the
use of the pull channel, their access time is not significantly affected
by the burst variation as shown in Fig. 5.

Next we focus on the data access time performance for both pull
clients and priority clients under different relative traffic loads. For
general clients, its data access time is in general not (or,
insignificantly) affected by the relative amount of traffic from pull
and priority clients. In this simulation, we set Apiority =Apuiiing/10.
From Fig. 6, we can see that the access time of the priority clients
increases as the Aoy increases. When Aprioniy is large, the priority
clients have to wait for pull channel. Therefore, the access time of
priority clients is worse than that of using pure pull-based scheme.
The access time of pull clients increases slightly, from 260.3 to
272.4 slots for PullRatio increases from 10:2 to 10:1. From Fig. 6,
we can conclude that the population of the priority clients should be
limited in order to get a good system performance for priority
clients, or the system should assign more bandwidth to the pull

1781

channel when the priority clients’ request is heavy. Generally
speaking, if Aporiy i5 less than one item per segment, the
performance of the priority clients will be guaranteed.

Now we study the effect of using client cache for pull clients only.
We set the pull client cache sizes to CacheSize = 50 and 100
respectively. The request arrival rate of the pull clients ranges from 1
to 120 items/slot, and A,y equals to 0.01 items/slot. Fig. 7 shows
the cache hit probability against the pull clients’ request arrival rate.
Again the performance of using the pure pull-based scheme is
plotted for comparison. The cache replacement algorithm used by
pure pull-based scheme is the Least Recently Used (LRU) algorithm.
Using LRU, the cached data item that has not been used for the
longest time will have the highest priority to be replaced. For the
proposed hybrid data scheduling scheme, the PIX algorithm is used.
From Fig. 7, we can see that with the PIX algorithm, the cache hit
probability of the hybrid scheme is higher than that of the pure pull-
based scheme. Due to the high cache hit rate, the hybrid scheme can
therefore achieve a better access time performance.

5 Conclusions

A novel push-and-pull hybrid scheme for data broadcast in wireless
information networks was proposed in this paper. Unlike
conventional approaches, three classes of clients are supported,
general, pull and priority clients. The pull clients and the priority
clients can send requests to the server via a back channel and get
service from the pull channel, where the pull channel only occupies a
very small part of the whole broadcast bandwidth. The server
estimates the clients’ interest pattern variation using the request
statistics collected from the back channel. Then it adjusts the push
channel broadcast schedule for the next broadcast cycle. The
simulation results showed that the hybrid scheme is robust to the
interest pattern variation as well as the estimation errors. Since the
priority clients have priority in Tusing the pull channel in the
broadcast bandwidth, the average data access time for the priority
clients is the shortest. On the other hand, since pull clients can send
requests via the back channel, their average access time is shorter
than that of the general clients. Since the majority of the client
population is general clients, the hybrid scheme does not face the
scalability problem.

We have also studied the effect of using local cache at each client
terminal. An efficient cache replacement algorithm called PIX
algorithm was evaluated together with the hybrid scheme. Because
of the robust nature of the hybrid scheme, we showed that the PIX
algorithm has an excellent performance with a cache hit probability
about 0.6 to 0.7 in our simulations.

In this paper, we have limited our scope to broadcasting public
information that is interested by many clients. Another interesting
area for further research is to allow some pull clients to access
personalized information (e.g. emails) using the broadcast pull
channel at the expense of higher tariff. How to efficiently arrange the
public information and the personalized information on the shared
broadcast bandwidth is a problem for future research.

References:

[1]1 Chi-Jiun Su and Leandors Tassiulas, Broadcast Scheduling for
Information Distribution, in Proceedings of Infocom’97.

[2] Veena Gondhalekar, Ravi Jain and John Werth, Scheduling on
airdisks: Efficient access to personalized information services
via periodic wireless data broadcast, in Proceedings of ICC’97.

[3] Demdt Aksoy and Micheal Franklin, Scheduling for Large-
Scale On-Demand Data Broadcasting, in Proceedings of
Infocom’98.

g

g

N
(=3
o

——«&— Pull Based

Access Time
3

g

—&— Priority Client 10:1
——o—— Priority Client 10:2

———+— Pull Client 10:1

] e T

1 4

7 10 40 70 100
Pull clients’ request arrival rate
Fig. 6 Data access time performance of pull clients and priority
clients against the pull client’s request arrival rate .

Cache Hit Probability

Based 50
—— Pull Based 100

—o— Pull Client 100
—+— Pull Client 50

0+ T

1 3 5 7 9 20 40 60 80 100 120
Pull clients' request arrival rate

Fig. 7 Cache hit probability vs pull client’s request arrival rate.

[4] Wang-Chien Lee and Dik Lun Lee, Signature Caching
Techniques for Information Filtering in Mobile Environments,
Wireless Networks, May, 1999.

[5] Jin Jing et. al. Bit-Sequences: An Adeptive Cache Invalidation
Method in Mobile Client/Server Environments, Mobile
Networks and Application, February, 1997.

[6] T. Imielinski, S. Viswanathan and B.R. Badrinath, Data on Air:
Organization and Access. IEEE Transactions on Knowledge
and Data Engineering, Vol. 9, No. 3, 1997.

[71 Chi-Jiun Su and Leandors Tassiulas, Broadcast Scheduling for
Information Distribution, Wirless Networks, May, 1999.

[8] Swarup Acharya, Micheal Franklin and Stanley Zdonik,
Balancing Push and Pull for Data Broadcast, in Proceedings of
ACM SIGDOM, May, 1997.

[9] Kian-Lee Tan and Jffrey X. Yu, Energy Efficient Filtering of
Nonuniform Broadcast,

[10] Michael Franklin and Stan Zdonik, “Data In Your Face”: Push
Technology in Perspective, in Proceedings of ACM SIGDOM,
June, 1998.

[11] Michael Franklin and Stanley Zdonik, A Framework for
Scalable Dissemination-Based Systems, in Proceedings of
ACM OOPSCA October, 1997.

[12] Azer Bestavros, AIDA-Based Rael-Time Fault-Tolerant
Broadcast Disks, in Proceedings of Real-Time Technology and
Applications, 1996.

[13] Yon Dohn Chung and Myoung Ho Kim, Energy Indexing for
Wireless Broadcast Data, technique report of Department of
Computer Science of KAIST.

[14] http://www.cs.umd.edu/projects/bdisk/papers.html

1782

