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Abstract

This paper presents the concept of automated virtual loop
assignment and loop-based motion estimation in vehicle-
type identification. A major departure of our method from
previous approaches is that the loops are automatically
assigned to each lane; the size of virtual loops is much
smaller. for estimation accuracy; and the number of virtual
loops per lane is large. Comparing this with traditional ILD,
there are a number of advantages. First, the size and number
of virtual loops may be varied to fine-tune detection
accuracy and fully utilize computing resources. Second,
there is no failure rate associated with the virtual loops and
installation and maintenance cost can be kept to a minimum.
Third, virtual loops may be re-allocated anywhere on the
frame, giving flexibility in detecting different parameters.

1. Introduction

One very important aspect of traffic management is the
timely acquisition of travel parameters on the road network.
Information such as vehicle speed and count using a
particular road at a particular time provides a glimpse of its
flow rate, queue length and even the degree of congestion.

Traditionally, such information is acquired through
inductive loop detectors (ILD) [1]. Although the ILD
concept is simple and parameters such as speed, count and
type classification can be extracted, it needs to be physically
installed under the surface of the road. Once it is installed, it
would be difficult to alter its detection configuration, let
along re-deploying it to a new location. Despite the high
installation cost, its application is further hindered by its
high failure rate (25-35%) and maintenance cost. Due to
these reasons, other type of sensors such as ultrasonic, radar,
laser, infrared detectors and video cameras have also been
developed and evaluated in the hope of finding a new and
better solution [2]. However, most of these sensors operate
in a similar manner as the ILD and acquire similar
parameters, except for the video cameras.

Video or CCTV cameras have been extensively deployed
for visual surveillance in many countries. These cameras are
usually mounted by the roadside or overhead at strategic

locations on freeways or junctions, with video links to a

control center. The video outputs may be inspected by

traffic officials, from which decisions are made. The
attraction of this video surveillance approach is that it offers
a far richer information content than those obtained from
ILD and similar sensors. However, processing video
information creates a new set of problems too. If these
problems are resolved, then visual surveillance methods
present an attractive alternative to ILD.

Since the late 80’s, a number of papers have been
published on detecting and/or tracking moving vehicles
using image and video processing techniques [3-5].
Dubuisson & Jain [6] classified them into four categories
according to how the camera is mounted or whether motion
information is used. In general, they can be grouped into
two broad classes: model-based approach and those that are
not. Model-based here refers to those approaches that use a
parameterized or polygonal model to describe and represent
a vehicle. By-and-large, model-based approach is the most
popular and has been adopted widely by many researchers
[6-16].

For most deformable models, the vehicle shape and
interior attributes are fitted with pre-defined parameterized
models consisting of 20-30 vertices. It can distinguish the
vehicle types in a limited sense and indicate the vehicle
directions if there is no occlusion. However, computation
complexity increases with the number of vertices used to
define the model, and better accuracy requires more vertices.
For polygonal models, the vehicle outline is fitted with a
polygon. It does not suffer from occlusion but it does not
distinguish the vehicle types, dimensions and orientations
either. For both methods, vehicle motion can be estimated
using techniques proposed by [14, 17]. For non-model-based
approaches, there are quite a few cases reported too [15, 17-
19}. The simplest approaches are probably those that
manually define a bounding area per lane on the video
sequence where vehicles can be detected and their motion
estimated [20-23]. AUTOSCOPE is one system that
employs this approach and claims that it can replace ILD
directly [20].

From the above, we can observe that the automated
tracking and modeling methods are usually generic and
flexible but complex and computation demanding. Whereas
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the non-model-based approaches are simpler but require a
high degree of human interaction in their operations
especially when zoom, pan and tilt (ZPT) actions are
involved.

To tackle these issues, we propose in this paper the
concept of automated virtual loop assignment and loop-
based motion estimation. A major departure of our method
from previous approaches is that first, the loops are
automatically assigned to each lane. This allows ZPT
actions without needing further region definition manually.
Second, the size of virtual loops is much smaller for
estimation accuracy. This enables us to use standard block-
based motion estimation techniques developed for video
coding. Third, the number of virtual loops per lane is large.
This offers a more reliable and robust approach in motion
estimation. Comparing this with traditional ILD, there are a
number of advantages. First, the size and number of virtual
loops may be varied to fine-tune detection accuracy and
fully utilize computing resources. Second, there is no failure
rate associated with the virtual loops and installation and
maintenance cost can be kept to a minimum. Third, virtual
loops may be re-allocated anywhere on the frame, giving
flexibility in detecting different parameters.

This paper is organized in the following: Section 2
presents the virtual loops concept, assignment criteria and
their limitations. Section 3 discusses the assigned virtual
loops can be used for type identification based on unique
‘signatures’. This paper is concluded in Section 4.

2. Virtual loops

The philosophy of virtual loop (VL) is to emulate the
functionality of ILD on the image sequence. In essence, ILD
are inductive loops buried under the surface of the road
junction. In theory, when a metallic object passes over the
loop and interferes with the loop’s magnetic field, the
change in loop current indicates the presence of a vehicle.
As different types of vehicles produce different ‘signatures’
in theory, therefore ILD may be used for vehicle-type
identification.

igure 1. Typical view
mounting.

To emulate the functionality of ILD, VL may be defined
as regions within an image frame over the entire image
sequence such that processing may be confined to the VL
instead of the whole image. The question is how this can be
done automatically and what should be the size and number
of VL per lane.

To begin with, let us assume the video camera is
mounted by the roadside on a 3-meter post, with optical axis
along the road direction and its field of view (FOV) covers
all the lanes in one travelling direction. The camera settings
are assumed to be fixed while the VL are automatically
assigned, without ZPT actions. This assignment is expected
to be repeated if there are ZPT actions. It is also assumed
that the camera operates under normal day light and road
conditions. The road direction and the number of road lanes
are assumed known a priori. A typical view near a junction
with such camera setting is depicted in Figure 1.

Let us define the / VL in frame f to be an NXN block
given by 5 (s f) for i=1,...,M, where M is the number

of VL in the frame and (n,, ny) is the spatial coordinates of

the VL center. The initial assignment of the VL starts from
the line dividing the lanes or from the stop line [24]. If none
of these information are available, the assignment will start
at (X/2, Y/4), where X and Y are the width and height of the
frame respectively, and the origin is assumed at the lower
left-hand corner. In fact, the initial number of virtual loops
and their locations can be arbitrary to some extend as most
of these VL will be removed subsequently. A typical initial
assignment is depicted in Figure 2.

For a two-lane road, an initial M is found to be between
100 and 200. As the lane number is known a priori, we can
set M accordingly for roads with more lanes. This concept is
significantly different from those of [20-23] where they only
use one assigned region per lane for detection, apart from
the fact that they are drawn manually. By using large M, we
are able to reduce N such that block-based or loop-based
motion estimation per virtual loop can be performed. In
addition, M is inversely proportional to N, where N is upper
bounded by 16. Although there is no formal criterion for the
selection of A, it is observed that based on the assumed
camera setting, N between 13 to 15 gives reasonable
detection results. This can be explained as while the vehicle
moves away from the camera, large N tends to exaggerate
the panning out effect of the vehicle, giving a poor match in
motion estimation. On the other hand, if N is small, the
number of VL has to increase to ensure a correct detection.
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This increases the overall computing delay in motion
estimation as well as the latency of the overall detection.

After the initial assignment, M is reduced by the
following method. Over a short image sequence of N,
frames (10-20 frames) with vehicles passing under the FOV,
the MAD (Mean Absolute Difference) of the i/ VL between
consecutive frames, fand f+1 is determined by the following
equation:

MAD(d,,d,)
1 _ d )
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N V(n,.n,)
and dy,d,:|d,,d,|<r, |£(d,d,) = 0,00 <B, where r is

the search range and P is a constrained search angle in the
calculation. The values of » and B are dependent on the
camera view, frame rate and the maximum allowable
vehicle speed on that section of the road. For a maximum
vehicle speed of 50kph, r is set to 50 pixels and for the
assumed camera setting, B is set to 45° Essentially, the
relationship between vehicle speed and r is governed by the
frame rate. In this case, r was chosen to be proportional to
vehicle speed/frame rate. For 10 frames/sec and 50kph, this
works out to be 1.38m/frame. From the camera setting, this
is equivalent to just less than 50 pixels. Therefore, r is
chosen to be 50. This equation is a modification of the
standard MAD calculation. The first reason for doing this is
that the direction of the vehicle should be roughly along the
road direction in the normal instance. Secondly, with high
object speed in traffic video compared with typical coding
scenery, the search range is extended to accommodate the
possible large motion. From Eqt. (1), the motion vector
(MV) corresponding to the i* VL is calculated using the so-
called loop-based direction biased three-step search [25]:
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From Eqt. (2) and (3), those VL with MV that satisfy all
the following conditions are retained in the final assignment:

(1) Large mean magnitude and small standard deviation;

(2) Its mean orientation is in the direction of the road;

(3) Its orientation standard deviation is small.

Condition (1) retains those VL that has consistent large
motion, i.e., significant motion due to vehicle. Condition (2)
retains those VL that lie along the direction of the road
direction. The VL that have motion due to other objects are
eliminated. Condition (3) further eliminates those VL with
large orientation deviations. Such deviation in orientation
often represents motion due to other sources, for example,
shadows.

From the final set of VL, they are further divided into
groups according to the number of lanes the FOV covers.
This is achieved by considering their MV magnitudes in
each frame. In the two-lane case presented in Figure 1,
vehicles motion on the outer lane (right) only cause the VL
in the outer lane to record large MV magnitudes, but not the
inner lane (left). On the other hand, vehicles motion in the
inner lane may cause large MV magnitudes in both lanes.
Over N,, based on the above conditions, the VL can be
divided accordingly. Figure 3 depicts these VL that have
been divided into two groups for two lanes. In this case,
there are 8 final VL in the left lane, and 10 in the right lane.
It should be noted that if the camera is overhead mounted,
the motion detected in each lane will be separated and
therefore the division of VL in to groups will be more
distinct.

VL on
RIGHT lane

Motion vectors

Figure 3. Final VL assignment.

To estimate vehicle motions on the road, we first
compute the MV, v(f, f+1) (Eqt. (2)) over the final set of
VL. The resulting MV are also depicted as straight line
segments in Figure 3.

3. Vehicle-type identification

In the case of ILD, vehicle-type identification is based on
the signature of individual vehicle recognized by the ILD.
The 1D signature may be current magnitudes or counts
versus time depending on the type of ILD used. For
example, a private car would have a 1D signature that
consists of a high and sharp peak, while a truck would have
a flat peak of much lower magnitude but perhaps twice as
wide over time (Figure 4).
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Figure 4. Vehicle signatures from ILD.

To perform the same functionality using the virtual loops,
we propose to analyze the function of the averaged MV
magnitude over time for each lane. In theory, when a vehicle
moves across the VL, MV are estimated in the loops, and
their magnitudes will only diminish when the vehicle has
passed. Therefore, by taking an average of the VL in each
lane, we are able to detect the presence of vehicle as in the
case of ILD, as well as extracting its ‘signature’ by
compiling and analyzing this information over time. :

In order to verify this approach, we have chosen a traffic
video taken from an existing camera post at the Wang Chiu
Road, Kowloon Bay, Hong Kong. The post was roughly 3m
high by the side of the road. During the experiment, the
camera sefting was fixed and the time of recording was
chosen to be a sunny afternoon, where a large shadow from
a nearby tree is evident on the road. Such sequence is
chosen to represent a realistic and practical scenario.

The traffic video was subsequently digitized and
processed by our proposed algorithm on a Pentium PC,
where virtual loops were automatically assigned, reduced
and divided into groups per lane. From the VL, loop-based,
direction biased three step search was performed on each
VL and their average per lane was calculated over time.
From these results, Figure 5 depicts the MV signatures of
three vehicles: car, van and truck.

Mid-section of van Vehicle end

vehicle
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g 20
— 10 -

0
123456 7 8 91011121314
frame no.
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big truck

1 3 6 7 9 11 131517 19 21

frame no.

(b) ‘Truck’

fire engine

MV

13 6 7 9 11131517 19 21 23 25

frame no.

(c) ‘Fire engine’
Figure 5. MV signatures of vehicles.

From Figure 5, it can be observed that all three MV
signatures have common and unique characteristics. The
common characteristic is the twin peak in all cases, which
the left peak denotes the mid-section of the vehicle and the
right peak denotes the vehicle end. For the van, its signature
is 13 frames, while the big truck has 21 frames, and the even
bigger fire engine has 25 frames. In this case, the difference
between the truck and fire engine may be arguable, but the
van can be clearly identified.

4. Conclusions

From the above results, we can conclude that the virtual
loop concept is an effective mean for vehicle-type
identification. The method proposed here offers an
automated approach to virtual loop assignment and
reduction. Based on motion estimation, the final set of
virtual loops works effectively and is road independent. The
selection of larger number of loops and smaller loop size
compared with existing manual methods also enable us to
use a loop-based direction biased three step search to
construct a motion vector signature of the vehicle. The
unique description of the vehicle type allows us to identify
vehicle types reasonably easily. This is verified by our
experiment of analyzing a real and practical traffic video.
Future direction in this research will be focused on the
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further sub-division of vehicle types and a more extensive
analysis of the signatures.
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