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Generalized parallelization methodology for video coding
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ABSTRACT

This paper describes a generalized parallelization methodology for mapping video coding algorithms onto a multiprocessing
architecture, through systematic task decomposition, scheduling and performance analysis. It exploits data parallelism
inherent in the coding process and performs task scheduling base on task data size and access locality with the aim to hide
as much communication overhead as possible. Utilizing Petri-nets and task graphs for representation and analysis, the
method enables parallel video frame capturing, buffering and encoding without extra communication overhead. The
theoretical speedup analysis indicates that this method offers excellent communication hiding, resulting in system efficiency
well above 90%. A H.261 video encoder has been implemented on a TMS320C80 system using this method, and its
performance was measured. The theoretical and measured performances are similar in that the measured speedup of the
H.261 is 3.67 and 3.76 on four PP for QCIF and 352x240 video, respectively. They correspond to frame rates of 30.7 frame
per second (fps) and 9.25 fps, and system efficiency of 91.8% and 94% respectively. As it is, this method is particularly
efficient for platforms with small number of parallel processors.
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1. INTRODUCTION

The proliferation of video applications demands a better telecommunication infrastructure as well as more advanced
technology for video storage, coding and manipulations. The emerging technology being applied to services and consumer
products such as VCD, DVD, VoD, digital TV and video phone, are offering multimedia communication, information
access and entertainment. A key factor for the success of these applications lies in the way video is coded. In the past
decade, various video coding standards were introduced in order to focus effort in the development of technology and
algorithms. The International Telecommunication Union (ITU) issued the H.261 recommendation in 1990, which is
designed to standardize the video codec for audiovisual services at px64 kbits'. Three years later, the MPEG-1 coding
standard for moving pictures to be stored in digital storage media was announced by the International Organization for
Standardization (ISO) 2. In 1995, built upon the earlier H.261, the H.263 standard was recommended by ITU to deal with
video coding for low bitrate communication®. In the same year, the ISO introduced the MPEG-2 standard for generic coding
of moving pictures and audio for applications including digital storage, television broadcasting and communication®. In
1997, ISO also announced the MPEG-4 standard for integrating the production, distribution and content access paradigms of
digital TV, interactive graphic applications and World Wide Web’, and the MPEG-7 for standardizing descriptions of
various types of multimedia information to allow fast and efficient searching of such information®.

Apart from these coding standards, there are other coding methods’ developed for good coding efficiency and better video
quality. No matter how the coding is done, there is an ever increasing demand of computation resources for real-time
performance, which is generally accepted that single processor performance is unable to meet such tremendous computation
requirement. As a result, the trend is to use parallel systems with multiple CPU, fast cache memory and high performance
inter-processor communication networks or buses. In reality, supercomputers are frequently used for experimentation and
verification of parallel coding algorithms, in which dedicated switching networks and proprietary hardware are used. On the
other hand, advances in low cost multiple digital signal processor (DSP) desktop systems open up opportunities for real-
time video coding with small number of processors. However, the exploitation of processing power of these systems
determines, to a large extent, the resulting performance. Therefore, reliable and consistent performance stems from a good
parallelization methodology with systematic approach.

Existing examples of implementations of the H.261, H.263, MPEG-1 and MPEG-2 on various platforms can be broadly
classified into three categories: supercomputer'®'*, network of workstations (NOW)'*"” and dedicated system incorporating
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DSP'®2!. In terms of parallelization technique, some used data parallel approach with spatial'*' , temporal'>'” or both'*".
Only a few implementations used functional parallelism on dedicated hardware®. From these examples, it is found that on
supercomputer, real-time performance is often achieved using a large number of processors and the system efficiency
(speedup/nodes) ranges from 32%'° to 40%''. On NOW platforms, implementations are found with higher efficiency (62%)
with smaller number of processors (12-16), but the actual frame rate is usually low (3-4.5 fps)"’. On dedicated DSP systems,
ignoring the simulation cases, an efficiency of 81% was reported in an implementation of the H.263, at the frame rate of
426 fps'®. As not many can have exclusive access to supercomputer for the purpose of video coding, the focus should be
placed on platforms such as NOW or parallel DSP. Between the two platforms, parallel DSP seems to offer higher
efficiency and reasonable frame rate. As the four coding standards share a common algorithmic framework, it would then be
logical to develop a methodology that exploits the parallelism and the common framework of coding, aiming at
implementing it on a small number of parallel DSP.

In this paper, we present a parallelization methodology based on systematic task decomposition, scheduling and
performance analysis. The method exploits data parallelism inherent in the coding process and performs task scheduling
according to task data size and access locality with the aim to hide as much communication overhead as possible. Using
Petri-nets and task graphs for representation and analysis, the method enables parallel video capturing, buffering and
processing with extremely low communication overhead. The theoretical speedup analysis indicates that this method offers
excellent communication hiding, resulting in system efficiency well above 90%. The practical implementation of a H.261
video encoder on a TMS320C80 system shows that the method has measured performance figures very similar to the
theoretical prediction. The only difference observed between the theoretical and measured data is the program control
overhead that has not been accounted for in the theoretical model. Even with this, the measured speedup of the H.261 is
3.67 and 3.76 on four PP for QCIF and 352x240 video, respectively, which correspond to frame rates of 30.7 frame per
second (fps) and 9.25 fps, and system efficiency of 91.8% and 94% respectively?.

This paper is organized as follows. Section 2 describes the parallelization method and the estimation of computation and
communication delays. Section 3 demonstrates how the method is applied to implementing the H.261 encoder on the
TMS320C80. Section 4 presents the measurement conditions as well as the detailed results and discussions. This paper is
concluded in Section 5.

2. PARALLELIZATION METHODOLOGY

2.1 Speedup and efficiency

The ideal case of parallelization is the embarrassingly parallel algorithm in which a problem can be decomposed into any
number of tasks with no data dependency between them. When these tasks are mapped onto Np number of processors in
equal partition of workload, all the processors start and complete their work simultaneously without any idling and data
communication overhead. The resulting speedup is N, since the execution time is reduced by Np times. If we define system
efficiency as the ratio between speedup and Np, such parallelization is said to have 100% system efficiency. In reality, there
always exists certain sequential component of the problem that cannot be decomposed into parallel tasks. Moreover, some
of the parallel tasks may have data dependency among them that introduces inter-processor communication and
synchronization. Furthermore, task decomposition and scheduling create programming overhead that can be substantial too.
Adding these up, the true performance of a parallel implementation depends on how well the parallel component can be
exploited

2.2 Parallelisation issues in video coding algorithms

Existing video coding standards rely on the reduction of temporal and spatial data redundancy existing among digital video
data. Temporal data redundancy corresponds to data correlation between pixels across different frames and it is reduced by
motion compensation between frames. In a MB, the residue pixels, after subtracting by the predicted pixels from the
reference frames, are usually smaller in magnitude than the original pixels. Data compression is achieved by coding the
residue data and the motion vectors. Some standards allow more than one motion vector per MB by distinguishing motion
vectors between forward and backward directions and between odd and even picture field references.

To form the predicted MB, motion estimation is usually performed. Assume that the current and reference frame data are

supplied from a global data server (DS) such as a video capturing processor, motion estimation is a process of searching for
the closest MB from the reference frames within the search area. The search area is a bounded and enlarged area in a spatial
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position offset from the position of the currently coded MB. Different standards have different search area sizes. As long as
the data of the MB and the search area data are available, motion estimation can be performed on the MB. Theoretically,
there is no specific ordering of the MB’s in a picture regarding motion estimation, it can be parallelized over all the MB’s in
the picture if so desired.

After motion compensation, a frame of residue pixels is obtained. It is divided into a number of 8x8pixel blocks as the basic
unit for transform coding, quantization, zigzag traversal and variable length coding. As long as the block of pixels or motion
compensation residue is available, these coding steps can be carried out. Similar to motion estimation, there is no specific
ordering of the blocks in a frame regarding these functions too. Therefore, in theory, the main body in the coding of a frame
can be parallelized spatially with granularity of MB’s as long as the required MB data and reference frame data is available.

Apart from the main body, there is a final step in coding a frame, i.e. the generation of the output bit stream. This step
includes the construction of the bit stream structure by concatenation of headers of various levels and the coding results of
transformed coefficients. These headers often use differential coding in such a way that the previous or neighboring headers
have to be referenced. For this reason, the bit stream construction is inherently sequential. In the following discussion, we
consider the bit stream construction for a frame to be a single non-divisible task called header-VLC.

2.3 Task decomposition
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Fig. 1. Task graph for video coding Fig. 2. A task allocation scheme

In this paper, a task is defined as a set of data together with the function that operates on the data. The data includes the
variable space of the input, output and working area of the function. For example, a task doing motion estimation for a MB
has the input MB and the search area as the input, the motion vector and other error statistics as output. The function is to
find the MB in the search area having the smallest sum-absolute-error with the input MB. The formation of tasks follows 3
constraints. First, the data size must be upper bounded by the processor cache size. Second, the task computation time
should be larger than the communication time for the task data. Otherwise, it would not be cost-effective to have the task
executed in a remote processor. Third, the function should possess certain generalized meaning. With a clear definition of
the interface and function for the task, then it can probably be re-used in a class of similar applications. In general, if these 3
criteria cannot be satisfied simultaneously, the first two take precedence over the third. Fig. 1 depicts the tasks with common
video coding functions. It consists of 9 tasks per MB in each column. The arc between two tasks represents the precedence
relation between them. For a frame containing M MB’s, there are 9xM tasks per frame, where there is no precedence
constraint between tasks of different MB’s.

2.4 Task memory access and allocation

The mapping of tasks to the processors has two constraints. The first is the inter-task precedence relation, which is
mandatory for correctness of the parallel implementation. When tasks having precedence relation are mapped onto different
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processors, there is synchronization created between the processors to ensure the precedence constraint. Since
synchronization introduces idling when some processors are ready earlier than the others, it should be reduced for the sake
of efficiency. The second constraint concerns the way of hiding communication delay. If each pair of successive tasks
executed by a processor can be accommodated in the cache memory of it, then it allows the use of triple buffering scheme to
hide the communication overhead. By this scheme, when a task is executed, the output data from the previous task is saved
and the next task input data is loaded. Once the computation of the current task is completed, the processor can switch to the
next task and start it as soon as input data is ready. F ig. 2 depicts the task allocation scheme in which the A MB’s are
decomposed into N, subsets with each subset, containing M/N» MB’s, being allocated to a processor. The horizontal dashed
lines represent synchronization points. Between two synchronization points, there is no inter-processor interaction and each
processor executes a sequence of tasks on its own.

2.5 Communication hiding

Let Ny be the number of frames to be coded as a unit. For H.261, Ny equals one. For H.263, it can be one or two depending
on whether PB-frame option is used or not. For MPEG-1/2, Ng is the number of B-frames between successive I- or P-
frames, plus the trailing I- or P-frame. The state transition of capturing, buffering and processing of each set of Nr frames
can be represented by the Petri-net in Fig. 3.
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Fig. 3. Petri-net representation of the hiding scheme

Under this convention®, a place (pi) is represented by a circle and a transition (t) by a rectangular box. A transition may
have a delay (d;) associated with it; otherwise, it is represented by a bar. The arcs between places and transitions carry a
weight of unity unless specified. When all the inlet places of a transition contain the specified number of tokens, then the
transition is enables for firing. Upon firing, the input tokens are consumed while new tokens are generated at the outlet
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places accordingly. The set of tokens in the net form a marking. Fig. 3 shows the initial marking with frame capturing
enabled.

To handle the captured frames for processing, the scheme relies on three sets of buffers. The first, called Capture Buffer
(CB), has a size of a frame that holds the new frame being captured. The second is the Transit Buffer (TB) with a structure
containing Ny frame buffers. It is used to hold the N recently captured frames. The third buffer is called Process Buffer
(PB) in which the N frames being processed are stored. Once a new frame is captured in CB, the pointers of CB and a free
frame of TB are swapped. In this way, the next captured frame is then placed into the free buffer pointed to by CB, while
recently captured frames are accumulated in TB. After Ny new frames are accumulated in TB, their pointers are swapped
with that of PB for processing. Throughout the whole buffering scheme, there is no pixel data copying. The delay for
pointer swapping is considered insignificant as compared with the coding time.

When a set of Ny frames are swapped into PB, there are 2xNy tokens in ps, thus, enabling ts and t, to fire N times. These
two transitions correspond to the Header-VLC task (ts) and the parallel encoding (te) of a frame. After the encoding and
Header-VLC are done to the Ny frames, it fills py with Ny tokens and allows the next set of N frames to come in. The delay
in the output bit stream is 2xNy frame. More detailed analysis shows that new frame is skipped (t;) only if the processing
time is longer than the frame capturing time. The resulting frame rate is upper bounded by the capture rate and is determined
either by ds or dg depending on how well t is parallelized. Fig. 4 depicts the expansion of tg into rows of parallel transitions.
The parallel transitions in each row represent the parallel processing in the Np processors. As they proceed, there are Ny
synchronization points in time. S(i,j) represents a sequence of tasks performed in the j* processor before the I
synchronization point. Down one more level, the task sequence S(iy) is executed according to the Petri-net shown in Fig. 5.
Ni(ij) is the number of tasks in sequence S(i,j). Before a task is executed, its input data is loaded into the processor cache
from a global data server. After execution, the result is saved back to the server. The loading and saving are overlapped in
time with the computation.

Data communication
Tglijik-1) | 1. Save previous

+T (ij.k+1) task output

2. Load next task data

Computation
of current
task

Save last
—r

Fig. 4. Petri-net for parallel coding of a frame Fig. 5. Petri-net of task sequence S(/, /)
2.6. Theoretical speedup estimation
From Fig. 3, ignoring the time delays of d;, ds, d, and d- as they involve only swapping of pointers and skipping of frames,

the significant delays are d; (frame capture), ds (Header-VLC) and ds (parallel task execution). As they are executed in
parallel, the resulting frame coding time is

T/ =max{d1,d5,d6}. (l)

From the expansion of t, and denoting the delay of S(i, j) by d(i,j), we have



dg =§ ax {d(i’j)}' (2)

i=1 jell.Np|

To determine d(i,j), let us denote the computation delay, task loading delay and saving delay by Tp(ij,k), T.(ij,k) and
T«(i,,k) respectively for the k™ task in S(i,j). From the expansion of S(i,j), d(i,j) equals to the sum execution delays of Ny(i,)
tasks in S(i,j) plus the leading task loading and trailing result saving delays, which is given by

Nr(i,j)-1
d(i, j) =T,G, j) + Tgli, j, Np G, D)+ TpG i)+ T o Np G )+ Y max[ToG, j, k), TGy juk =)+ Ty G, j k+D]. 3)
k=2
Therefore, the resulting frame time is expressed as
v, T, (i, j0) + Ts (i, j, Np G, D)+ Tp (G, i) + TG, j, N1 (G, )
T, =maxi{d,,ds, ), max s M@p! : (©)]

Soim+ Y max[T, G, j, k), Ts G, jok = 1)+ T, G, j k +1)]
k=2

Given the sequential frame time 7, =T f' v < » the speedup is the ratio between 7; and 7.

From the above equations, we observe that there exists two sources of performance degradation. First is the communication
overhead in the execution of S(i,f). From Eqt. (3), there is a constant delay due to the initial task loading and the trailing task
saving, and there is further overhead if the task communication delay is larger than the task computation delay. The former
delay cannot be hidden as such, but the latter communication delay can be hidden if Tp(ij,k)=Ts(i,j,k-1)+T,(i,j,k+1) which
depends on the communication channel bandwidth and the data size. The second source of degradation is the imbalance in
workload across the processors. From Eqt. (2), it is the sum of a series of maximum delay, each represents a critical path
between two synchronization points, that determines ds. Different critical paths imply idling in some of the processors.

To further simplify the estimation, we assume the computation delay (75(i,j,k)) to be a random variable with Gaussian
distribution. The mean and variance of the distribution are estimated from the serial execution measured time. The mean and
variance of Tp(i,j,k) are used to determine T, and 7y when the communication delays are known.

2.7. Estimation of communication delay with contention

The communication delay is estimated by measuring the time to transfer data messages of different sizes. We find that a
linear model with a constant channel bandwidth and initial setup delay is applicable for the processor-to-processor
communication in IBM SP2% and TMS320C80%.To send a message of size M, over a channel with bandwidth W and initial
setup time T, the time taken, 7¢', is given by

M
To =5SC+T,. )

As the frame data is served centrally, it is reasonable to expect a queue of requests pending on the server, which is served
one by one. Assume a statistical queuing model®, let n be the number of requests in the queue, A(rn) be the request arrival
rate and u be the request service rate, where both A(») and y are random variables with exponential distribution. Further
assume that all the processors generate requests at the same rate 4, and that processor with a pending request in the queue
does not generate request until its pending request is served. Then the arrival rate at the queue is proportional to the number
of processors that do not have pending request in the queue, or

A(n)=(N, —n)-2,- 6)

Let p, be the probability of having » requests in the queue. At equilibrium, there is a set of local balance equations by
equating the sum of flow of probability flux between adjacent states to zero, which are given as
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Solving this recursive equation for p, gives
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To calculate py, we equate the sum of all probabilities to 1, which gives
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By Little’s Law?’, the mean delay of a request in the queue is given by
Zn “Pn
n=1 .
z H-Pn
n=1

From Eqt. (10), T¢ is the message transfer delay under contention. In general, T¢ is greater than T¢' especially for large N),.
Fig. 6 depicts the ratio of Tc to T¢' versus N, at different 1/ A,. For small z/4,, the ratio Tc/T¢ increases almost linearly and
is large. It is because the request rate is larger than the service rate, resulting in long queue length. For large 1/4,, the
request rate is smaller than the service rate, hence the server is able to keep the queue length short, and 7¢/T¢' is small.
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Fig. 6. Communication delay increases with contention

To apply the above to the estimation of communication delay, first 75'(i,j,k) (or T,'(i,j,k)) is calculated according to the
message size and channel characteristics without contention. Then the equations are applied with Np set to the number of
processors, the request generation rate, o, set to the reciprocal of mean task execution time, and the request service rate, 4,
assigned the reciprocal value of the service delay T5'(ij,k) (or T;'(i),k)). During the start of a task sequence just after
synchronization, all the processors access the data server almost simultaneously, causing a transient period with exceptional
high contention. In this estimation, the initial data loading time 7;(i),1) and the final saving delay Ts(i,j,N7(i, j)) are
multiplied by Np to account for this transient period.

2.8. Limitations and applicability

The methodology assumes independent processing between the MB’s. Under some situations, this may not hold. For
instance, in H.263, when the long vector and Unrestricted Motion Vector options are used simultaneously, the motion
estimation for a MB takes place with the search area depending on the motion vector predictor. This predictor is obtained
from the motion vectors of three neighboring MB’s, implying that their motion estimation tasks have been done beforehand.
So, it imposes certain spatial ordering in which motion estimation is done to the MB’s.

Concerning bit-rate control, there is no specification from the standards on how it is done. A commonly adopted way is to
adjust the quantizer(s) during encoding based on the discrepancy between the number of bits generated in the bit stream and



the target bit budget. In this methodology, this information can be stored in the DS for processor access. The frequency of
quantizer adjustment can be in MB, MB row or frame basis. However, for the particular case of H.263, there is a limit of +2
on the quantizer relative to the left neighboring MB such that the validity of the quantizer is not known, until the
neighboring MB quantizer has been determined. This restricts the rate control for the MB’s in certain order.

Apart from the above limitations, this method does not impose any restrictions on the list of tasks performed when coding.
Different coding standards may be represented by the task allocation scheme shown in Fig. 2, where precedence relationship
could be accommodated using appropriate synchronization points. Similarly, the Petri-net representation as depicted in Fig.
3 can be applied to all four standards. The only difference between them would be t. Moreover, Fig. 4 and Fig. 5 are
equally applicable to all cases disregarding the actual list of tasks performed in individual coding standards. Table 1 lists the
possible tasks for each of the four coding standards. There may also be tasks such as coding mode determination, rate
control and scalability options, which can be incorporated into the model without any restrictions.

H.261 H.263 MPEG-1 MPEG-2

ME P-MB MV PREDICTION P-MB ME FRAME/FIELD ME

PREDICTION (MC) P-MB ME B-MB ME DUAL-PRIME FRAME/ FIELD

ENC (DCT, QUANT, B-MB MVD SEARCH PREDICTION ME

ZIGZAG) P-MB PREDICTION ENC PREDICTION

TC_VLC B-MB PREDICTION TC_VLC DCT TYPE ESTIMATION

RECONSTRUCTION ENC RECONSTRUCTION ENC

(IQUANT, IDCT, IMC) P-MB RECONSTRUCTION HEADER-VLC TC_VLC

HEADER-VLC TC_VLC RECONSTRUCTION
HEADER-VLC

Table 1. Possible tasks for the 4 video coding standards
3. IMPLEMENTATION ON THE TMS320C80
3.1. Development board and internal architecture

To verify the methodology, the implementations were carried out on the TMS320C80 Software Development Board
(SDB). The board consists of 8MB on-board memory called EXTMEM for storage of program and data, hardware for video
frame grabbing, video display, audio and PCI interface to the host PC. Both video capturing and display can be done in real-
time (30 fps) at different frame resolution. Inside the TMS320C80, there are four Parallel Processors (PP) for number
crunching and one Master Processor (MP) for program control, system management and 1/0O. All of them access the
EXTMEM and other hardware on the board through the Transfer Controller (TC). Data transfer in the form of packet
transfer request is submitted to the TC and a queue of requests is serviced with a priority scheme. Data communication is
handled separately by the TC, allowing overlapped computation and communication. Program execution by the processors
is done via the on-chip cache memory. There is a total of 50KB of on-chip cache memory arranged as 25 2KB blocks. Each
processor owns part of the cache for storing the recently used instruction codes and data, although access to the cache
belonging to another processor is allowed. In particular, the data cache of the PP is managed by the application programmer.
Any data transfer between the PP data cache and EXTMEM is done by explicit packet transfer through the TC.

The MP, 4 PP’s, TC and cache blocks are connected by a cross-bar switch inside the TMS320C80. Through the cross-bar,
the MP and PP can access its own cache in one cycle and other cache blocks within a couple of cycles. Inter-processor data
transfer can be done by coordinated reading and writing of the on-chip cache. If large data transfer is required, it may be
done via packet transfer to and from the EXTMEM. For synchronization, the processors can signal each other efficiently
with the use of COMM register without burden on the TC or the cross-bar switch. The PP internal architecture® is designed
with the purpose for enhanced image processing performance. To do that, it executes instructions with high degree of
parallelism, delivering up to four 8-bit ALU operations, two 8-bit multiplication operations, and simultaneous transfer of
two 32-bit data words between local cache memory and registers in a cycle. Nevertheless, the key for good performance lies
in coding with optimized instructions and availability of data in the cache.

3.2. Implementation issues

Due to data access locality, the 9 tasks in Fig. 1 for each MB are grouped into two tasks: ME (motion estimation) and ENC
(the other 8 tasks from MC to TCVLC). So, Ns equals to 2 with S(1,/) corresponds to a sequence of ME tasks and S(2y)
represents an ENC task sequence. The MB’s in the frame is evenly distributed over the PP’s. To start a ME task, it requires
an input frame MB plus 9 MB’s in the reference frame. Since neighboring MB’s overlap their search area by 6 reference
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MB’s. we save substantial communication delay by executing ME tasks with the MB’s arranged in raster scan order. When
a ME task is executed. the next task is the right neighboring MB which requires to load 3 more reference MB's plus the one
in the input frame. In this way, the minimum cache size required consists of (9+3) reference MB's plus 2 input frame MB’s
for triple buffering. The data being loaded for each task amounts to approximately 16x16x3+16x16 or 1024 bytes. For ENC
task, there is no overlap in data access. It makes no difference to the performance with respect to the MB ordering. Before
each ENC task. an input frame MB and a reference frame MB are loaded. After execution, the decoded MB is saved. So, the
total data size is (16x16+2x8x8)x3 or 1152 bytes.

Table 2 lists the mapping of the Petri-nets onto the TMS320C80 system. The MP handles video capturing. system functions
and Hander-VLC calculation. TC together with the EXTMEM act as a data server for input frame data. reconstructed frame
data and output bit stream.

Transitions Mapped units
t VC (Video Controller)
Ty ty, T e by MP
& PPs & TC
S(iy) for i=1.2,... . Ng PP() & TC AN
Task loading & saving TC A ]
Task computation PP() ﬁ i & '

. - e T S~ 40
Table 2. Implementation scheme on the TMS320C80 Fig. 7. A tested QCIE sample

4. RESULTS AND DISCUSSIONS
4.1. Measurement criteria and conditions

Timestamps were used for performance measurement. All the processors reference to a common clock tick generated by the
MP TIMER once every 10usec. At each clock tick. an interrupt is generated to the MP which increments the clock tick
count in the cache memory of each PP. As it is, this incurs interrupt overhead to the MP and access contention to the PP
cache memory. A finer clock tick may be used but with more MP overhead and higher PP cache memory contention.

4.2. Serial performance
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Fig. 8. Scrial coding time break down Fig. 9. TC data transfer time

As a baseline reference. a serial encoder was executed using one PP and the average frame time over 50 frames were
obtained. A typical frame of the captured video is shown in Fig. 7. The measured frame time is 406.5ms (2.46 tps) for
352%240 video and 119.5ms (8.37 fps) for QCIF (176x240). Fig. 8 depicts the average percentage time breakdown. The
most time-consuming part is ME as expected (27.1%), followed by DCT (19.4%), IDCT ( 16%) and TC_VLC (10.2%). The
rest ranges from 8.1(QUANT), 6.5% (IQUANT) to just below 1%. There are also communication overhead times such as
INIT_TC (1.5) and WAIT_TC (0.9%) which corresponds, respectively, to the initialization time of packet transfer table and
the time to wait for packet transfer to complete in case the data communication time is longer than task computation time.
Another overhead, IDLE (2.5%). is neither computation nor communication time. It is the idle time or waiting time for MP
initialization before each frame. In this case, as only one PP is used, this 2.5% is mainly due to MP initialization.



The bandwidth of the TC without contention was estimated by measuring the time for transferring messages from
EXTMEM to the on-chip cache and vice versa. For different message sizes, a number of measurements were conducted and
the average time was taken. As depicted in Fig. 9, W and 7}, are estimated to be 153MB/sec and 0.8pusec respectively.

4.3. Parallel performance

The implementation was executed on up to 4 PP’s and measurement was done. Fig. 10 to 12 depicts the frame rate, speedup
and efficiency for coding of QCIF video. The predicted and ideal linear speedup performances are also plotted for
comparison with the measured result. From Fig. 10, the frame rate rises almost linearly and reaches 30.7 fps at 4 PP’s
(Np=4) with a speedup of 3.67. This linear shape is due to successful hiding of communication overhead by computation
time. In fact, the mean computation time for ME and ENC tasks are around 300 ps and 800 ps respectively, while the
estimated communication delays without contention are 9.5 us and 13.4 ps for the two tasks respectively. So, there is a high
possibility of totally hiding communication delay. We also find that the predicted speedup is slightly better than the
measured one. This is due to program control overhead not taken into account in the theoretical performance model. As in
Fig. 12, the predicted efficiency is above 90% up to 8 PP’s. The measured one is over 90% up to 4 PP’s, which is lower than
the predicted. But this is still 10% better than any other reported results for small or large Np.
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To extend the prediction for high number of PP’s, Fig. 13 depicts the predicted speedup up to 100 PP’s. The speedup rises
almost linearly up to Np=10. Beyond that, it becomes stepwise as the small number of MB’s, =99, being integrally divided
by Np. Some processors are allocated one MB more than the others. Thus, there is uneven distribution of workload and
idling time upon synchronization. The stepwise speedup may be smoothed and improved if the workload is balanced®. The
effect is most adverse when Np approaches M and each sequence of tasks contains only one or two tasks. In such case, the
initial and final communication delay can be a significant overhead. A finer granularity of task decomposition is possible to
give smoother speedup at large number of processors. However, the communication contention on TC increases with the
number of PP’s and splitting of task results in more duplicated data communication. From the current result, the TC should
allow a finer granularity since the current computation time is far greater than communication delay (30-60 tlmes) For more
complicated functions, it may be necessary to split the tasks in order to meet the cache size limitation.
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For 352x240, the measured and predicted performance have similar trend to that of QCIF. From Fig. 14 & 15, a frame rate
of 9.25 fps (speedup=3.76) was obtained at Np=4. It is predicted that 30 fps is achievable at around Ny=14, i.e. 4 C80 with
the presence of parallelization overhead. The speedup at Np=4 is better than QCIF due to the larger number of MB’s in the
352x240 case. In fact, in both predicted and measured results, 352x240 has better speedup than QCIF. From Fig. 16, the
predicted efficiency remains well over 90% up to Np=8. The measured efficiency however, showed the same tendency as in
QCIF in which the parallelization overhead becomes more significant with larger Np.
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The extended prediction in Fig. 17 rises almost linearly up to Ny=20 and then becomes stepwise. It attains a maximum of
48, as compared with 27.5 for QCIF. The reasons why this figure is larger than the QCIF case are firstly, for 352x240 video,
there are more tasks in the sequence. As a result, the initial task loading and final saving delays in each task sequence
constitute a smaller proportion of delay to the overall sequence execution time, giving a higher speedup. Secondly, as there
is a synchronization point between the PP’s at the end of each task sequence, the expected overall execution time is the
expected maximum of the Np sequence execution time. A large standard deviation in sequence exeuction time implies a
large maximum time among Np sequences and a large proportion of processor idling time.

5. CONCLUSION

In conclusion, a new parallelization methodology for video coding base on systematic task decomposition and scheduling
has been successfully developed and implemented. With the aid of Petri-nets and task graphs, performance prediction is
achieved. Data and task sizes are considered under the constraint of cache capacity so that substantial number of cache
misses can be avoided. Also, with proper task scheduling, it enables sustained overlapping of data communication with
computation by executing a sequence of tasks without inter-processor synchronization. Contention in data communication is
also considered to give closer prediction of actual performance and enable refinement of implementation. As the only
assumnption for applicability, it highlights the importance of independence between MB’s for processing in parallel. Apart
from this requirement, no further restriction is imposed on the coding algorithm. Therefore, it is fair to assume that the
methodology is equally applicable to the four standards. In fact, full implementation has been tested on H.261 and the H.263
standard was also implemented based on this method with very similar performance characteristics.



From the measured results, it can be observed that first, the predicted and measured performance are very similar. Second,
using one TMS320C80, 30.7 fps and 9.25 fps were achieved for QCIF and 253x240 video respectively, with over 90%
efficiency in both cases. This result is favorable compared with the other practical implementations (excluding simulations).
Third, the absolute serial performance is due to optimized coding while the almost linear speedup is the result of the
parallelization method. Fourth, this parallelization method is particularly suitable for small N,. For QCIF, the measured
speedup is almost linear for N,<10, whereas for 352x240 video, the measure speedup is almost linear for N,<20.
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