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ABSTRACT

This paper presents a vehicle occlusion detection algorithm
based on a generalized deformable model. A 3D solid cuboid
model with up to six vertices is employed to fit any vehicle
images, by varying the vertices for a best fit. The advantage of
using such a model is that the number of parameterized vertices
is small which can be easily deformed. Occlusion is detected by
recording the changes in the Area Ratio and the dimensions of
the generalized deformable model. Our tests show that the new
modeling algorithm is effective in detecting vehicle occlusion

1. INTRODUCTION

Visual traffic surveillance{1] (VTS) is an active research area as
it is believed by many that it is going to have significant impacts
to most of the traffic problems in big cities today. A common
goal for many of these VTS systems is to be able to identify and
track the movement of vehicles. In this, deformable models[2-8]
are often used to model the vehicles, where vehicle types and
orientation information may be extracted[2-6]. However, the
complexity of deformable models is high and the success of
matching the vehicle image with the model can be hard to come
by if the vehicle image is incomplete or occluded by other
vehicles or stationary objects. One possible solution to this
particular problem is to use a simple generalized model[7] which
may be more effective and robust. Evolved from the same line of
argument, a simple generalized deformable model is proposed in
this paper. It employs a 3D solid cuboid model with up to six
vertices to fit any vehicle images, by varying the vertices for a
best fit. The advantage of using such a model is that the number
of parameterized vertices is small which can be easily calculated.
This model was tried on a series of occlusion cases and was
found to be able to discern the occluded vehicles and those that
are not.

2. METHODOLOGY

The whole idea lies on the fitting of the model on the binary
representation of the vehicle in 2D, Once a best fit is determined,

the resulting model is transformed into 3D, where parameters
such as height, width and length of the vehicle are calculated. By
considering the area ratio between the model and the binary
representation of the vehicle, as well as it’s width and height,
vehicles that are occluded can be detected based on these
parameters. Fig. 1 depicts the conceptual flow of the method
employed. In this method, the binary representation of the
vehicle is extracted using a background estimation algorithm{9].
The fitting of the generalized model is performed in 2D, as the
vehicle image is also in 2D. This is done by transforming the 3D
model into 2D, and calculate the lines between the vertices that
best fit the vehicle image. Once the best fit model is determined,
this 2D model is transformed backed 3D where 3D parameters
are calculated. In general, if a vehicle is not occluded, the area of
the model should be slightly larger than the area of the vehicle
image. When occlusion occurs, this ratio changes. In addition,
the width and height of the model also indicate the presence of
occlusion.

3. BINARY REPRESENTATION
OF A VEHICLE

In principle, the deformable model can be applied directly to a
segmented version of the image. The problem with this is that if
the segmentation algorithm is not ideal, the segmented result may
not be faithfully representing the vehicle concerned. Besides,
segmentation usually ends up with far more details than required,
and can introduce unwanted effects when fitting the model[9].
Based on this, the concept of background estimation[10] is
adopted here. By estimating the stationary background, the
moving vehicle (object) can be deduced by simply subtracting
the background from the original image, as depicted in Figs. 2(b)
and 2(c). Once the vehicle is extracted, it’s binary representation
can be easily determined as given in Fig. 2(d). In this case, only
the 2D outline of the vehicle is important for the model fitting,
not any internal details.

Extract binary Match by the Determine the
Image mask of the generalized 3D parameters Detect
vehicle from deformable of the model occlusion
the image model

Figure 1 - Conceptual diagram of the proposed vehicle occlusion detection method
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Figure 2 - Binary representation of a vehicle

4. GENERALIZED DEFORMABLE
MODEL

The generalized deformable model, M, proposed is basically a
solid 3D cuboid with 6 vertices, M ={v,Jk=0,...5}. The

vertices are parameterized such that their values can be
calculated to fit a particular vehicle. A model of this type has
several properties: 1) it can be used to model any type of
vehicles; 2) easily deformed to fit any size of vehicles; 3) does
not suffer from incomplete or occluded vehicle images. However,
it should also be pointed out that because of the simplicity of the
model, the type of vehicles it can differentiate would be limited.
This is a compromise from the more complex deformable model
with many more vertices.

In general, the model can be realized as a modified 3D wire
frame projected on the a 2D plane as shown in Fig. 3. This is a
modified version as the front facing three edges (dotted lines) are
not considered as part of the wire frame. In other words, the 2D
model consists of only the outlines defined by v, to vs. For this
reason, this model has three pairs of parallel edges along three
2D orientations (X, y and Z ) as depicted. The fitting is only

confined to these six lines.
Once the model fitting in 2D is completed, the X, y and

7 orientation components must be transformed to 3D

orientations X , ¥ and Z, if the 3D vehicle features are to be
determined. This transformation between the 2D and 3D spaces
is mainly determined by the camera model depicted in Fig. 4,
where the camera is focusing at point O with focal length f. The

Va Vy

Va

Figure 3 - Generalized deformable model.

camera height is & and the distance between the focusing point
and the camera is d. A 3D point P= (P P, P) is thus

u? v w

projected onto the 2D camera image plane as p= (px , py) .

p=(p,.py)

p=(P,P,P,)

Figure 4 - Camera model.

From this camera model, the 3D-to-2D forward mapping

function, @, and the 2D-to-3D inverse mapping function, o,

are computed by Eqgts. (1) and (2) respectively.

3D-to-2D mapping function:

2+ 2
px::‘Du' _—M————Z— (12
(d+R) +(r-P,)
hP,+dP,
Py"f.d.(d.*_pv).,_h,(h__})w) ...(1b)
2D-to-3D mapping function:
2 2
o, U R) =) o
V f +p,
p, (@2 +h-(h=R))-Fd-P,
...(2b
f h p,-d (2b)

When the three 2D orientations X, y and Z are determined,
model M is created along these orientations and its vertices are
adjusted to fit the vehicle image, where these vertices must
satisfy the following criteria:

|v0 ~v,| =|v3 —v4| andlvl —v2| =iv4 —v5| and |v2 —v3| =lvS ‘Vol

(3

where |a-b| denotes the distance between a and b. This ensures

the model obtained is regular as the model does not make any
assumption on the camera perspective. If we allow M to be
irregular without knowing or considering the camera perspective,
such irregularity may be due to the camera perspective or the
shape of the vehicle. Using the above fitting approach and
criteria, Fig. 5 illustrates an example of a vehicle fitted by the
model. It can be seen that the model fitted is not perfect, but is
close enough to represent the vehicle.
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Figure 5 - Vehicle fitted with the deformable model

5. 3D MODEL PARAMETERS

To determine the 3D parameters of model M, it is necessary and
appropriate to assume that V,, V, and V, are on the plane of the
road surface, i.e. P, =0. Therefore, the width and depth of the
model can be computed by Eqts. (4) and (5) respectively.
Furthermore, as V, is directly above V,, by solving Eqt. (6), the
height of the model can be determined.

widh =|®7(v,,0) - &~ (v;,0) (B
depth=|®7 (v3,0)~ @~ (v, .0) 0!
height =V, -V,
0 ..(6)
@7 (vy, height) = @7 (v,,0)+| 0
height

6. OCCLUSION DETECTION

Essentially, occlusion is detected by monitoring the changes of
the 3D model parameters and an extra parameter called Area
Ratio, R,,,, ,as given in Eqt. (7).

A

Rirea = ,_Amm-k D

‘model

where A, is the area of the binary vehicle image and A,,,,
is the area of model M. The Area Ratio basically describes how

well the model fits the binary vehicle image. As A,,,,, is always
R

ared

larger than A, ,
that R

ared

is always less than one. An ideal fit is

equals to one, whereas a good fit means R, is close

ared

to one, and a poor fit means otherwise. The difference in R,,,,

can also be used to discern different types of vehicles in a limited
sense.
The argument is that when occlusion occurs, R

req and the
dimension of the model change abruptly. Figs. 6 and 7 illustrate
two possible occlusion cases. In Fig. 6, the vehicle on the right is
occluded by the bus in the adjacent lane. The 3D model fitted as
a result is much wider than expected and does not match with the

usual dimensions of typical vehicles. It also reduces the R,,,

value substantially. Fig. 7 is similar except that the model
lengthens. The reduction in R,,,, is not as severe as Fig. 6.

area

Therefore, the monitoring of occlusion is carried out by
comparing the 3D dimensions and R, of the model in the
current image, n, with the last image without occlusion, m,
according to Eqt. (8).

(a) Binary representation (b) Model fitted image

Figure 6 - Occlusion of vehicles in adjacent lane

(a) Binary representation (b) Model fitted image

Figure 7 - Occlusion of vehicles in the same lane

|Rarea (n)_ Rargu (mx >¢g, or
IRwidxh(n)“ Riiaay (mj >g, or ’Rheig,,,(n)— R, cight (mﬂ >¢€; ...(8)

where R, and R, are the normalized width and height of

eight
the vehicle model. The values €, and €, are thresholds to permit
small changes in the values. The values of €, and g, used in our

evaluations are both 0.05. When there is no occlusion, R,

should be relatively constant, close to one. This is also true for
the other model parameters too. However, when occlusion
occurs, R, decreases and some of the other parameters

increase.

To prove the proposed occlusion detection method, two
model cars moving in a laboratory environment are set up, with a
camera mounted on a tripod at about 0.3m above a model road.
An image sequence was acquired and subject to the method
proposed in Fig. 1, where for each image, the vehicles’ binary
representations are generated, 2D model fitted, and 3D model
and parameters determined, as well as R,,,, calculated. Fig. 8
depicts a sample set of the image sequence with the 3D model

overlaid on the images, and Table 1 shows the parameters
obtained for the ‘bus’ and the detection results.

rea

Image | Ryes | Ryiw | Rueige | Occlusion?
1 088 0.42 0.57 %
2 087 | 044 0.56 P
3 0.60 0.62 0.32 v
4 0.79 0.82 0.60 v
5 0.80 0.37 0.84 v’
6 0.61 0.22 0.64 v
7 085 | 0.40 0.55 P
8 0.86 0.38 0.54 x

Table 1 - Simulation results for ‘bus’
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image 6

image 5

image 7 image 8

Figure 8 - Simulation results for ‘bus’

As can be seen from the table, the non-occluded cases have

R in the range of 0.85 or above, and the model width and

height vary within a small range. On the other hand, the occluded
cases have small R and both R, and R, different

from the typical figures by a large margin.
7. CONCLUSION

In conclusion, the occlusion detection method based on a
generalized deformable model as presented in this paper is an
effective way for detecting vehicle occlusion. Central to the
method is a generalized deformable model, which is
characterized by it’s small number of vertices and the
transformation between the 2D and 3D spaces for model fitting.
According to our preliminary tests, the model is able to fit
different types and sizes of vehicles. By monitoring the changes
in the area ratio, model width and height with respect to previous
images, vehicle occlusion can be detected successfully. This
result will have positive impact to the subsequent segmentation
and tracking of vehicles. Further development of this method will
be focused on the evaluation on road traffic scenes and on the
study of how the generalized model can be used for a wider class
of vehicles.

ared
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