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Abstract-- A novel structure-preserving linearized differential
and algebraic equations (LDAE) model for small signal eigen-
analysis of power system SSO is proposed in this paper. LDAE
models of various power system components are formed first.
Modularized establishment of entire system model is then
conducted quickly according to the network topology.
Generalized eigenvalue & eigenvector calculation, and eigenvalue
sensitivity analysis based on the LDAE model are applied
thereafter. The effectiveness of the proposed LDAE model based
SSO analysis approach is verified through computer test results.
The LDAE-based SSO study model and the corresponding
generalized eigen-analysis approach pave the way for power
system SSO study with HVDC transmission and/or FACTS
devices without eliminating any algebraic variables.

Index Terms-- SSO, Structure-preserving, LDAE, Generalized
eigenvalue sensitivity analysis

I. INTRODUCTION

Subsynchronous Oscillation (SSO) is a complex stability
issue in power systems and there have been a lot of
research outputs on SSO in recent decades '"!. The preliminary
studies on SSO concerned mainly about induction generator
effect induced by series compensation capacitor. In early
1970s, series compensation stimulated electromechanical
torsional interaction, which caused severe torsional
oscillations and damage of turbine-generator shafts, attracted
great attention and research work. This led to a new period of
SSO study. In late 1970’s, HVDC transmission system caused
SSO was first observed and brought about in-depth studies on
device-dependent SSO. The application of FACTS technology
has promoted the study on device-dependent SSO even more
significantly >,

In order to study power system SSO, various methods are
used . Among them time simulation is the most direct way,
in which EMT models of power system elements with multi-
mass spring shaft effects and step-by-step numerical
integration methods are used to get time-evolution of various
variables in SSO. A distinct advantage of time simulation
method is that it allows detailed modeling of power system
elements with system nonlinearity included. Therefore it is
very useful for the study of transient torque amplifying effect
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and the examination of SSO damping control performance
under large disturbances. However, using EMT models for
SSO study is time consuming for its extremely small time step
especially when there are HVDC transmission and/or FACTS
devices in the studied power system. Besides, time simulation
is poor in physical transparency and difficult to reveal SSO
principles. Small signal stability study is another method
widely used for SSO study, where the power system model is
linearized around system operation point and converted to a
standard form of x =Agx (As is the system state-space

matrix). Eigen-analysis is then conducted to get deep in-sight
of system SSO characteristics. Eigen-analysis is an accurate
method which can examine the effects of system control and
parameters on damping the torsional modal oscillation. With
the help of mature linear control theories, advanced SSO
damping control can be realized. However, in a real power
system with HVDC transmission and/or FACTS devices, it is
time-consuming in deriving system matrix Ag with all the
algebraic variables eliminated. Moreover, after reduction of
algebraic variables, it may be inconvenient to conduct certain
eigenvalue sensitivity analysis based on As. These issues in
conventional eigen-analysis will be addressed in this paper. In
recent years frequency-scanning based methods become
computationally attractive because they can provide system
damping information over the entire subsynchronous
frequency bands 7, although they are not so precise as eigen-
analysis method. Among them the complex torque coefficient
method (or say torque per unit speed method) is most suitable
to real power system SSO analysis with the capability of
showing clearly the system electric damping effects over SSO
frequency band. The method suggested in this paper can be
extended to realize the frequency-scanning function and get
torque per unit speed information.

In this paper, a novel structure-preserving linearized
differential and algebraic equations (LDAE) model for small
signal eigen-analysis of SSO is proposed. In the LDAE
approach, the individual power system components described
by their LDAESs are acting as building blocks, and the system
model can be established quickly and easily according to the
network topology. This method is very suitable for SSO study
of power systems with HVDC transmission and/or FACTS
devices without the need of eliminating algebraic variables.
Generalized eigen-analysis technique """ can be directly
applied to the LDAE model. The results can provide useful
information of observability and controllability of algebraic



variables on individual SSO modes. Since the LDAE model
preserves all algebraic variables and system structure, it is
also very convenient to conduct eigenvalue sensitivity analysis
based on the extended system matrix and generalized right &
left eigenvectors. Furthermore, from LDAE model the
complex torque coefficient can be easily calculated, which
will be discussed in detail in another paper. The effectiveness
of the proposed LDAE model based SSO analysis is verified
with computer test results of IEEE First Benchmark Model.
The LDAE-based SSO study model and its corresponding
analysis approach pave the way to include HVDC
transmission and FACTS device models in SSO study and get
deep insight about their effects on SSO.

The paper is arranged as follows. The structure-preserving
LDAE model for SSO is derived in section 2. The LDAE-
model-based eigenvalue & eigenvector computation,
eigenvalue sensitivity analysis for SSO are presented in
section 3, with computer test results given in section 4 and
conclusions drawn in section 5.

II. STRUCTURE-PRESERVING LDAE MODEL FOR SSO STUDY

Power systems can be described by a set of nonlinear
differential and algebraic equations (DAE):
{56 = flx,y)
0=gxy)
where x: the vector of state variables; y:
algebraic variables
Linearizing the above equations around the operation point,
we have:

the vector of

{M:AAx+BAy )

0 = CAx + DAy

where A =ai , B:ai , C:a—g , D:a_g calculated at the
ox ay ox dy

equilibrium point; A: an operator to represent perturbed
values.

From (1), we can eliminate all algebraic variables y if D!
exists, which leads to linearized ordinary differential
equations (LODE) model in state space:

Ax = AgAx 2)
where system matrix As = A - BD™'C . Equation (2) is widely
used for conventional eigen-analysis as mentioned above.

However, to eliminate all the algebraic variables in real
power systems with HVDC transmission or/and FACTS
devices might be time consuming. Moreover the item of
“BD'C” makes Ag unable to be expressed by system
parameters explicitly, which, under certain circumstances,
increases the difficulty in eigenvalue sensitivity analysis. In
this paper, the system sub-matrices A, B, C, D will be kept,
and eigen-analysis for SSO study will be based on the system
LDAE model (1) directly. The details of LDAE formation
procedure for SSO study are given below.

A. Power System Component Model

Power system component models for SSO study can be

found in [9]. After linearization of component models at
operation point, we can get LDAE models with algebraic
variables preserved for various components as follows.

1). The Synchronous Machine Model

a) Spring-mass Shaft System

The shaft of a turbine generator can be expressed as a six-
mass spring system, and its LDAE model is (X: state
variables; Y: algebraic variables):

X;=Ax X +Bg Y, 3)
where X5 = (Ad1...Ads , Awi...Awg)": angle and speed
increments of the six-mass shaft; Y7, = AT,: electromagnetic
torque of generator mass (For simplicity, the speed governor’s
dynamics is neglected), which can be expressed as a function
of generator winding currents and flux linkages in d-q
coordinates (in LDAE format):

0=C, ,X;+D,Y +D,Y, 4)
where X¢ = (Ayy, Ay, , Ay, App, Ay, , AI/IQ)TZ generator
winding flux linkages in d-g coordinates assuming a generator
has six windings; and Y; = (Aig, Ai,, Aip, Aip, Ai,, AiQ)T:
generator winding currents in d-g coordinates.

To keep Y7, and (4) explicitly in system model is good for
future frequency-scanning calculation.

iTe Tei

b) Electromagnetic Circuit
The winding voltage equations in d-g coordinates in LDAE
format are:

X,=A X, +A, X, +B,Y, +B,Y

Gi™i Gu™ u (5)
where Y, = (Aug, Auy,, Auf)T: generator winding voltages in d-
g coordinates with Aup= Au,= Augy =0.

The linearized flux linkage equations (in d-g coordinates)
are:

0=C,X,+D,Y, (6)

2). Excitation System Model

In this paper a 1% order excitation system is considered for
simplicity, and its LDAE model is:

Xp=Ap X +BLY, (N
0=C_X.+D_Y, ®)
where Xy = AE; output voltage of excitation system.

X
Relation AE, = —""Auf is expressed as (8).

Ty

3). Transmission Network Component Model

All ac network components adopt EMT models in x-y
synchronous coordinates.

a) Model for AC Transmission Lines without Series

Capacitor Compensation (line type-A)

The m-equivalent circuit is used to describe ac transmission
lines with line charging capacitance considered separately.
Hence the LDAE model for ac line / (i.e. an R-L branch) from
bus i to bus j without series capacitor compensation is:

X, =A,X,+A,,X, ©)]
where X, = (Aiy, Ail_\.)T: line current; Xy= (...Au;, Attjye. Aty
, Au]-y...)T: all the bus voltages except the generator terminal



buses. Xy are treated as state variables because of the
existence of line charging capacitance.

b) Model for Special AC Transmission Lines with Series
Capacitor Compensation (line type-B)

Similarly, we can derive the LDAE model for branch & (i.e.
an R-L-C branch) from bus i to bus j with series capacitor
compensation:

(10)

Xo=A4pX, +A X,

where Xz = (Aljy, Aiky)T: line current; X¢c = (Aucy, Aucy)T:
voltage drop on series compensation capacitor.

{XB =Ap X, +A X +A X,

¢) Model for Transformer Branches

If we only consider short circuit impedance of transformer,
the transformer branch can be dealt with in the same way as
type-A transmission lines. If transformer tap ratios should be
included, then additional algebraic equations need to be added
to describe the voltage and current relations between the
primary and secondary windings of an ideal transformer. In
this paper, only transformer short circuit impedance is
considered in SSO study. The LDAE model for transformer
branch is:

XT =An X, +A, X, +B;;}V)Yu(m (11
where X7 = (Airy, AiTy)T: transformer branch current; ¥,*=
(Au, @, Au, @I generator terminal bus voltage in x-y
synchronous coordinates. If a transformer is not connected to
generator directly, then the corresponding third item on the
right hand side of (11) is equal to O.

d) Model for Equivalent Shunt Capacitance Branches

For each bus, line charging capacitance and shunt
compensation capacitance will be merged together as an
equivalent capacitance. Its LDAE model will be:

X, =A,, X, +BLY"© (12)
where Y. © = (Ai, ©, Ai, VT, shunt capacitance branch
current.

e) Model for Load Branches

The load is modeled as linear impedance and its LDAE
model is:

X, =4, X, +A,X,

where X L:(AiX(L), Aiy(L))T: load branch current.

(13)

B. The overall System LDAE Model for SSO Analysis

Based on the component models described above, the
overall system linearized DAE model for SSO analysis can be
built up according to the network topology. Some key points
will be emphasized here before constitution of system model.
(i) As shown in component LDAE models, we preserve the
algebraic variables Y, and Y; (generator terminal voltages and
injection currents in d-g coordinates) and their companion
variables Y,*” and Y™ = (Ai,'?, Aiy(G))T in x-y synchronous
coordinates. Hence, the algebraic equations for coordinates
transformation between d-g and x-y can be directly included
in system model as shown in (14):

|:Afd:|=|:5in§0 —$085o}[AfY}+[fq° }Aé‘ (14)
Af, cosd, sind, | Af, —Jao

where f can be u or i to denote generator terminal voltage or
generator injection current respectively; o: rotor angle of
generator-mass which is the leading angle of its g-axis w.r.t.
the synchronous coordinate x-axis.

Keeping (14) in DAE model is beneficial to fast interface
of generator with ac network. Equation (14) for generator

terminal voltages and injection currents coordinates
transformation can be rewritten to:
0= CSiXS +D.Y, +Di(iXy)Yi(xy) (15)
0 = CS!AXS + DuuYu + D’i:’.")Yu(U')

(i1) According to the network topology, the following bus-line
incident matrixes can be obtained. Cys, Cyg, Cnr, Cyi, Dig
and Dy are the incident matrices of buses w.r.t. type-A lines,
type-B lines, transformer branches, load branches, generator
branches, and bus equivalent shunt capacitance branches
respectively. Based on above incident matrixes, bus injection
current balance equations based on KCL will be:
0=C, X, +Cy, X, +C X, +C,, X, +D,.Y'" +D,Y'"
(16)

Equations (3) ~ (13), (15) and (16) constitute the entire
system structure-preserving LDAE model for SSO study as
shown in (17), where the algebraic equations include the
generator electromagnetic torque computation equations; the
generator winding flux linkage equations; the relation of E;
and uy; the coordinates transformation equations for generator
currents and voltanges; and bus injection current balance
equations.

A brief discussion on (17) is made as follows.
(i) Matrices A, B, C, and D are extremely sparse. In A and D,
the non-zero block-matrices are mainly on the diagonal and
most of them are also very sparse. Hence sparse matrix
techniques can be use to conduct small signal eigen-analysis.
The computation work can decrease noticeably, which is
significant to SSO study of real power systems.
(ii)) The structure-preserving formulation approach breaks
down the modeling issue into two parts, one is element-
modeling part and another is network topology and integration
part. Therefore, if we want to study the impacts of HVDC
transmission and/or FACTS devices on SSO, we can just
easily add their individual LDAE models to (17); and then
modify the corresponding bus-line incident matrix to include
their injection current effects to the bus injection current
balance equations (16). The process is simple and direct.
(iii) The generalized eigenvalue and eigenvector calculation
can be directly applied to the LDAE model. The
corresponding generalized eigenvectors can provide the
information of observability and controllability of both state
and algebraic variables on a certain SSO mode. This is a
significant feature of the suggested method, which can
provide deep insight into system SSO characteristics and is
beneficial to controller design for SSO damping.
(iv) The suggested LDAE model formulation can avoid
sacrificing the physical structure transparency due to the
elimination of algebraic variables in traditional LODE



modeling. Since system parameters can be shown explicitly in
the LDAE model, it is convenient to make eigenvalue

X,| [As 0 0 0 0o o0 o0 0
X,| |Ags Ags 0 0 0 0 0 0
X, 0 0 A, 0 0 0 0 0
X, 0 0 0 A, A, 0 0 0
X=(x,|=l0 0o o0 o0 A, 0 0 0
X, 0O 0 0 0 A, A, 0 0
X, 0 0 0 0 A, 0 A, 0
X, 0 0 0 0 A, 0 0 A,
(X, L0 o o 0 0 0 A,
X,
o Cc,o 0 0 0 0 0 0 0] Xo
0 C,, 0 0 0 0 0 0 0 iﬁ
o o ¢, 0 0 0o o o0 o| "
0= X, |+
C, 00 0 0 0 0 0 0
c, 0 0 0 0 0 0 0 0 X*‘
o o o c, 0cC, C, C, 0| "
L Ix,
_XC_

III. EIGENVALUE & EIGENVECTOR COMPUTATION, EIGENVALUE
SENSITIVITY ANALYSIS BASED ON LDAE MODEL

A. Eigenvalue and Eigenvector Computation Based on LDAE
Model

LDAE model (17) can be written as:

X| [A B|x

0| |C D|Y

For the traditional eigen-analysis, we usually eliminate
algebraic variables Y and get:

X=A,X

where Ag = A - BD'C if D™ exists.

Clearly, As might not be sparse. Its physical transparency

may be lost due to the elimination of algebraic variables.

Eigenvalue and eigenvector computation based on (19) is
given in (20):

(18)

19)

{det(/u -A)=0
(20)

rie; =Age; 0 fi :Agfi
where I is identity matrix; e; and f; are the right and left
eigenvectors with respect to the i" eigenvalue (/;) of As. The
eigenvectors e; and f; can be normalized to satisfy e;' f;= 1.
For LDAE model (18), we shall conduct generalized

eigenvalue and eigenvector calculation using generalized
Schur decomposition method "%, For the suggested LDAE

. ) X ~ |A
model (18), if we define T = ; A=
Y C

B
} : extended
D

0

mxn mxm

. |1 0
system matrix; H = {0 e "X'"} (where n is the number of

sensitivity analysis.

0 [X,] [Bg, 0 0 0 0 0
0 | X, 0 By By, 0 0 0|

0 |x, 0 0 B, 0 0 0 Y“

0 | X, 0 0 0 0 B, 0 Y'

0 |X,|+| 0 0o o o o0 BY YfZ”

0 | x, 0o 0 0 0 0 0 Yl“-"’

0 | X, 0o 0 0 0 0 0 Y‘f(c)

e | X o 0 0 o0 o0 0" -
wl|Xcl Lo 0 0 0 0o o0

Tei DiTe 0 0 0 0 YTe

0 D, 0 0 0 0|7V

0 o0 D, 0 0 0 |Y, (17)
0 D, 0 DY 0 0 |YW

0 0 w 0 DY 0 |Y™

0 0 0 D, 0 D,|Y]

the state variables in X and m is the number of the algebraic
variables in Y), we can rewrite (18) into:

HT = AT (21)

The solution of equation (21) is equivalent to solve the

generalized eigenvalue problem (22):

AHT = AT (22)

If H is nonsingular, we can convert the problem to a

eigen-problem (H 'A)T = AT to the

standard solve

generalized eigenvalues of (22). However, for our case, H is

singular and H™" does not exist. An advanced eigenvalue
computation technique, i.e. generalized Schur decomposition
method "%, is adopted, through which the inverse calculation

of H can be avoided and the original system eigenvalues can
be calculated efficiently. Hence this is an ideal method to
solve the special generalized eigen-problem with rank-

deficient H .
According to generalized Schur decomposition for a pair of

complex square matrices (ﬁ , A ) of same dimension (/x[), we
can find a pair of unitary matrices Q) and Zgy, (Q - QH =1,

Z-Z" =1T) such that:

QHZ" =H , QAZ" =A (23)
where both H and A are upper triangular matrices.
Left-multiplying (22) by Q we have:
AQH (Z" Z)T = QA(Z" Z)T (24)

According to (23), equation (24) will be (define T ' = ZT ):
JHT' = AT (25)

Equation (25) is equivalent to solve homogeneous linear
equations (ﬂﬁ —A)T =0 . The sufficient and necessary

condition for the existence of non-zero T 'is:



det(AH — A) =0 (26)

Since both H and A are upper triangular matrices, (26) can
be written as:

A ~ ] A ~
det(AH — A) =[] (4H,, - A,) =0
i=1

where H, and A, : the " diagonal element of H and A
respectively.
Therefore A can be solved easily as:

A=A, /H, GfH,#0) 27)

Since H is rank deficient for our case, we can assume H in
the format of:
0m><n gmxm
where €= diag (&...&...&,); £=0(@G =1, ...,

time constant in nature.
Then after Schur decomposition, there will be some

m): infinitesimal

diagonal elements H, of H with extremely small values,

which correspond to & in H and lead to infinite eigenvalue /;
in (27). This can easily be identified as “fictitious”
eigenvalues and spurned.

After eigenvalue 4; (i=1,...,n) calculation, its corresponding

generalized right (left) eigenvector €, ( fi) can be calculated
by:

/liﬁeNi =géi’ /liﬁjli =2Tfi (28)

where e, :{:'i } , f,, =L{' } ((e;, f?) is defined in (20) ). It is
easy to derive:
e;=-D'Ce; .f'i=-(BD")'f;

It is well known that (e;, f;) provides the information of
observability and controllability of state variables X on mode
A, while (e';, f';) provides the similar information of algebraic
variables ¥ on mode /;. The information is very useful for
designing controllers for SSO damping. In this paper, the
generalized eigenvectors are normalized such that (29) is
satisfied:

fTHe =1 (29)

B. Eigenvalue Sensitivity Analysis Based on LDAE Model

The formula for generalized eigenvalue sensitivity analysis
is derived below.

Differentiating A&, = 1, He,
parameter K yields (- 0H /9K =0 ):

with respect to a certain

8A +A ai = ai + A, H 8_ (30)
BK 0K oK oK
Multiplying (30) by f - from the left gives:
8A =y~ O, de,
—e. +f A—— He, LA H— (31
fr=—e+f K a f v x GV

From (29) we can see the first item on the right hand side
of (31) is actually d4, /9K ; and the last items on both sides of

(31) are equal and hence can be eliminated. Finally we can
reach:
04 = 0A _
—=f"—¢. 32
K f. oK (32)

There are only a few elements in A with parameter K

explicitly existing, so 04 /9K is extremely sparse which makes
eigenvalue sensitivity analysis very efficient based on the
LDAE model. When K exists in D, the advantage of (32) is
apparent.

IV. COMPUTER STUDY RESULTS

The IEEE first benchmark model [8] is taken as the test
system to conduct eigen-analysis using proposed LDAE
model and methods. The test results are presented below.

The studied system is shown schematically in figure 1 and
the detailed system parameters are referred from [8]. For the
convenience of modular construction of the LDAE model, we
add a fictitious shunt capacitance on each bus except
generator bus, and its value is set at 0.01 (p.u.). Mechanical
damping for each spring mass is supposed to be 0.01 (p.u.)
with mutual damping between adjacent masses neglected.

Figure 1 The first benchmark model network

The eigenvalue computation results based on LDAE model
via generalized Schur decomposition method are completely
the same as that of using traditional eigenvalue computation
methods. Since the limit of space, only eigenvalue sensitivity
analysis results are given in this paper.

Series compensation capacitor’s effect on SSO is tested at
first. The results are shown in figure 2. Figures 2 (a) & (c)
give the real part & imaginary part of torsional mode 3 (/3)
calculated through generalized eigen-analysis under different
series compensation level ko(%). From figure 2 (a) we can see
that the real part of /; is positive in certain compensation
range that means torsional mode 3 is unstable in this
compensation range. Figure 2 (c) shows that the imaginary
part of A3 (Im(4;): oscillation frequency) only varies with the
change of k¢ slightly and Alm(/;) is relatively bigger when
torsional mode 3 is unstable, but the maximum shift is less
than 0.5% of the natural frequency of torsional mode 3. We
can calculate the derivative of the real & imaginary part of /3
w.r.t. kc based on figure 2 (a) & (c), which is actually the
slope of curves in figures 2 (a) & (c). And we can also use
equation (32) to compute the eigenvalue A3 sensitivity w.r.t. k¢
directly. The real & imaginary parts of 0.3/0kc w.r.t. different
compensation level k¢ are also plotted and shown in figures 2
(b) & (d). Obviously, the slope of curve in figure 2 (a) is
compared favorably with figure 2 (b), and the slope of curve
in figure 2 (c) is consistent very well with figure 2 (d), which
shows clearly the effectiveness of generalized eigenvalue
sensitivity analysis based on the LDAE model.

At the series compensation level (kc = 58%) where mode /3
is strongly stimulated, intensive sensitivity studies of /; w.r.t



the change of line resistance Ry, exciter gain Kz and bus
fictitious shunt capacitance Cgn, are conducted. The
computer test results are listed in tables 1, 2 and 3
respectively. From table 1 we can see that the real part of 13
decreases when increasing Ry, and torsional mode 3 gradually
tends to be stable. Table 2 shows that the exciter gain Kg has
marginal effect on torsional mode 4; for the tested case. From
table 3 we can find that adding small fictitious shunt
capacitance on buses will bring about neglectable effects on
system torsional oscillation characteristics. However, it can
significantly speed up the modularized construction of LDAE
model when a bus has no charging or shunt capacitance on it.
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Figure 2 Eigenvalue sensitivity analysis for torsional mode 3 with the change of
series compensation

Table I
OA3/ORy evaluation results (43 in 1/sec)

Ry(pu) Re(ls) Im(/) Re(01/0R)  Im(Giy/0R,)
0.01 1.5765 159.9654 -60.801 32.495
0.02 1.1121 160.2142 -34.144 17.632
0.03 0.8384 160.3472 -21.090 9.337
0.04 0.6626 160.4202 -14.019 5.225

Table 1T
0A3/OKg evaluation results (A3 in 1/sec)

Ke(puw) Re(/3) Im(43) Re(04:/0Kg) Im(OA+/0KE)

50 1.1121 160.2141 3.3943e-6 -2.3526e-6

200 1.1126 160.2138 3.3983e-6 -2.3591e-6

Table III
OA3/OC ghune €valuation results (A3 in 1/sec)
Cshum(pu) Re(ﬂ-ft) Im(}%)
0.01 1.0989 160.1912
0.05 1.1121 160.2141

V. CONCLUSION

In this paper, a novel structure-preserving LDAE model for
power system SSO study is derived. The most significant
feature of LDAE-based SSO model is the fast and systematic
modularized formulation of bulk system model with
meaningful system parameters and structures preserved.
Generalized eigen-analysis technique using generalized Schur
decomposition can be directly applied to the LDAE model for

SSO. The results can provide the information of observability
and controllability of algebraic variables on individual SSO
modes. Using LDAE model is also very convenient to conduct
eigenvalue sensitivity analysis with extended system matrix
and generalized right & left eigenvectors. The computer test
results show clearly the effectiveness of the proposed LDAE
model and the relevant generalized eigen-analysis method for
SSO. The LDAE-based SSO study model paves the way to
include HVDC transmission and FACTS device models in
SSO study and get deep insight about their effects on SSO.
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