
 

  
Abstract-- A novel structure-preserving linearized differential 

and algebraic equations (LDAE) model for small signal eigen-
analysis of power system SSO is proposed in this paper. LDAE 
models of various power system components are formed first. 
Modularized establishment of entire system model is then 
conducted quickly according to the network topology. 
Generalized eigenvalue & eigenvector calculation, and eigenvalue 
sensitivity analysis based on the LDAE model are applied 
thereafter. The effectiveness of the proposed LDAE model based 
SSO analysis approach is verified through computer test results. 
The LDAE-based SSO study model and the corresponding 
generalized eigen-analysis approach pave the way for power 
system SSO study with HVDC transmission and/or FACTS 
devices without eliminating any algebraic variables. 
 

Index Terms-- SSO, Structure-preserving, LDAE, Generalized 
eigenvalue sensitivity analysis 

I.  INTRODUCTION 

ubsynchronous Oscillation (SSO) is a complex stability 
issue in power systems and there have been a lot of 

research outputs on SSO in recent decades [1]. The preliminary 
studies on SSO concerned mainly about induction generator 
effect induced by series compensation capacitor. In early 
1970s, series compensation stimulated electromechanical 
torsional interaction, which caused severe torsional 
oscillations and damage of turbine-generator shafts, attracted 
great attention and research work. This led to a new period of 
SSO study. In late 1970’s, HVDC transmission system caused 
SSO was first observed and brought about in-depth studies on 
device-dependent SSO. The application of FACTS technology 
has promoted the study on device-dependent SSO even more 
significantly [2~4]. 

In order to study power system SSO, various methods are 
used [5, 6]. Among them time simulation is the most direct way, 
in which EMT models of power system elements with multi-
mass spring shaft effects and step-by-step numerical 
integration methods are used to get time-evolution of various 
variables in SSO. A distinct advantage of time simulation 
method is that it allows detailed modeling of power system 
elements with system nonlinearity included. Therefore it is 
very useful for the study of transient torque amplifying effect 

                                                           
Chang Yu is with the EEE Department, Hong Kong University, Hong Kong. 

(e-mail: changyu@eee.hku.hk) 
Yixin Ni is with the EEE Department, Hong Kong University, Hong Kong. 

(e-mail:yxni@eee.hku.hk) 

and the examination of SSO damping control performance 
under large disturbances. However, using EMT models for 
SSO study is time consuming for its extremely small time step 
especially when there are HVDC transmission and/or FACTS 
devices in the studied power system. Besides, time simulation 
is poor in physical transparency and difficult to reveal SSO 
principles. Small signal stability study is another method 
widely used for SSO study, where the power system model is 
linearized around system operation point and converted to a 
standard form of xAx S=&  (AS is the system state-space 

matrix). Eigen-analysis is then conducted to get deep in-sight 
of system SSO characteristics. Eigen-analysis is an accurate 
method which can examine the effects of system control and 
parameters on damping the torsional modal oscillation. With 
the help of mature linear control theories, advanced SSO 
damping control can be realized. However, in a real power 
system with HVDC transmission and/or FACTS devices, it is 
time-consuming in deriving system matrix AS with all the 
algebraic variables eliminated. Moreover, after reduction of 
algebraic variables, it may be inconvenient to conduct certain 
eigenvalue sensitivity analysis based on AS. These issues in 
conventional eigen-analysis will be addressed in this paper. In 
recent years frequency-scanning based methods become 
computationally attractive because they can provide system 
damping information over the entire subsynchronous 
frequency bands [7], although they are not so precise as eigen-
analysis method. Among them the complex torque coefficient 
method (or say torque per unit speed method) is most suitable 
to real power system SSO analysis with the capability of 
showing clearly the system electric damping effects over SSO 
frequency band. The method suggested in this paper can be 
extended to realize the frequency-scanning function and get 
torque per unit speed information. 

In this paper, a novel structure-preserving linearized 
differential and algebraic equations (LDAE) model for small 
signal eigen-analysis of SSO is proposed. In the LDAE 
approach, the individual power system components described 
by their LDAEs are acting as building blocks, and the system 
model can be established quickly and easily according to the 
network topology. This method is very suitable for SSO study 
of power systems with HVDC transmission and/or FACTS 
devices without the need of eliminating algebraic variables. 
Generalized eigen-analysis technique [10] can be directly 
applied to the LDAE model. The results can provide useful 
information of observability and controllability of algebraic 
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variables on individual SSO modes. Since the LDAE model 
preserves all algebraic variables and system structure, it is 
also very convenient to conduct eigenvalue sensitivity analysis 
based on the extended system matrix and generalized right & 
left eigenvectors. Furthermore, from LDAE model the 
complex torque coefficient can be easily calculated, which 
will be discussed in detail in another paper. The effectiveness 
of the proposed LDAE model based SSO analysis is verified 
with computer test results of IEEE First Benchmark Model. 
The LDAE-based SSO study model and its corresponding 
analysis approach pave the way to include HVDC 
transmission and FACTS device models in SSO study and get 
deep insight about their effects on SSO. 

The paper is arranged as follows. The structure-preserving 
LDAE model for SSO is derived in section 2. The LDAE-
model-based eigenvalue & eigenvector computation, 
eigenvalue sensitivity analysis for SSO are presented in 
section 3, with computer test results given in section 4 and 
conclusions drawn in section 5. 

II.  STRUCTURE-PRESERVING LDAE MODEL FOR SSO STUDY 

Power systems can be described by a set of nonlinear 
differential and algebraic equations (DAE): 

⎩
⎨
⎧

=
=

y)g(x,0

y)f(x,x&
 

where x: the vector of state variables; y: the vector of 
algebraic variables 

Linearizing the above equations around the operation point,  
we have: 
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From (1), we can eliminate all algebraic variables y if D-1 
exists, which leads to linearized ordinary differential 
equations (LODE) model in state space: 

xAx ∆=∆ S
&                               (2) 

where system matrix AS = A - BD-1C . Equation (2) is widely 
used for conventional eigen-analysis as mentioned above. 

However, to eliminate all the algebraic variables in real 
power systems with HVDC transmission or/and FACTS 
devices might be time consuming. Moreover the item of 
“BD-1C” makes AS unable to be expressed by system 
parameters explicitly, which, under certain circumstances, 
increases the difficulty in eigenvalue sensitivity analysis. In 
this paper, the system sub-matrices A, B, C, D will be kept, 
and eigen-analysis for SSO study will be based on the system 
LDAE model (1) directly. The details of LDAE formation 
procedure for SSO study are given below. 

A.  Power System Component Model 

Power system component models for SSO study can be 

found in [9]. After linearization of component models at 
operation point, we can get LDAE models with algebraic 
variables preserved for various components as follows. 

1). The Synchronous Machine Model 

a)   Spring-mass Shaft System 
The shaft of a turbine generator can be expressed as a six-

mass spring system, and its LDAE model is (X: state 
variables; Y: algebraic variables): 

TeSTeSSSS YBXAX +=&                         (3) 

where XS = (∆δ1…∆δ6 , ∆ω1…∆ω6)
T: angle and speed 

increments of the six-mass shaft; YTe = ∆Te: electromagnetic 
torque of generator mass (For simplicity, the speed governor’s 
dynamics is neglected), which can be expressed as a function 
of generator winding currents and flux linkages in d-q 
coordinates (in LDAE format): 

TeTeiiiTeGGTe YDYDXC0 ++=                 (4) 

where XG = (∆ψd , ∆ψq , ∆ψf , ∆ψD , ∆ψg , ∆ψQ)T: generator 
winding flux linkages in d-q coordinates assuming a generator 
has six windings; and Yi = (∆id , ∆iq , ∆if , ∆iD , ∆ig , ∆iQ)T: 
generator winding currents in d-q coordinates. 

To keep YTe and (4) explicitly in system model is good for 
future frequency-scanning calculation. 

b) Electromagnetic Circuit 
The winding voltage equations in d-q coordinates in LDAE 

format are: 

uGuiGiGGGSGSG YBYBXAXAX +++=&             (5) 

where Yu = (∆ud , ∆uq , ∆uf)
T: generator winding voltages in d-

q coordinates with ∆uD = ∆ug = ∆uQ ≡ 0. 
The linearized flux linkage equations (in d-q coordinates) 

are: 

iGiGGi YDXC0 +=                                  (6) 

2). Excitation System Model 

In this paper a 1st order excitation system is considered for 
simplicity, and its LDAE model is: 

uEuEEEE YBXAX +=&                             (7) 

uEuEEu YDXC0 +=                                (8) 

where XE = ∆Ef: output voltage of excitation system. 
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X
E ∆=∆  is expressed as (8). 

3). Transmission Network Component Model 

All ac network components adopt EMT models in x-y 
synchronous coordinates. 

a) Model for AC Transmission Lines without Series 
Capacitor Compensation (line type-A) 

The π-equivalent circuit is used to describe ac transmission 
lines with line charging capacitance considered separately. 
Hence the LDAE model for ac line l (i.e. an R-L branch) from 
bus i to bus j without series capacitor compensation is: 

UAUAAAA XAXAX +=&                           (9) 

where XA = (∆ilx, ∆ily)
T: line current; XU = (…∆uix , ∆uiy…∆ujx 

, ∆ujy…)T: all the bus voltages except the generator terminal 



 

buses. XU are treated as state variables because of the 
existence of line charging capacitance. 

b) Model for Special AC Transmission Lines with Series 
Capacitor Compensation (line type-B) 

Similarly, we can derive the LDAE model for branch k (i.e. 
an R-L-C branch) from bus i to bus j with series capacitor 
compensation: 
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where XB = (∆ikx, ∆iky)
T: line current; XC = (∆uCx, ∆uCy)

T: 
voltage drop on series compensation capacitor. 

c) Model for Transformer Branches 

If we only consider short circuit impedance of transformer, 
the transformer branch can be dealt with in the same way as 
type-A transmission lines. If transformer tap ratios should be 
included, then additional algebraic equations need to be added 
to describe the voltage and current relations between the 
primary and secondary windings of an ideal transformer. In 
this paper, only transformer short circuit impedance is 
considered in SSO study. The LDAE model for transformer 
branch is: 

)()( xy
u
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where XT = (∆iTx, ∆iTy)
T: transformer branch current; Yu

(xy)
＝

(∆ux 
(G), ∆uy 

(G))T: generator terminal bus voltage in x-y 
synchronous coordinates. If a transformer is not connected to 
generator directly, then the corresponding third item on the 
right hand side of (11) is equal to 0. 

d) Model for Equivalent Shunt Capacitance Branches 

For each bus, line charging capacitance and shunt 
compensation capacitance will be merged together as an 
equivalent capacitance. Its LDAE model will be: 

)()( C
i

C
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where Yi
(C)

＝ (∆ix 
(C), ∆iy 

(C))T: shunt capacitance branch 
current. 

e) Model for Load Branches 

The load is modeled as linear impedance and its LDAE 
model is: 

ULULLLL XAXAX +=&                       (13) 

where XL＝(∆ix 
(L), ∆iy 

(L))T: load branch current. 

B.  The overall System LDAE Model for SSO Analysis 

Based on the component models described above, the 
overall system linearized DAE model for SSO analysis can be 
built up according to the network topology. Some key points 
will be emphasized here before constitution of system model. 
(i) As shown in component LDAE models, we preserve the 
algebraic variables Yu and Yi (generator terminal voltages and 
injection currents in d-q coordinates) and their companion 
variables Yu 

(xy) and Yi
(xy) ＝ (∆ix 

(G), ∆iy 
(G))T in x-y synchronous 

coordinates. Hence, the algebraic equations for coordinates 
transformation between d-q and x-y can be directly included 
in system model as shown in (14): 
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where f can be u or i to denote generator terminal voltage or 
generator injection current respectively; δ: rotor angle of 
generator-mass which is the leading angle of its q-axis w.r.t. 
the synchronous coordinate x-axis. 

Keeping (14) in DAE model is beneficial to fast interface 
of generator with ac network. Equation (14) for generator 
terminal voltages and injection currents coordinates 
transformation can be rewritten to: 
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(ii) According to the network topology, the following bus-line 
incident matrixes can be obtained. CNA, CNB, CNT, CNL, DNG 
and DNC are the incident matrices of buses w.r.t. type-A lines, 
type-B lines, transformer branches, load branches, generator 
branches, and bus equivalent shunt capacitance branches 
respectively. Based on above incident matrixes, bus injection 
current balance equations based on KCL will be: 

)()( C
iNC
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 (16) 
Equations (3) ~ (13), (15) and (16) constitute the entire 

system structure-preserving LDAE model for SSO study as 
shown in (17), where the algebraic equations include the 
generator electromagnetic torque computation equations; the 
generator winding flux linkage equations; the relation of Ef 
and uf; the coordinates transformation equations for generator 
currents and voltanges; and bus injection current balance 
equations. 

A brief discussion on (17) is made as follows. 
(i) Matrices A, B, C, and D are extremely sparse. In A and D, 
the non-zero block-matrices are mainly on the diagonal and 
most of them are also very sparse. Hence sparse matrix 
techniques can be use to conduct small signal eigen-analysis. 
The computation work can decrease noticeably, which is 
significant to SSO study of real power systems. 
(ii) The structure-preserving formulation approach breaks 
down the modeling issue into two parts, one is element-
modeling part and another is network topology and integration 
part. Therefore, if we want to study the impacts of HVDC 
transmission and/or FACTS devices on SSO, we can just 
easily add their individual LDAE models to (17); and then 
modify the corresponding bus-line incident matrix to include 
their injection current effects to the bus injection current 
balance equations (16). The process is simple and direct. 
(iii) The generalized eigenvalue and eigenvector calculation 
can be directly applied to the LDAE model. The 
corresponding generalized eigenvectors can provide the 
information of observability and controllability of both state 
and algebraic variables on a certain SSO mode. This is a 
significant feature of the suggested method, which can 
provide deep insight into system SSO characteristics and is 
beneficial to controller design for SSO damping. 
(iv) The suggested LDAE model formulation can avoid 
sacrificing the physical structure transparency due to the 
elimination of algebraic variables in traditional LODE 



 

modeling. Since system parameters can be shown explicitly in 
the LDAE model, it is convenient to make eigenvalue 

sensitivity analysis. 
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III.  EIGENVALUE & EIGENVECTOR COMPUTATION, EIGENVALUE 

SENSITIVITY ANALYSIS BASED ON LDAE MODEL 

A.  Eigenvalue and Eigenvector Computation Based on LDAE 
Model 

LDAE model (17) can be written as: 
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For the traditional eigen-analysis, we usually eliminate 
algebraic variables Y and get: 

XAX S=&                                (19) 

where AS(n×n) = A - BD-1C if D-1 exists.  
Clearly, AS might not be sparse. Its physical transparency 

may be lost due to the elimination of algebraic variables. 
Eigenvalue and eigenvector computation based on (19) is 
given in (20): 
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where I is identity matrix; ei and fi are the right and left 
eigenvectors with respect to the ith eigenvalue (λi) of AS. The 
eigenvectors ei and fi can be normalized to satisfy ei

T fi = 1. 
For LDAE model (18), we shall conduct generalized 

eigenvalue and eigenvector calculation using generalized 
Schur decomposition method [10]. For the suggested LDAE 

model (18), if we define ⎥
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 (where n is the number of 

the state variables in X and m is the number of the algebraic 
variables in Y), we can rewrite (18) into: 

TATH
~~ =&                                 (21) 

The solution of equation (21) is equivalent to solve the 
generalized eigenvalue problem (22): 

TATH
~~ =λ                                (22) 

If H
~

 is nonsingular, we can convert the problem to a 

standard eigen-problem TTAH λ=− )
~~

( 1  to solve the 

generalized eigenvalues of (22). However, for our case, H
~

 is 

singular and 1~ −H does not exist. An advanced eigenvalue 
computation technique, i.e. generalized Schur decomposition 
method [10], is adopted, through which the inverse calculation 

of H
~

 can be avoided and the original system eigenvalues can 
be calculated efficiently. Hence this is an ideal method to 
solve the special generalized eigen-problem with rank-

deficient H
~

. 
According to generalized Schur decomposition for a pair of 

complex square matrices ( H
~

, A
~

) of same dimension (l×l), we 
can find a pair of unitary matrices Q(l×l)  and Z(l×l) ( IQQ =⋅ H , 

IZZ =⋅ H ) such that: 

HZHQ ˆ~ =H , AZAQ ˆ~ =H                    (23) 

where both Ĥ and Â are upper triangular matrices.  
 Left-multiplying (22) by Q we have: 

TZZAQTZZHQ )(
~

)(
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According to (23), equation (24) will be (define T ′ = ZT ): 
'' ˆˆ TATH =λ                                    (25) 

Equation (25) is equivalent to solve homogeneous linear 

equations 0TAH =− ')ˆˆ(λ . The sufficient and necessary 

condition for the existence of non-zero T ' is:  
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 Since both Ĥ and Â are upper triangular matrices, (26) can 
be written as: 
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where iiĤ and iiÂ : the ith diagonal element of Ĥ and Â  

respectively. 
Therefore λ can be solved easily as: 
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where ε = diag (ε1…εi…εm); εi ≈ 0 (i = 1, …, m): infinitesimal 
time constant in nature. 

Then after Schur decomposition, there will be some 

diagonal elements iiĤ of Ĥ  with extremely small values, 

which correspond to εi in H
~

 and lead to infinite eigenvalue λi 
in (27). This can easily be identified as “fictitious” 
eigenvalues and spurned. 

After eigenvalue λi (i=1,…,n) calculation, its corresponding 

generalized right (left) eigenvector ie~ ( if
~

) can be calculated 

by: 
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easy to derive: 
e′i = -D-1Cei; , f

 
′i = - (B D-1)T fi 

It is well known that (ei, fi) provides the information of 
observability and controllability of state variables X on mode 
λi, while (e′i, f

 
′i) provides the similar information of algebraic 

variables Y on mode λi. The information is very useful for 
designing controllers for SSO damping. In this paper, the 
generalized eigenvectors are normalized such that (29) is 
satisfied: 

1~~~ T =ii eHf                                    (29) 

B.  Eigenvalue Sensitivity Analysis Based on LDAE Model 

The formula for generalized eigenvalue sensitivity analysis 
is derived below. 

Differentiating iii eHeA ~~~~
λ=  with respect to a certain 

parameter K yields ( 0H =∂∂ K/
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Multiplying (30) by T
if

~
 from the left gives: 
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From (29) we can see the first item on the right hand side 
of (31) is actually Ki ∂∂ /λ ; and the last items on both sides of 

(31) are equal and hence can be eliminated. Finally we can 
reach: 
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                            (32) 

There are only a few elements in A
~

with parameter K 

explicitly existing, so K∂∂ /
~
A is extremely sparse which makes 

eigenvalue sensitivity analysis very efficient based on the 
LDAE model. When K exists in D, the advantage of (32) is 
apparent. 

IV.  COMPUTER STUDY RESULTS 

The IEEE first benchmark model [8] is taken as the test 
system to conduct eigen-analysis using proposed LDAE 
model and methods. The test results are presented below. 

The studied system is shown schematically in figure 1 and 
the detailed system parameters are referred from [8]. For the 
convenience of modular construction of the LDAE model, we 
add a fictitious shunt capacitance on each bus except 
generator bus, and its value is set at 0.01 (p.u.). Mechanical 
damping for each spring mass is supposed to be 0.01 (p.u.) 
with mutual damping between adjacent masses neglected. 

TX TR LX LR CX
SYSX

∞

 
Figure 1 The first benchmark model network 
 

The eigenvalue computation results based on LDAE model 
via generalized Schur decomposition method are completely 
the same as that of using traditional eigenvalue computation 
methods. Since the limit of space, only eigenvalue sensitivity 
analysis results are given in this paper.  

Series compensation capacitor’s effect on SSO is tested at 
first. The results are shown in figure 2. Figures 2 (a) & (c) 
give the real part & imaginary part of torsional mode 3 (λ3) 
calculated through generalized eigen-analysis under different 
series compensation level kC(%). From figure 2 (a) we can see 
that the real part of λ3 is positive in certain compensation 
range that means torsional mode 3 is unstable in this 
compensation range. Figure 2 (c) shows that the imaginary 
part of λ3 (Im(λ3): oscillation frequency) only varies with the 
change of kC slightly and ∆Im(λ3) is relatively bigger when 
torsional mode 3 is unstable, but the maximum shift is less 
than 0.5% of the natural frequency of torsional mode 3. We 
can calculate the derivative of the real & imaginary part of λ3 
w.r.t. kC based on figure 2 (a) & (c), which is actually the 
slope of curves in figures 2 (a) & (c). And we can also use 
equation (32) to compute the eigenvalue λ3 sensitivity w.r.t. kC 
directly. The real & imaginary parts of ∂λ3/∂kC w.r.t. different 
compensation level kC are also plotted and shown in figures 2 
(b) & (d). Obviously, the slope of curve in figure 2 (a) is 
compared favorably with figure 2 (b), and the slope of curve 
in figure 2 (c) is consistent very well with figure 2 (d), which 
shows clearly the effectiveness of generalized eigenvalue 
sensitivity analysis based on the LDAE model. 

At the series compensation level (kC = 58%) where mode λ3 
is strongly stimulated, intensive sensitivity studies of λ3 w.r.t 



 

the change of line resistance RL, exciter gain KE and bus 
fictitious shunt capacitance Cshunt are conducted. The 
computer test results are listed in tables 1, 2 and 3 
respectively. From table 1 we can see that the real part of λ3 

decreases when increasing RL, and torsional mode 3 gradually 
tends to be stable. Table 2 shows that the exciter gain KE has 
marginal effect on torsional mode λ3 for the tested case. From 
table 3 we can find that adding small fictitious shunt 
capacitance on buses will bring about neglectable effects on 
system torsional oscillation characteristics. However, it can 
significantly speed up the modularized construction of LDAE 
model when a bus has no charging or shunt capacitance on it. 
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Figure 2 Eigenvalue sensitivity analysis for torsional mode 3 with the change of 
series compensation 

 
Table I 

∂λ3/∂RL evaluation results (λ3 in 1/sec) 
RL(pu) Re(λ3) Im(λ3) Re(∂λ3/∂RL) Im(∂λ3/∂RL) 
0.01 1.5765 159.9654 -60.801 32.495 
0.02 1.1121 160.2142 -34.144 17.632 
0.03 0.8384 160.3472 -21.090 9.337 
0.04 0.6626 160.4202 -14.019 5.225 

 
Table II  

∂λ3/∂KE evaluation results (λ3 in 1/sec) 
KE(pu) Re(λ3) Im(λ3) Re(∂λ3/∂KE) Im(∂λ3/∂KE) 
50 1.1121 160.2141 3.3943e-6 -2.3526e-6 
200 1.1126 160.2138 3.3983e-6 -2.3591e-6 

 
Table III  

∂λ3/∂Cshunt evaluation results (λ3 in 1/sec) 
Cshunt(pu) Re(λ3) Im(λ3) 

0.01 1.0989 160.1912 
0.05 1.1121 160.2141 

V.  CONCLUSION 

In this paper, a novel structure-preserving LDAE model for 
power system SSO study is derived. The most significant 
feature of LDAE-based SSO model is the fast and systematic 
modularized formulation of bulk system model with 
meaningful system parameters and structures preserved. 
Generalized eigen-analysis technique using generalized Schur 
decomposition can be directly applied to the LDAE model for 

SSO. The results can provide the information of observability 
and controllability of algebraic variables on individual SSO 
modes. Using LDAE model is also very convenient to conduct 
eigenvalue sensitivity analysis with extended system matrix 
and generalized right & left eigenvectors. The computer test 
results show clearly the effectiveness of the proposed LDAE 
model and the relevant generalized eigen-analysis method for 
SSO. The LDAE-based SSO study model paves the way to 
include HVDC transmission and FACTS device models in 
SSO study and get deep insight about their effects on SSO. 
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