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ABSTRACT

This paper proposes a new robust Kalman filter
algorithm under outliers and system uncertainties. The
robust Kalman filter of Durovic and Kovacevic is extended
to include unknown-but-bounded parameter uncertainties in
the state or observation matrix. We first formulate the
robust state estimation problem as an M-estimation problem,
which leads to an unconstrained nonlinear optimization
problem. This is then linearized and solved iteratively as a
series of linear least-squares problem. These least-squares
problems, subject to the bounded system uncertainties using
the robust least squares method proposed by A. Ben-Tal and
A. Nemirovski.  Simulation results show that the new
algorithm leads to a better performance than the
conventional algorithms under outliers as well as system
uncertainties.

1. INTRODUCTION

Since its introduction in the 60’s, the Kalman filter has
found numerous applications in automatic control,
navigation, and communications. The original Kalman
filter addresses the optimal state estimation of a linear state
space system in the least mean squares sense with state and
measurement uncertainties modeled by Gaussian random
processes. Since the mean squares performance criterion is
closely to the assumption that the state density is Gaussian
distributed, its performance will degrade significantly when
the state or measurement noises are non-Gaussian. A
frequently encountered class of distribution of interest in
practice is impulsive noise or outliers with a much heavier
tails than the Gaussian distribution. They occur either
naturally or in other man-made sources. Although it is
possible to generalize the Kalman filter to more general
distributions other than the Gaussian distribution, the
estimation of their parameters is usually quite complicated,
especially for transient disturbances with impulsive nature.
In order to make the Kalman filtering algorithm more
robust against such outliers, several algorithms based on the
concept of robust statistics have been proposed. Masreliez
and Martin [3] first applied the min-max score function
approach in robust statistics originally proposed by Huber
[4] to combat the outliers. However, the linear
transformation proposed in [3] does not generally exist and
is somewhat difficult to apply. Recently, Durovic and
Kovacevic [1] established the equivalence between the
Kalman filter algorithm and a particular least-squares
regression problem. In other words, the conventional
Kalman filter problem can also be viewed and solved as this
linear least-squares problem. Further, the use of the least-
squares criterion is equivalent to saying that the noise
involved in the least-squares problem is Gaussian
distributed. This further suggests that if the state or
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measure noises exhibit impulsive behavior, a better
solution is to replace the least-squares estimation by more
robust M-estimation technique in robust statistics. Durovic
and Kovacevic also employed the method introduced by
Myers and Tapley [5] method to estimate the unknown a
priori state and observation noise statistics in the robust M-
estimation framework. Besides the robust statistics
approach, which is targeted to the detection and
suppression of transient outliers, another focus in robust
Kalman filter research is to address the uncertainties of the
state-space models arising from imprecise measurements
and nonlinear effects. Since these effects are sometimes
very difficult to model precisely, it is desirable to have the
Kalman filter robust to bounded variations or uncertainties
in the system parameters which are simpler to quantify in
practice. In the control community, the stability problem
is of paramount importance, and thus the Kalman filter
should optimize not only the given performance criteria,
but also the stability margin under the given and bounded
system uncertainties. This gives rise to a number of robust
Kalman filter algorithms [6, 7, and more] and most of
them are associated with the solving of a set of linear
matrix inequalities (LMI) or a semi-definite programming
(SDP) problem.

To the best knowledge of the authors, robust Kalman
filters that address both the outliers and system
uncertainties have not been studied before. In this paper,
we shall focus on the robust state estimation problem with
outliers and system uncertainties using the Kalman filter
framework. More precisely, we shall extend the robust
Kalman filter of Durovic and Kovacevic to include
unknown-but-bounded  parameter  uncertainties  in
observation matrix of the system model. Similar to [1], we
first formulate the robust state estimation problem as an
M-estimation problem, which leads to an unconstrained
nonlinear optimization problem. This is then linearized
and solved iteratively as a series of linear least-squares
problem. We then solve these least-squares problems,
subject to the bounded system uncertainties using the
robust least squares method proposed by A. Ben-Tal and A.
Nemirovski [2]. Since the robust least-squares problem
can be formulated as a SDP problem, it gives rise to an
iterative algorithm, involving a SDP at each step, which
usually terminates in a few steps. The paper is organized
as follows. Section 2 briefly reviews the formulation of the
conventional Kalman filter as a certain linear regression
problem. Section 3 is devoted to the robust Kalman filter
based on M-estimation for outlier suppression. Section 4
extends this algorithm to include system uncertainties,
based on the SDP formulation of the robust least squares
problem. The effectiveness of the proposed algorithm is
demonstrated by simulation results and comparison in
Section 5. Conclusions are drawn in Section 6.



2. KALMAN FILTER AND LINEAR REGRESSION
The discrete Kalman filter is a set of mathematical
equations to estimate the state x(k) of a linear discrete-time
state-space model:
x(k +1) = F(k)x(k) + G(k)w(k) )]
z(k) = H(k)x(k) + v(k) (2
where x(k), z(k),
state vector, observation vector, state noise, and observation
noise at time instant k. F(k), G(k), and H(k) are the

state transition matrix, state noise transition matrix and
observation matrix, respectively. w(k) and v(k) are

w(k), and v(k) are respectively the

assumed to be uncorrelated white noises with covariances:

E{V—V(’f )}[v_f ) v o } = diag(Q(k)5,,,R(K)3,,) ,
v(j)
(3)

where E{} is the expectation and &, is the Kronecker’s
delta symbol (5, =0 for j#k and 6, =1 for j=k).

If the state density is Gaussian distributed, then the
optimal state estimator in the least mean squares criterion
can be computed by the Kalman filter. Let x(k/m)

(m=k—-1k) represent the estimator of x(k) given the
measurement up to time instant m {z(j),j <m} , and
P(k/m) the corresponding error covariance matrix of x(k).
The standard Kalman filter recursions are:

2k +1/ k) =F()i(k +1/k) (4)

P(k+1/k)=F(k)P(k/ k)F” (k)+G(k)QK)G (k)  (5)

e(k) = z(k) -H(k)x(k/ k1) (6)

K(k) =P(k/k-1)H" (k)[H(k)P(k/k —1)H' (k) -
+R(k)]™

x(k/k) = x(k/k—1)+K(k)e(k) (8)

P(k/k)=[1 - K(YH(K)P(k / k1), )

where e(k) is the prediction error of the observation vector,
and its covariance matrix is H(k)P(k/k —1)H" (k) + R(k) .

Combining (1) and (2) together, we get the following
equivalent linear model:

{ I }z(k) _ {F(k—l)g(k—l/k—l)}%(k). a0

H(k) z(k)
where I is the identity matrix,
{F(k —D[x(k —1) = £k =1/ k =1)]+ G(k = w(k — 1)}
e(k) =
—v(k)
P(k/k-1) 0

and  Ele(k)e’ (k)] = { } = S(k)S” (k)

0 R(k)
S(k) can be obtained by computing the UD factorization or
Cholesky decomposition of E[e(k)e” (k)] where P(k/k—1)
can be obtained from (5). Multiplying both sides of (10) by
S7'(k) , we get

Y(k) = X(k)p(k) +&(k), (11)
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where  X(k)=S"' (k)[H(k)

} . &) =-8"'(ke(k) ,

x(k/k-1)

EGE

Note that, after the multiplying S™'(k) operation, the
residual (k) are now whiten, since E[§(k)E (k)]=1.
(11) is nothing but a standard least-squares regression with
solution given by [1]:

Bk =X (D)X(k) " X" (F)Y(k), (12)

and covariance
E[(B(k) = BUONBR) = p(k)" 1= (X" ()X(k) " (13)

In other words, the Kalman filter can also be thought
of as the solution to a weighted least-squares problem with

P(ky=%(k/k) and P(k/k)=cov(B(k)) . Both the

Kalman filter and the linear least-squares regression are
based on the Gaussian assumption, so their performance
will deteriorate considerably when the observation or state
noise are contaminated by non-Gaussian impulsive noise.
In the next section, we will introduce the robust form of
(12) to improve the robustness of the state estimation.

3. IMPROVED ROBUST KALMAN FILTER
AGAINST OUTLIERS

Blk)=x(k),and Y(k)=S" (k){

Equation (12) is solved by minimizing the following
least-squares cost function J, (/) :

Bk) = arg méin J,(B)=arg mgin Z::|e, (k)
) - (14)
=argmin 3 (y, (k) - x," (k) B)’

where y, (k) is the i -th element of Y(k), x,.T(k) is the
i -th row of X(k), e, (k) is the corresponding estimation
error, and n is the dimension of Y(k) .

In M-estimation, a nonlinear score function p()

instead of the quadratic function in (14) is minimized to
restrain the adverse effect of outliers:

(k) = argmin J, () = argmin'Y ple, (k
fi =argminJ, () = argmin 3~ p(e, ()
) (15)
=argmin 3 p(y,(k) = x," (k) )
= =l
A commonly used function for p(-) is the Huber function:
Ele-£712, |z ¢&
e’ /2, |e|< & ’
where & is the threshold parameter which should be

ple)= (16)

carefully selected so that the estimation error e, can be de-
emphasized when |el.| >¢& as shown in Fig. 1. Equating

the first partial derivatives with respect to the elements of

A

pk) , say ,[;’j(k) , j=1,---,p, to zero, we obtain the

following necessary condition for optimality:



>, (BP0~ WBGR) =0, j=Lp  (17)

where x, (k) is the element in the i -th row and j -th

column of X(n) and W()=p'() as shown in Fig.l.

Durovic and Kovacevic gave a weighted least-squares
solution to solve (17) and here we use the iterative
reweighted least-squares (IRLS) method to achieve more
precise solution.

1. Choose a starting value for é . (k): é . (k)= é’(k -1).
2. Compute the estimation residuals:
e, ()= y,()~x" (f, (k). (18)
3. Calculate the updated estimate of ém (k) by
B (k)= (X" ()R, (k ~DX(k) ' X" (W), (k ~DY (k) ,

(19)
where Q (k —1) = diag{w, (k—1),-, 0, (k—=1)},

o, (k=1)="¥(e, (k)/e, (k).
4. Use the updated ém(k) to step 2 to get the new

residuals e, (k) and repeat the process until converge.

Experiments showed a good and fast converge of the
proposed algorithm. Generally, the number of iterations
was about s =3 ~5 and never exceeded 10. The threshold
parameters & in (16) can be determined by the method proposed

in [8]. & canbe chosen as &, = 2.5765, (k) , where &, (k) is

the estimated standard deviation of the estimation error. The
robust estimation of &, (k) can be implemented by

6. (k) = 2,6. (k=1)+c,(1- 2, )med (4, (k) , (20
¢, =1.483(1+5/(N,-1)) is a
correction factor, med(-) is the
4, (k)= e} (k),....e’(k—N,+1)} , A, is the forgetting

factor and N, is the length of the estimation time window.

where finite sample

median  operator,

4. ROBUST KALMAN FILTER AGAINST SYSTEM
UNCERTAINTY

As mentioned earlier, the matrices F , G, and H
might be subject to uncertainties, which are more
convenient in practice to be modeled as unknown-but
bounded structured parametric uncertainty. A “robust”
Kalman filter should then minimize the upper hound of the
least-squares estimation error in the presence of these
uncertainties. The least-squares formulation of the Kalman
filter in (11)-(13) allows us to solve this problem as a robust
least squares problem with structured parametric
uncertainty, which has received considerable attention
recently in SDP community.

Assume that the observation matrix can be represented
as H=H, +AH , where H, is the known observation
matrix and AH is the unknown but bounded uncertainty,
which is assumed to be given by the following structured
model:
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AH=>"u, H,

i
i=1

i
i=1

ey

H, are the vertices of the polytope, which contains the

1
U, = {(H)‘EIMH eR'u, u, <LH=H, + zuﬁiH}.

uncertainty AH . From (11) and X(k)=S" (k){H(k)}’

we can see that there is a corresponding uncertainty in X
and Y:

Y (k) = (X(k) + AX(K)) B(k) + &(k) + A&(K) . (22)
and they can be modeled in a similar form as follows:
U= {(X,Y)|Elu eRu"u<l:

[X;Y]:[X09Y0]+Zui[xi;Y1’]}’ (23)

i=1
AX = zllu,.x, ,and AY = Zl:u,.Y,. .
i=1 i=l

Because of the uncertainties in X(k) and Y(k) , any
particular choice S would lead to many different residual

norms: H(X +AX)f -~ (Y +AY)

, one for each possible
2

choice of X and Y in the area X+AX and Y +AY ,
respectively. We want to choose an estimate é that
minimizes the maximum possible residual norm. That is:
minimize maximize H(X + AX)é -(Y+ AY)”2 » (24)
or equivalently:

minimize o,

sibjectto  [(X+AX)F-(Y+av)| <5, (@29)
— 2

It can be shown in [2] this so-called robust least squares
problem with the uncertainty model in (23) can be
expressed in a set linear matrix inequalities (LMIs) or
semidefinite programming (SDP) problem. More
precisely, the robust feasible solution of S can be solved

if and only if there exist real & and x that the triplet
( é, J, u) satisfies the following LMIs:

o) X, B8-Y, | X, B-Y, X, B-Y,
X, B-Y, )" | 6-n
X, g-YI' 7 >0-
[X,E—Y,]T H

(26)
The geometric interpretation of the least-squares
formulation with the given uncertainty model is illustrated
in Fig. 2. The two pentagons represent the two possible
areas of X(k) and Y(k) , respectively. The optimal

estimation of £ is not the least-squares solution obtained

“from point to point”, but “from area to area”.



5. SIMULATION RESULTS

Our simulation system is a three-state track model with
the following parameters:

101 0 0 0.1
F=[ 0 101 0 |, G=|02], H=[1+5 0 -1].
0 0 101 0.5

The first element in H has a parametric uncertainty
|6|<0.5 and H, =[1 0 —1]. The state noise w(k) is

assumed to be zero-mean white Gaussian noise with a
variance of 0.001, and the random observation noise v(k)

is generated from the following contaminated Gaussian
noise model with probability distribution function (p.d.f.):

p()~(1-&)-N(|0,0.01)+&-N(-]0,0,°)°,
0<e<l, o, >1.
Here, & =0 corresponds to Gaussian noise and a value of
& =0.15 and o, =10 is used to simulate the non-Gaussian
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noise and outliers. Simulation results are compared in
terms of the cumulative estimation error (CEE):
. N
CEE(k) = lzw )
= VOF
Fig. 3 shows the results of the various algorithms in
Gaussian noise. We can see that the difference between the
conventional Kalman filter and the robust Kalman filter is
very small. This indicates the robust Kalman filter also
works well in Gaussian noise environment. However, it can
be seen from Fig. 4 that in non-Gaussian noise environment,
the robust Kalman filter against outliers can achieve a much
better performance. We also see that, in both noise
circumstances, the robust Kalman filter with system
uncertainty gives the best performance because prior
information of the system uncertainty has been taken into
account in the robust least squares framework.

6. CONCLUSION

(28)

A new robust Kalman filter algorithm under outliers and
system uncertainties is presented. It extends the robust
Kalman filter of Durovic and Kovacevic to include
unknown-but-bounded parameter uncertainties in the state
or observation matrix. The robust state estimation problem
is first formulated as a M-estimation problem, which leads
to a unconstrained nonlinear optimization problem. This is
solved iteratively as a series of linear least-squares problem
subject to the bounded system uncertainties using the robust
least squares method proposed by A. Ben-Tal and A.
Nemirovski.  The improved robustness of the proposed
algorithm is illustrated by computer simulation results.
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Fig. 1: Huber function p(e) and ‘Y(e) .
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Fig. 2: Geometric interpretation of the robust least-squares
formulation with uncertainty.
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Fig. 3: Estimation error comparison in Gaussian noise:
conventional Kalman filter (line with triangles), robust Kalman
filter against outliers (line with circles), and robust Kalman filter
against uncertainty (line with squares).
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Fig. 4: Estimation error comparison in non-Gaussian noise:
conventional Kalman filter (line with triangles), robust Kalman
filter against outliers (line with circles), and robust Kalman filter
against uncertainty (line with squares).



