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ABSTRACT 

This paper proposes a new robust Kalman filter 
algorithm under outliers and system uncertainties.  The 
robust Kalman filter of Durovic and Kovacevic is extended 
to include unknown-but-bounded parameter uncertainties in 
the state or observation matrix.  We first formulate the 
robust state estimation problem as an M-estimation problem, 
which leads to an unconstrained nonlinear optimization 
problem.   This is then linearized and solved iteratively as a 
series of linear least-squares problem.  These least-squares 
problems, subject to the bounded system uncertainties using 
the robust least squares method proposed by A. Ben-Tal and 
A. Nemirovski.   Simulation results show that the new 
algorithm leads to a better performance than the 
conventional algorithms under outliers as well as system 
uncertainties. 

1. INTRODUCTION 

Since its introduction in the 60’s, the Kalman filter has 
found numerous applications in automatic control, 
navigation, and communications.  The original Kalman 
filter addresses the optimal state estimation of a linear state 
space system in the least mean squares sense with state and 
measurement uncertainties modeled by Gaussian random 
processes.  Since the mean squares performance criterion is 
closely to the assumption that the state density is Gaussian 
distributed, its performance will degrade significantly when 
the state or measurement noises are non-Gaussian.  A 
frequently encountered class of distribution of interest in 
practice is impulsive noise or outliers with a much heavier 
tails than the Gaussian distribution.  They occur either 
naturally or in other man-made sources.  Although it is 
possible to generalize the Kalman filter to more general 
distributions other than the Gaussian distribution, the 
estimation of their parameters is usually quite complicated, 
especially for transient disturbances with impulsive nature.  
In order to make the Kalman filtering algorithm more 
robust against such outliers, several algorithms based on the 
concept of robust statistics have been proposed.  Masreliez 
and Martin [3] first applied the min-max score function 
approach in robust statistics originally proposed by Huber 
[4] to combat the outliers.  However, the linear 
transformation proposed in [3] does not generally exist and 
is somewhat difficult to apply.  Recently, Durovic and 
Kovacevic [1] established the equivalence between the 
Kalman filter algorithm and a particular least-squares 
regression problem.  In other words, the conventional 
Kalman filter problem can also be viewed and solved as this 
linear least-squares problem.  Further, the use of the least-
squares criterion is equivalent to saying that the noise 
involved in the least-squares problem is Gaussian 
distributed.  This further suggests that if the state or 

measure noises exhibit impulsive behavior, a better 
solution is to replace the least-squares estimation by more 
robust M-estimation technique in robust statistics. Durovic 
and Kovacevic also employed the method introduced by 
Myers and Tapley [5] method to estimate the unknown a 
priori state and observation noise statistics in the robust M-
estimation framework.  Besides the robust statistics 
approach, which is targeted to the detection and 
suppression of transient outliers, another focus in robust 
Kalman filter research is to address the uncertainties of the 
state-space models arising from imprecise measurements 
and nonlinear effects.  Since these effects are sometimes 
very difficult to model precisely, it is desirable to have the 
Kalman filter robust to bounded variations or uncertainties 
in the system parameters which are simpler to quantify in 
practice.   In the control community, the stability problem 
is of paramount importance, and thus the Kalman filter 
should optimize not only the given performance criteria, 
but also the stability margin under the given and bounded 
system uncertainties.  This gives rise to a number of robust 
Kalman filter algorithms [6, 7, and more] and most of 
them are associated with the solving of a set of linear 
matrix inequalities (LMI) or a semi-definite programming 
(SDP) problem.   

To the best knowledge of the authors, robust Kalman 
filters that address both the outliers and system 
uncertainties have not been studied before.  In this paper, 
we shall focus on the robust state estimation problem with 
outliers and system uncertainties using the Kalman filter 
framework.  More precisely, we shall extend the robust 
Kalman filter of Durovic and Kovacevic to include 
unknown-but-bounded parameter uncertainties in 
observation matrix of the system model.  Similar to [1], we 
first formulate the robust state estimation problem as an 
M-estimation problem, which leads to an unconstrained 
nonlinear optimization problem.   This is then linearized 
and solved iteratively as a series of linear least-squares 
problem.  We then solve these least-squares problems, 
subject to the bounded system uncertainties using the 
robust least squares method proposed by A. Ben-Tal and A. 
Nemirovski [2].   Since the robust least-squares problem 
can be formulated as a SDP problem, it gives rise to an 
iterative algorithm, involving a SDP at each step, which 
usually terminates in a few steps.    The paper is organized 
as follows. Section 2 briefly reviews the formulation of the 
conventional Kalman filter as a certain linear regression 
problem. Section 3 is devoted to the robust Kalman filter 
based on M-estimation for outlier suppression. Section 4 
extends this algorithm to include system uncertainties, 
based on the SDP formulation of the robust least squares 
problem.  The effectiveness of the proposed algorithm is 
demonstrated by simulation results and comparison in 
Section 5.  Conclusions are drawn in Section 6. 
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2. KALMAN FILTER AND LINEAR REGRESSION 

The discrete Kalman filter is a set of mathematical 
equations to estimate the state )(kx  of a linear discrete-time 
state-space model: 

)()()()()1( kwkkxkkx GF (1)
)()()()( kvkxkkz H (2)

where )(kx , )(kz , )(kw , and )(kv  are respectively the 
state vector, observation vector, state noise, and observation 
noise at time instant k . )(kF , )(kG , and )(kH  are the 
state transition matrix, state noise transition matrix and 
observation matrix, respectively. )(kw  and )(kv  are 
assumed to be uncorrelated white noises with covariances: 
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where }{E  is the expectation and jk  is the Kronecker’s 
delta symbol ( 0jk  for kj  and 1jk  for kj ).  

If the state density is Gaussian distributed, then the 
optimal state estimator in the least mean squares criterion 
can be computed by the Kalman filter. Let )/(ˆ mkx
( kkm ,1 ) represent the estimator of )(kx  given the 
measurement up to time instant m }),({ mjjz , and 

)/( mkP  the corresponding error covariance matrix of )(kx .
The standard Kalman filter recursions are:  
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where )(ke  is the prediction error of the observation vector, 
and its covariance matrix is )()()1/()( kkkkk T

RHPH .
Combining (1) and (2) together, we get the following 

equivalent linear model: 
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where I is the identity matrix, 
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)(kS  can be obtained by computing the UD factorization or 
Cholesky decomposition of )]()([ kkE Tee  where )1/( kkP

can be obtained from (5).  Multiplying both sides of (10) by 
)(1 kS , we get  
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Note that, after the multiplying )(1 kS  operation, the 
residual )(k  are now whiten, since I)]()([ kkE T .
(11) is nothing but a standard least-squares regression with 
solution given by [1]: 
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and covariance 
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XX . (13)
In other words, the Kalman filter can also be thought 

of as the solution to a weighted least-squares problem with 
)/(ˆ)(ˆ kkxk  and ))(ˆcov()/( kkkP . Both the 

Kalman filter and the linear least-squares regression are 
based on the Gaussian assumption, so their performance 
will deteriorate considerably when the observation or state 
noise are contaminated by non-Gaussian impulsive noise.  
In the next section, we will introduce the robust form of 
(12) to improve the robustness of the state estimation. 

3. IMPROVED ROBUST KALMAN FILTER 

AGAINST OUTLIERS 

Equation (12) is solved by minimizing the following 
least-squares cost function )(nJ :
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where )(kyi  is the i -th element of )(kY , )(kx T
i  is the 

i -th row of )(kX , )(kei  is the corresponding estimation 
error, and n  is the dimension of )(kY .

In M-estimation, a nonlinear score function )(

instead of the quadratic function in (14) is minimized to 
restrain the adverse effect of outliers:  
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A commonly used function for )(  is the Huber function: 
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where  is the threshold parameter which should be 
carefully selected so that the estimation error ie  can be de-
emphasized when ie  as shown in Fig. 1.  Equating 
the first partial derivatives with respect to the elements of 

)(ˆ k , say )(ˆ kj , pj ,,1 , to zero, we obtain the 

following necessary condition for optimality: 
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where )(kxij  is the element in the i -th row and j -th
column of )(nX  and )(')(  as shown in Fig.1.  
Durovic and Kovacevic gave a weighted least-squares 
solution to solve (17) and here we use the iterative 
reweighted least-squares (IRLS) method to achieve more 
precise solution. 
1. Choose a starting value for )(ˆ

0
k : )1(ˆ)(ˆ

0
kk .

2. Compute the estimation residuals: 
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3. Calculate the updated estimate of )(ˆ
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4. Use the updated )(ˆ
1

k
s

 to step 2 to get the new 

residuals )(1 kes  and repeat the process until converge. 
Experiments showed a good and fast converge of the 

proposed algorithm.  Generally, the number of iterations 
was about 5~3s  and never exceeded 10. The threshold 
parameters  in (16) can be determined by the method proposed 

in [8].  i  can be chosen as )(ˆ576.2 k
iei , where )(ˆ k

ie  is 
the estimated standard deviation of the estimation error.  The 
robust estimation of )(ˆ k

ie  can be implemented by 
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where ))1(51(483.11 wNc  is a finite sample 
correction factor, )(med  is the median operator, 
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factor and wN  is the length of the estimation time window.   

4. ROBUST KALMAN FILTER AGAINST SYSTEM 

UNCERTAINTY 

As mentioned earlier, the matrices F , G , and H

might be subject to uncertainties, which are more 
convenient in practice to be modeled as unknown-but 
bounded structured parametric uncertainty.  A “robust” 
Kalman filter should then minimize the upper hound of the 
least-squares estimation error in the presence of these 
uncertainties.  The least-squares formulation of the Kalman 
filter in (11)-(13) allows us to solve this problem as a robust 
least squares problem with structured parametric 
uncertainty, which has received considerable attention 
recently in SDP community.  

Assume that the observation matrix can be represented 
as HHH 0 , where 0H  is the known observation 
matrix and H  is the unknown but bounded uncertainty, 
which is assumed to be given by the following structured 
model: 
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iH  are the vertices of the polytope, which contains the 

uncertainty H .  From (11) and 
)(
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we can see that there is a corresponding uncertainty in X
and Y:
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and they can be modeled in a similar form as follows: 
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Because of the uncertainties in )(kX  and )(kY   , any 
particular choice  would lead to many different residual 

norms: 
2

)(ˆ)( YYXX , one for each possible 

choice of X  and Y in the area XX  and YY ,
respectively.  We want to choose an estimate ˆ  that 
minimizes the maximum possible residual norm.   That is:  

minimize maximize 
2

)(ˆ)( YYXX , (24)

or equivalently: 
minimize ,

subject to 
2

)(ˆ)( YYXX . (25)

It can be shown in [2] this so-called robust least squares 
problem with the uncertainty model in (23) can be 
expressed in a set linear matrix inequalities (LMIs) or 
semidefinite programming (SDP) problem.  More 
precisely, the robust feasible solution of  can be solved 
if and only if there exist real  and  that the triplet 

),,(  satisfies the following LMIs: 
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The geometric interpretation of the least-squares 

formulation with the given uncertainty model is illustrated 
in Fig. 2.  The two pentagons represent the two possible 
areas of )(kX  and )(kY , respectively.  The optimal 
estimation of  is not the least-squares solution obtained 
“from point to point”, but “from area to area”.  
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5. SIMULATION RESULTS 

Our simulation system is a three-state track model with 
the following parameters:  

01.100
001.10
0001.1

F ,
5.0
2.0
1.0

G , 101H .

The first element in H  has a parametric uncertainty 
5.0||  and 1010H . The state noise kw  is 

assumed to be zero-mean white Gaussian noise with a 
variance of 0.001, and the random observation noise )(kv
is generated from the following contaminated Gaussian 
noise model with probability distribution function (p.d.f.): 

32
0 ),0|()01.0,0|()1(~)( NNp ,

10 , 12
0 .

(27)

Here, 0  corresponds to Gaussian noise and a value of 
15.0  and 100  is used to simulate the non-Gaussian 

noise and outliers.  Simulation results are compared in 
terms of the cumulative estimation error (CEE): 
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Fig. 3 shows the results of the various algorithms in 
Gaussian noise.  We can see that the difference between the 
conventional Kalman filter and the robust Kalman filter is 
very small.  This indicates the robust Kalman filter also 
works well in Gaussian noise environment.  However, it can 
be seen from Fig. 4 that in non-Gaussian noise environment, 
the robust Kalman filter against outliers can achieve a much 
better performance.  We also see that, in both noise 
circumstances, the robust Kalman filter with system 
uncertainty gives the best performance because prior 
information of the system uncertainty has been taken into 
account in the robust least squares framework. 

6. CONCLUSION 

A new robust Kalman filter algorithm under outliers and 
system uncertainties is presented.  It extends the robust 
Kalman filter of Durovic and Kovacevic to include 
unknown-but-bounded parameter uncertainties in the state 
or observation matrix.  The robust state estimation problem 
is first formulated as a M-estimation problem, which leads 
to a unconstrained nonlinear optimization problem.   This is 
solved iteratively as a series of linear least-squares problem 
subject to the bounded system uncertainties using the robust 
least squares method proposed by A. Ben-Tal and A. 
Nemirovski.   The improved robustness of the proposed 
algorithm is illustrated by computer simulation results.  

REFERENCE 

[1] Z. M. Durovic and B. D. Kovacevic, “Robust Estimation with 
Unknown Noise Statistics,” IEEE Transactions on Automatic 
Control, vol. 44, Issue 6, pp. 1292-1296, June 1999. 
[2] A. Ben-Tal and A. Nemirovski, Lectures on Modern Convex 
Optimization. Philadelphia, PA: SIAM, 2001. 
[3] C. J. Masreliez and R. D. Martin, “Robust Bayesian estimation 
for linear model and robustifying the Kalman filter,” IEEE Trans. 
Automat. Contr., vol. 22, pp. 361-371, 1977. 
[4] P. J. Huber, Robust Statistics. New York: Wiley, 1973. 

[5] K. A. Myers and B. D. Tapley, “Adaptive sequential 
estimation with unknown noise statistics,” IEEE Trans. Automat. 
Contr., vol. 21, pp. 520-523, 1976. 
[6] L. Li, Z. Q. Luo, T. N. Davidson, K. M. Wong, and E. Bossé, 
“Robust filtering via semi-definite programming with 
applications to target tracking”, SIAM J. Optim., vol. 12, pp. 740-
755, Dec., 2002. 
[7] F. Wang and V. Balakrishnan, “Robust Kalman Filters for 
Linear Time-Varying Systems with Stochastic Parametric 
Uncertainties.” IEEE Trans. Signal Processing, vol. 50, no. 4, pp. 
803-813, April 2002. 
[8] Y. Zou, S. C. Chan and T. S. Ng, “Robust M-estimate 
adaptive filtering,” IEE Proc.-Vis. Image Sig. Proc., vol. 148, No. 
4, August2001. 

0 e

)(e

0

)(e

e

Fig. 1: Huber function )(e  and )(e  . 
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Fig. 2: Geometric interpretation of the robust least-squares 
formulation with uncertainty. 
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Fig. 3: Estimation error comparison in Gaussian noise: 
conventional Kalman filter (line with triangles), robust Kalman 
filter against outliers (line with circles), and robust Kalman filter 
against uncertainty (line with squares). 
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Fig. 4: Estimation error comparison in non-Gaussian noise: 
conventional Kalman filter (line with triangles), robust Kalman 
filter against outliers (line with circles), and robust Kalman filter 
against uncertainty (line with squares). 
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