<table>
<thead>
<tr>
<th><strong>Title</strong></th>
<th>Design of permanent magnets to guarantee frequency-changing startup for PM synchronous machines</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Author(s)</strong></td>
<td>Gao, Y; Chau, KT</td>
</tr>
<tr>
<td><strong>Citation</strong></td>
<td>Intermag Asia 2005: Digests Of The Ieee International Magnetics Conference, 2005, p. 333</td>
</tr>
<tr>
<td><strong>Issued Date</strong></td>
<td>2005</td>
</tr>
<tr>
<td><strong>URL</strong></td>
<td><a href="http://hdl.handle.net/10722/45772">http://hdl.handle.net/10722/45772</a></td>
</tr>
<tr>
<td><strong>Rights</strong></td>
<td>This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.; ©2005 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.</td>
</tr>
</tbody>
</table>
DESIGN OF PERMANENT MAGNETS TO GUARANTEE FREQUENCY-CHANGING STARTUP FOR PM SYNCHRONOUS MACHINES

Y. Gao and K. T. Chau
Department of Electrical & Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong

Purpose
The permanent-magnet synchronous machine (PMSM) is becoming more and more attractive for both industrial and electric vehicle applications [1] because of its inherent advantages of high power density and high efficiency. However, the PMSM is not self-starting. Apart from inserting additional cage windings in the rotor, the most common starting method is to gradually increase the applied frequency by using a frequency-changing inverter [2]. Nevertheless, due to the nonlinear dynamics of the PMSM, this frequency-changing startup may be failure or exhibit chaotic behaviors. In this paper, the nonlinear relationship between the sizing of PMs and the startup behaviors of PMSMs will be investigated. Both computer simulation and experimental results will be given to support the design criterion.

Startup and Chaos
A 3-phase inverter-fed PMSM is modeled in the d-q frame as given by (1). By applying bifurcation analysis to (1), it can be deduced that the PM flux exhibits an important effect on the startup behavior. Namely, the frequency-changing startup is successful only when the PM flux is lower than a critical value; otherwise, chaos may occur. This finding illustrates that the sizing of PMs is crucial to avoid chaos during the frequency-changing startup of PMSMs.

\[
\begin{align*}
\frac{dI_d}{dt} & = -V \sin(2\pi f - \theta + \alpha) - R_d I_d + n_p \omega L_d I_d \\
\frac{dI_q}{dt} & = -V \cos(2\pi f - \theta + \alpha) - R_q I_q + n_p \omega L_q I_q + n_p \psi_{pm} \omega \\
J \frac{d\omega}{dt} & = \frac{3}{2} n_p (I_d - I_q) \omega + \frac{3}{2} n_p \psi_{pm} I_d - B_d \omega + T_n \\
\frac{d\theta}{dt} & = \omega
\end{align*}
\]

(1)

Simulation and Experimentation
Based on a practical 3-phase PMSM, bifurcation diagrams of the rotor speed with respect to the applied frequency and PM flux are simulated in Figs. 1 and 2, respectively. They illustrate that the frequency-changing startup will result in chaos if the PMs are not properly sized, namely when the PM flux which equals 0.1472 Wb is larger than the critical value of 0.0914 Wb. Fig. 3 shows the measured chaotic waveforms of d-axis current, q-axis current and rotor speed as well as their phase-plane trajectories. It can be found that the waveforms exhibit a well-known property of chaos (namely, random-like but bounded), while the trajectories resemble the Rossler attractors. Detailed derivation, simulation and experimental results will be included in the full paper.

References