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ABSTRACT 
We present an efficient maximum likelihood (ML) training 
procedure for Gaussian mixture continuous density hidden 
Markov model (CDHMM) parameters. This procedure is 
proposed using the concept of approximate prior evolution, 
posterior intervention and feedback (PEPIF). In a series of 
experiments for training CDHMMs for a continuous Man- 
darin Chinese speech recognition task, the new PEPIF pro- 
cedure achieves a 4-fold speed-up in terms of user CPU 
time over that of the Baum-Welch algorithm in producing 
models of given likelihood or recognition accuracy. 

1. INTRODUCTION 

Currently, Gaussian mixture CDHMMs remain predomi- 
nant for basic speech unit modeling. The most popular 
HMM parameter estimation method from a finite amount 
of training data is still the batch-mode ML training known 
as the Baum-Welch algorithm (or its decision-directed vari- 
ation known as segmental ML or Viterbi training). Over 
the years, speech researchers have observed that in order to 
obtain a good recognition performance, instead of aiming at 
a very accurate estimation of the model parameters, obtain- 
ing a good rough estimate seems to be more efficient; and 
it has proved to work well in practice. It was also observed 
that although the Baum-Welch algorithm eventually has a 
linear speed of convergence, the first several iterations usu- 
ally achieve the most significant likelihood increase. Speech 
practitioners take advantage of this property and in most 
cases just run several Baum-Welch iterations (say within 
10) in HMM training. Actually, this has already been a 
heavy burden. The fact that researchers have been able to 
afford the use of an increasing amount of training data for 
HMM training in the past two decades is simply because of 
the availability of increasingly powerful machines in terms 
of speed, memory, and hard disk. When the increasing 
amount of training data becomes available, there is a real 
need to develop a more efficient ML training method so as 
to make speech engineering possible even in small research 
groups with limited computational resources. 

A study with an explicit goal of speeding up the ML 
training for CDHMM has been reported in [l]. One of 
the algorithms in [l] is a special case of the Quasi-Bayes 
(QB) learning framework proposed in [2]. As we discussed 
in (21, QB learning can also be used as a Bayesian tool to 
achieve efficient ML training by using the concept of approz- 
imate prior evolution, posterior intervention and feedback 
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(PEPIF). Gotoh et al. [l] did not realize the underlying 
theoretical mechanism of the approximate prior evolution 
and failed to provide a posterior intervention mechanism 
before feeding back the posterior distribution as a prior for 
the next iteration. As we will show in this study, such 
a forgetting mechanism is important to prevent a possible 
premature convergence of the algorithm. We will describe 
how to use the PEPIF algorithm to perform an efficient ML 
training, and will compare it quantitatively to the Baum- 
Welch algorithm and the algorithm in [l]. 

2. METHODOLOGY 

Consider a collection of M CDHMM’s A = {A,}q=l , . , . ,M, 
where A, = ( T ( ~ ) , A ( ~ ) , O ( ~ ) )  denotes the set of parameters 
of the q-th N-state CDHMM used to characterize the q-th 
speech unit. In this compact notation, dq) is the initial 
state distribution, A(,)  = [ai,”’] is the transition proba- 
bility matrix, and is the parameter vector composed 
of mixture parameters e:,) = {u:i),mil), rji))k=l . , , , K  for 
each state i. The state observation probability density func- 
tion (pdf) is a mixture of K multivariate Gaussian pdf’s: 
p(xl@”) = If=’=, ujl)N(xlm~z), v-j;)), where U::) is the 
mixture coefficient, m,(l) is the D-dimensional mean vec- 
tor, and r$) is the D x D precision (inverse covariance) 
matrix, with its d-th diagonal element being In the 
following discussion, we will drop the notation regarding 
the speech unit index q .  Furthermore, let X be a set of 
training samples. Our problem is then defined on how to 
efficiently obtain an ML estimate of A from X .  

We use the Bayesian formulation as a tool to derive such 
an efficient ML training algorithm. We consider the un- 
certainty of the HMM parameters A by treating them as 
if they were random variables. Given a seed model (ini- 
tial estimate) n s e e d ,  we can summarize our prior knowledge 
about A as an initial prior pdf p(Alp(’)) with hyperparame- 
ters p(’). If we randomize training samples in X and divide 
them into B blocks, then we can artificially create a train- 
ing set XF = { X I ,  X 2 , .  . . , X B } ,  where Xi’s can be viewed 
as B independent, incrementally obtained sets of observa- 
tion samples. With p ( h l ~ ( ’ ) )  and X F ,  we can obtain an 
approximate posterior pdf p(AIXF) by using the prior evo- 
lution method described in [2]. Taking a point estimate AI 
(e.g. mode) from p(A1.X:) will give us HMM parameters 
updated after one pass of X .  The training procedure can 
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Figure 1: Block Diagram of PEPIF Procedure. 
either terminate at this point or can continue. If the latter 
is the case, then we need to flatten the p(AlX,”)  by using 
an intervention scheme to obtain a new pdf plntend(A).  We 
then feedback this pdf to serve as the prior for the next 
pass of X. At the same time, we also need to randomize 
X again and re-divide it into B blocks to obtain a new 
Xf. This completes one epoch of our training procedure. 
The procedure will continue by repeating the above steps as 
schematically shown in Fig. 1. In the following discussion, 
we will refer to this new procedure as PEPIF. 

In this study, we only consider the case of CDHMMs 
with diagonal precision matrices. All of the prior and poste- 
rior pdf’s are assumed to be a product of Dirichlet pdf’s and 
normal-gamma pdf’s with the set of hyperparameters {vi}, 
{ q i j } ,  { v i k } ,  { r i k } ,  { a i k } ,  { O i k d } .  Readers are referred to 
[2] for a detailed explanation of these distributions as well as 
the approximate prior evolution method based on a Quasi- 
Bayes approach. In the following section, we will describe in 
detail 1) how to derive the initial prior pdf p(Alp(’)) from 
the seed model Aseed; and 2) the intervention scheme we 
used in the experiments reported in this study. 

3. I M P L E M E N T A T I O N  ISSUES 

3.1. From Seed Model  to Initial P r io r  Distr ibut ion 

There are currently two different initialization methods which 
are termed r-initialization and prior-weight initialization. 

3.1.1. r-initialization 

r-initialization requires a user-defined seed model A S e e d ,  to- 
gether with a value of r which is used to control the broad- 
ness of the initial prior pdf p(hly~(’ ) ) .  The bigger the value 
of r ,  the sharper the distribution p(AIp(’)). Using these, 
the hyperparameters ~ J ( O )  [2] are initialized as follows: 

(7) 

3.1.2. Prior-weight initialization 

This initialization requires a seed model which is then input 
into the Baum-Welch algorithm. The following statistics 
are collected from a single pass through the training data 
X: 

g y )  = CtYt ( 2 ,  j )  

~ E ( T ~ ~ )  = Ctct(i, k) (9) 

( 8 )  

- y t ( i , j )  = Pr(st = i,st+l = j l X , A s e e d )  is the probability of 
being in state i a t  time t and state j at time t + 1, (given 
training data X and seed HMM parameters A S e e d ) ;  and 
< t ( z , k )  = Pr(st = i , l t  = k l X , h S e e d )  is the probability of 
observing xt in mixture component k of state i. Using the 
above statistics, and a prior weight E O ,  the hyperparameters 
are initialized as follows: 

Similarly to the role of r discussed above, the prior weight 
EO controls the broadness of the prior pdf p(Alp(’)). 

3.2. Poster ior  Intervent ion Scheme 

In posterior-prior feedback, the posterior is used as the 
prior for the next epoch of prior evolution. Depending on 
the intended purpose, a quite flexible posterior intervention 
scheme can be designed: 1) As the posterior is fed into the 
next stage as the prior, the distribution may be widened. 
The effect of this is to forget some information learned in the 
previous epoch; 2) In the same way, the distribution may 
be narrowed to consolidate the information already present 
in the posterior. In QB formulation, this can be achieved 
by refreshing the hyperparameters of the approximate pos- 
terior pdf as follows: 

ij; = 1 + E  x (Vi - 1) (17) 
ijij = 1 + E x (Vij  - 1) (18) 

(19) 
‘?ik = E x T i k  (20) 

b i k  = p i k  (21) 
&ik = 0.5 + E x ( Q i k  - 0.5) (22) 

(23) p .  - 

i j ik = 1 + E x ( v i k  - 1) 

zkd - E x P i k d  

where E > 0 is called the refreshing factor or intervention 
factor. The forgetting eflect occurs when E < 1.0 and the 
consolidating eflect occurs when E > 1.0. However, if E is 
taken greater than 1.0 in the early stages of the prior evo- 
lution, the algorithm will converge to a result very quickly, 

1002 



although it may not be a local maximum of the likelihood 
function. In this study, we are interested in the efficient 
ML training of CDHMM parameters for large amounts of 
training data. In this case, even if we start from a non- 
informative prior, after one epoch of prior evolution using 
the QB algorithm, the resultant approximate posterior pdf 
will probably become quite sharp. If we directly feedback 
this posterior pdf as a prior for the next epoch as performed 
in [l], the algorithm might converge very quickly t o  a re- 
sult which is still far away from the local maximum of the 
likelihood function. Therefore, a natural way of controlling 
the convergence behavior of the algorithm is to make the 
refreshing factor adaptive: starting from a small refresh- 
ing factor, we gradually increase the value of the refreshing 
factor with successive epochs. By doing this, we should 
avoid possible premature convergence, while still ensuring 
the final convergence of the algorithm. We studied several 
refreshing schedules, and found that the following exponen- 
tial refreshing schedule works quite well: 

En = {I" x bn-' if E,, < 1 
(24) otherwise 

where E,, is the refreshing factor for Epoch n, EO is the initial 
refreshing factor (to which the prior weight is assigned in 
the prior-weight initialization scheme), and b is the base of 
the exponential (this controls how fast the values of E,, are 
increased). 

4. E X P E R I M E N T S  

As we discussed above, the PEPIF procedure requires the 
setting of some control parameters which include the initial- 
ization parameters and the refreshing schedule. Extensive 
experiments on both artificial data and speech data have 
been performed 1) to discern the effect of those control pa- 
rameters on performance (in terms of likelihood increase 
and speech recognition accuracy) and 2) to  check what the 
best set of control parameters should be. Because of the 
space limitation, we can only here report part of the re- 
sults. 

4.1. Exper imenta l  Setup 

Experiments are performed for continuous speech recogni- 
tion of Putonghua (Mandarin Chinese). The database we 
used is the HKU96 Putonghua Corpus developed in our 
lab. The HKU96 corpus consists of a total of 20 native 
Putonghua speakers, 10 females and 10 males. All speech 
recording were made in a quite room with a single National 
Cardioid Dynamic Microphone. Speech was digitized using 
a Sound Blaster 16 ASP A/D card at 16-bit accuracy and 
with a sampling rate of l6KHz. The 39-dimensional fea- 
ture vectors used in this study consist of 1 2  MFCCs and 
log-scaled energy normalized by the peak of the individ- 
ual sentence, plus their first and second order derivatives. 
Sentence-based cepstral mean subtraction (CMS) is applied 
for acoustic normalization, both in training and testing. 

18224 utterances (about 15.5 hours of raw speech) from 
18 speakers (9 females and 9 males) are used for training. 
A further two speakers (1 female and 1 male) are used for 
speaker-independent (SI) testing; there are 996 utterances 
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Figure 2: Likelihoods and Test Accuracies of Models trained 
by several algorithms as a function of Epoch number. 

from the female speaker, and 975 utterances from the male 
speaker. The recognition task is the recognition of 410 Pu- 
tonghua base syllables disregarding tones. The recognition 
network enforces silence at the start and end of sentences 
and allows optional silences between syllables. As for the 
syllable language model, a uniform grammar with a sylla- 
ble perplexity of 411 (i.e. each syllable can be followed by 
any of the 410 base syllables and silence) is used. All the 
recognition experiments are performed using the re-scoring 
technique provided in the HTKv2.1 toolkit [3]. 

The system to be trained is an SI, cross-syllable-triphone, 
decision-tree-based, tied-state system. The adopted context- 
independent (CI) phone set consists of 36 phones plus si- 
lence. With this phone set definition, there are 8022 tri- 
phones in Putonghua. Among them, 5595 triphones are 
observed in the training data set. Each phone is modeled by 
a left-to-right, three-emitting-state CDHMM without state 
skipping. Each state has 4 Gaussian mixture components 
with each component having a diagonal covariance matrix. 
A special three-emitting-state CDHMM is also used for si- 
lence modeling. The initial models are prepared by using 
the HTKv2.1 toolkit. Using the initial models as seed mod- 
els, we perform ML training both with the Baum-Welch al- 
gorithm as implemented in HTKv2.1, and with the PEPIF 
procedure under different settings of control parameters. 
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Table 1: The User CPU Time Overhead for a Single Epoch 
of PEPIF with Different Block-Sizes, Compared to the 

Method Block 

PEPIF 20 
Size 

User CPU Time Overhead (%) 
No Pruning I Using Pruning 

11.4 21.0 
PEPIF 
PEPIF 

Baum-Welch 

4.2. Comparison of Learning Curves  

Fig. 2 (a) compares the learning curves (as a function of 
Epoch number) of several algorithms in terms of the average 
log likelihood per frame. Fig. 2 (b) shows the correspond- 
ing learning curves in terms of the syllable recognition accu- 
racy averaged over 2 testing speakers. The curves labeled 
‘Baum-Welch’ correspond to the results obtained by the 
Baum-Welch algorithm. Other curves correspond to the re- 
sults obtained by PEPIF with different experimental setup. 
The curves labeled ‘tau’ correspond to the results with the 
following baseline setup: 1) For initial prior specification, 
7-initialization is used with an initial 7-value of 1.0; 2) For 
prior evolution, sequential QB is used with a block-size of 
20 sentences; 3) For posterior intervention, the exponen- 
tial refreshing schedule is used with initial refreshing factor 
E O  set to 0.01 and base b set to 1.5. The curves labeled 
‘prior’ correspond to the results with the above baseline 
setup excepting that prior-weight initialization is used for 
initial prior specification. These two sets of experiments 
are designed to compare the efficacy of the two initial prior 
specification methods discussed in Section 3.1. In order 
to examine the effectiveness of the posterior intervention 
scheme discussed in Section 3.2, another two sets of experi- 
ments are performed that start from the above two different 
priors. This time, a refreshing factor of 1.0 (i.e. no refresh- 
ing) is always used for each epoch. The learning curves are 
labeled as ‘tauNRef’ and ‘priorNRef’ respectively. 

Several observations can be made from these results: 
1) The PEPIF increases the model likelihoods much faster 
than does Baum-Welch (especially in the early epochs), and 
attains a better likelihood after 10 epochs. These results are 
also translated into test accuracies, showing that the higher- 
likelihood models produced by PEPIF are actually ‘better’ 
models; 2) The use of a refreshing schedule has a beneficial 
effect in improving model likelihoods when compared to a 
[no-refreshing’ schedule as done in [l]; 3) Prior-weight ini- 
tialization appears to be a better initialization method than 
7-initialization with respect to final likelihoods and accura- 
cies. However, for the prior-weight initialization method, 
Epoch 1 in Fig. 2 is essentially a batch-mode Baum-Welch 
iteration. The likelihood increase in this epoch is thus much 
smaller than that yielded by using 7-initialization. After 3 
epochs, the prior-weight curves surpass the 7-initialization 
curves. From the above results, we conclude that PEPIF 
will be very efficient for the ML training of CDHMM pa- 
rameters when ‘early stopping’ is used. For example, to 
compare the performance of baseline PEPIF with Baum- 
Welch, the likelihood of PEPIF at  Epoch 2 is -54.828; this 
is higher than the likelihood of Baum-Welch at  Epoch 10 at 

100 4.9 14.0 
1000 2.1 10.4 
18224 0.0 0.0 

-55.064. This indicates a 5-fold speed-up in the numbers of 
epochs. The accuracy curves show that this speed-up gen- 
eralizes to unseen data. The syllable recognition accuracy 
a t  Epoch 2 for PEPIF is 79.04%, whereas a t  Epoch 10 for 
Baum-Welch, it is 79.3%. The speed-up is therefore also 
maintained in the accuracy curves. 

4.3. Compar ison  of Computa t iona l  Complexity 

However, in comparison with the Baum-Welch algorithm, 
the PEPIF procedure introduces an overhead for each epoch. 
This overhead mainly depends on the block size: the smaller 
the size, the more the number of data blocks, and thus the 
more updates of parameters are required in one epoch. Ta- 
ble l shows the user CPU time overhead for a single epoch 
of PEPIF with different block-sizes, compared to the Baum- 
Welch algorithm. If pruning in the Forward-Backward al- 
gorithm is virtually disabled [3], we observe a small over- 
head of 11.4% - 2.1% for a block-size of 20 - 1000: If 
the default pruning in HTKv2.1 is used, a bigger overhead 
of 21.0% - 10.4% is observed. However, PEPIF success- 
fully trains models with fewer numbers of epochs than does 
Baum-Welch. Therefore, PEPIF offers the user a faster 
technique for obtaining a set of models of a given likelihood 
or accuracy. For the previous example of early stopping at 
Epoch 2, using a block-size of 20 and keeping pruning, a 
4-fold speed-up in terms of user CPU time is achieved. 

5. SUMMARY 

The PEPIF algorithm has been compared against the Baum- 
Welch algorithm, and the effect of varying various control 
parameters for the PEPIF algorithm has been investigated. 
The experiments in this study show that generally PEPIF 
produces a faster increase in likelihood and accuracy than 
does Baum-Welch. Though PEPIF has a processing over- 
head, it still offers a speed-up over Baum-Welch in the time 
taken to produce models of given likelihood or accuracy. 
PEPIF may also produce models of higher likelihood and 
accuracy than Baum-Welch can produce even with a large 
number of training epochs. This shows a good asymptotic 
convergence property. It is observed that the PEPIF algo- 
rithm works reliably in all of the experiments we performed 
on both artificial data and real speech data. We recom- 
mend to the community the routine use of this new algo- 
rithm. We will report elsewhere a more theoretical analysis 
of the PEPIF procedure, and more experimental results on 
the sensitivity of the algorithm to different settings of the 
control parameters. 
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