EFFICIENT ML TRAINING OF CDHMM PARAMETERS BASED ON
PRIOR EVOLUTION, POSTERIOR INTERVENTION AND FEEDBACK

Qiang Huo, Nathan Smith and Bin Ma

Department of Computer Science and Information Systems,
The University of Hong Kong, Pokfulam Road, Hong Kong (e-mail: ghuo@csis.hku.hk)

ABSTRACT

‘We present an efficient maximum likelihood (ML) training
procedure for Gaussian mixture continuous density hidden
Markov model (CDHMM) parameters. This procedure is
proposed using the concept of approximate prior evolution,
posterior intervention and feedback (PEPIF). In a series of
experiments for training CDHMMs for a continuous Man-
darin Chinese speech recognition task, the new PEPIF pro-
cedure achieves a 4-fold speed-up in terms of user CPU
time over that of the Baum-Welch algorithm in producing
models of given likelihood or recognition accuracy.

1. INTRODUCTION

Currently, Gaussian mixture CDHMMs remain predomi-
nant for basic speech unit modeling. The most popular
HMM parameter estimation method from a finite amount
of training data is still the batch-mode ML training known
as the Baum-Welch algorithm (or its decision-directed vari-
ation known as segmental ML or Viterbi training). Over
the years, speech researchers have observed that in order to
obtain a good recognition performance, instead of aiming at
a very accurate estimation of the model parameters, obtain-
ing a good rough estimate seems to be more efficient; and
it has proved to work well in practice. It was also observed
that although the Baum-Welch algorithm eventually has a
linear speed of convergence, the first several iterations usu-
ally achieve the most significant likelihood increase. Speech
practitioners take advantage of this property and in most
cases just run several Baum-Welch iterations (say within
10) in HMM training. Actually, this has already been a
heavy burden. The fact that researchers have been able to
afford the use of an increasing amount of training data for
HMM training in the past two decades is simply because of
the availability of increasingly powerful machines in terms
of speed, memory, and hard disk. When the increasing
amount of training data becomes available, there is a real
need to develop a more efficient ML training method so as
to make speech engineering possible even in small research
groups with limited computational resources.

A study with an explicit goal of speeding up the ML
training for CDHMM has been reported in [1]. One of
the algorithms in [1] is a special case of the Quasi-Bayes
(QB) learning framework proposed in {2]. As we discussed
in [2], QB learning can also be used as a Bayesian tool to
achieve efficient ML training by using the concept of approz-
imate prior evolution, posterior intervention and feedback

0-7803-6293-4/00/$10.00 ©2000 IEEE.

1001

(PEPIF). Gotoh et al. [1] did not realize the underlying
theoretical mechanism of the approximate prior evolution
and failed to provide a posterior intervention mechanism
before feeding back the posterior distribution as a prior for
the next iteration. As we will show in this study, such
a forgetting mechanism is important to prevent a possible
premature convergence of the algorithm. We will describe
how to use the PEPIF algorithm to perform an efficient ML
training, and will compare it quantitatively to the Baum-
Welch algorithm and the algorithm in [1].

2. METHODOLOGY

Consider a collection of M CDHMM'’s A = {Aj} _; .

where A, = (7{9, A @) denotes the set of parameters
of the ¢-th N-state CDHMM used to characterize the g-th
speech unit. In this compact notation, #(? is the initial
state distribution, A® = [afg)] is the transition proba-
bility matrix, and 67 is the parameter vector composed
of mixture parameters 0(‘7) = {w fz), EZ), IZ)}k_ for
each state :. The state observatlon probability denSIty func—
tion (pdf) is a mixture of K multivariate Gaussian pdf’s:
x|9(Q)) Zk . (Q)N(x|mfz), fg)), where w(Q) is the

mixture coefficient, mfz) is the D-dimensional mean vec-

(q)

tor, and r;;” is the D x D precision (inverse covariance)

matrix, w1th its d-th diagonal element being afki(q). In the
following discussion, we will drop the notation regarding
the speech unit index ¢q. Furthermore, let X be a set of
training samples. Our problem is then defined on how to
efficiently obtain an ML estimate of A from X.

We use the Bayesian formulation as a tool to derive such
an efficient ML training algorithm. We consider the un-
certainty of the HMM parameters A by treating them as
if they were random variables. Given a seed model (ini-
tial estimate) Asced, We can summarize our prior knowledge
about A as an initial prior pdf p(A](?) with hyperparame-
ters . If we randomize training samples in X and divide
them into B blocks, then we can artificially create a train-
ing set X = {X1, Xz, -, X}, where X;’s can be viewed
as B independent, incrementally obtained sets of observa-
tion samples. With p(A|<p(°)) and X, we can obtain an
approximate posterior pdf p(A[X?) by using the prior evo-
lution method described in [2]. Taking a point estimate A;
(e.g. mode) from p(A|XE) will give us HMM parameters
updated after one pass of X. The training procedure can

posterior for

ior for A
o o Aatepochn

atepoch n No

Final Epoch
Finished ?

Randomize trainin samples H
then divide imo blocks

Figure 1: Block Diagram of PEPIF Procedure.
either terminate at this point or can continue. If the latter
is the case, then we need to flatten the p(A|X) by using
an intervention scheme to obtain a new pdf pintend(A). We
then feedback this pdf to serve as the prior for the next
pass of X. At the same time, we also need to randomize
X again and re-divide it into B blocks to obtain a new
XEZ. This completes one epoch of our training procedure.
The procedure will continue by repeating the above steps as
schematically shown in Fig. 1. In the following discussion,
we will refer to this new procedure as PEPIF.

In this study, we only consider the case of CDHMMs
with diagonal precision matrices. All of the prior and poste-
rior pdf’s are assumed to be a product of Dirichlet pdf’s and
normal-gamma pdf’s with the set of hyperparameters {7;},
{mi;}, {vir}, {7ix}, {@ir}, {Bira}. Readers are referred to
[2] for a detailed explanation of these distributions as well as
the approximate prior evolution method based on a Quasi-
Bayes approach. In the following section, we will describe in
detail 1) how to derive the initial prior pdf p(A}e(®) from
the seed model Asceq; and 2) the intervention scheme we
used in the experiments reported in this study.

3. IMPLEMENTATION ISSUES

3.1. From Seed Model to Initial Prior Distribution

There are currently two different initialization methods which
are termed T-initialization and prior-weight initialization.

3.1.1. T-initialization

T-initialization requires a user-defined seed model Aeeq, to-
gether with a value of 7 which is used to control the broad-
ness of the initial prior pdf p(Ajp(®). The bigger the value
of 7, the sharper the distribution p(Alp(®). Using these,
the hyperparameters (% [2] are initialized as follows:

B =1+ x Nxr 1)
nfq) =1l+4a (S-CEd) xNxTt (2)

v =1+ w(”ed) xKXxT (3)
2 =i 0
o =W Y x K x1 5)
o) = % 2D - ©)

0) _ 1 (0) 2(seed
ﬂ:(kd =3 nc)"m;n) (7)

3.1.2. Prior-weight initialization

This initialization requires a seed model which is then input
into the Baum-Welch algorithm. The following statistics
are collected from a single pass through the training data

X:
95" =) (i) (8)
=) i k) ©

(2, 7) = Pr(s: = i, st41 = j|X, Ascea) is the probability of
being in state ¢ at time ¢ and state j at time ¢ + 1, (given
training data X and seed HMM parameters Ageeq); and
Ci(i, k) = Pr(s: = i,l; = k|X, Aseeq) is the probability of
observing x; in mixture component k of state . Using the
above statistics, and a prior weight €o, the hyperparameters
are initialized as follows:

171(0) =1+ €0 X Z g(nnt) (10)

75 =1+e€0 x gl (11)
l(,g) =1+4¢€ X c("m) (12)
0 d

pi) = mGee?d (13)

Ti() = ¢ ¥ C(:”t) (14)
_1 1 (init)

i = 5 + 56 X e (15)

o= heo e xole e

Similarly to the role of 7 discussed above, the pnor weight
¢o controls the broadness of the prior pdf p(A|p(®).

3.2. Posterior Intervention Scheme

In posterior-prior feedback, the posterior is used as the
prior for the next epoch of prior evolution. Depending on
the intended purpose, a quite flexible posterior intervention
scheme can be designed: 1) As the posterior is fed into the
next stage as the prior, the distribution may be widened.
The effect of this is to forget some information learned in the
previous epoch; 2) In the same way, the distribution may
be narrowed to consolidate the information already present
in the posterior. In QB formulation, this can be achieved
by refreshing the hyperparameters of the approximate pos-
terior pdf as follows:

Bi=14ex (g —-1) 17
fi; =1+ €ex (ni; — 1) (18)
Dik=1+ex (vir — 1) (19)
’f‘ikze X Tik (20)
fik = pir (21)
Gir =05+ € x (aik - 0.5) (22)

Bika = € X Pira (23)

where € > 0 is called the refreshing factor or intervention
factor. The forgetting effect occurs when ¢ < 1.0 and the
consolidating effect occurs when € > 1.0. However, if € is
taken greater than 1.0 in the early stages of the prior evo-
lution, the algorithm will converge to a result very quickly,

1002

although it may not be a local maximum of the likelihood
function. In this study, we are interested in the efficient
ML training of CDHMM parameters for large emounts of
training data. In this case, even if we start from a non-
informative prior, after one epoch of prior evolution using
the QB algorithm, the resultant approximate posterior pdf
will probably become quite sharp. If we directly feedback
this posterior pdf as a prior for the next epoch as performed
in [1], the algorithm might converge very quickly to a re-
sult which is still far away from the local maximum of the
likelihood function. Therefore, a natural way of controlling
the convergence behavior of the algorithm is to make the
refreshing factor adeptive: starting from a small refresh-
ing factor, we gradually increase the value of the refreshing
factor with successive epochs. By doing this, we should
avoid possible premature convergence, while still ensuring
the final convergence of the algorithm. We studied several
refreshing schedules, and found that the following ezponen-
tial refreshing schedule works quite well:

o x b life, <1
n = {1 otherwise (24)
where €, is the refreshing factor for Epoch n, o is the initial
refreshing factor (to which the prior weight is assigned in
the prior-weight initialization scheme), and b is the base of
the exponential (this controls how fast the values of €, are
increased).

4. EXPERIMENTS

As we discussed above, the PEPIF procedure requires the
setting of some control parameters which include the initial-
ization parameters and the refreshing schedule. Extensive
experiments on both artificial data and speech data have
been performed 1) to discern the effect of those control pa-
rameters on performance (in terms of likelihood increase
and speech recognition accuracy) and 2) to check what the
best set of control parameters should be. Because of the
space limitation, we can only here report part of the re-
sults.

4.1. Experimental Setup

Experiments are performed for continuous speech recogni-
tion of Putonghua (Mandarin Chinese). The database we
used is the HKU96 Putonghua Corpus developed in our
lab. The HKU96 corpus consists of a total of 20 native
Putonghua speakers, 10 females and 10 males. All speech
recording were made in a quite room with a single National
Cardioid Dynamic Microphone. Speech was digitized using
a Sound Blaster 16 ASP A/D card at 16-bit accuracy and
with a sampling rate of 16KHz. The 39-dimensional fea-
ture vectors used in this study consist of 12 MFCCs and
log-scaled energy normalized by the peak of the individ-
ual sentence, plus their first and second order derivatives.
Sentence-based cepstral mean subtraction (CMS) is applied
for acoustic normalization, both in training and testing.
18224 utterances (about 15.5 hours of raw speech) from
18 speakers (9 females and 9 males) are used for training.
A further two speakers (1 female and 1 male) are used for
speaker-independent (SI) testing; there are 996 utterances

Experimental results: Likelihood

2 et
8 -
< /
[H
=%
% Baum-Welch —— 1
é (al: R
tauNRef o

.8 prior e 4
% priorNRef -+--
®
> g
L3

3 4 5 6 7 8 9 10

Epoch Number
(a) model likelihoods
Experimental results: Test accuracy (Total)
80 o " N
2
§ 75 E
5
8 Baum-Welch ——
© tay —--
s tauNRef -o--
= 70 prior -~ 1
g: priorNRef -¢--
]
o
65

0 1 2 3 4 5 6 7 8 9 10
Epoch Number

(b) test accuracies

Figure 2: Likelihoods and Test Accuracies of Models trained
by several algorithms as a function of Epoch number.

from the female speaker, and 975 utterances from the male
speaker. The recognition task is the recognition of 410 Pu-
tonghua base syllables disregarding tones. The recognition
network enforces silence at the start and end of sentences
and allows optional silences between syllables. As for the
syllable language model, a uniform grammar with a sylla-
ble perplexity of 411 (i.e. each syllable can be followed by
any of the 410 base syllables and silence) is used. All the
recognition experiments are performed using the re-scoring
technique provided in the HTKv2.1 toolkit 3].

The system to be trained is an SI, cross-syllable-triphone,
decision-tree-based, tied-state system. The adopted context-
independent (CI) phone set consists of 36 phones plus si-
lence. With this phone set definition, there are 8022 tri-
phones in Putonghua. Among them, 5595 triphones are
observed in the training data set. Each phone is modeled by
a left-to-right, three-emitting-state CDHMM without state
skipping. Each state has 4 Gaussian mixture components
with each component having a diagonal covariance matrix.
A special three-emitting-state CDHMM is also used for si-
lence modeling. The initial models are prepared by using
the HTKv2.1 toolkit. Using the initial models as seed mod-
els, we perform ML training both with the Baum-Welch al-
gorithm as implemented in HTKv2.1, and with the PEPIF
procedure under different settings of control parameters.

1003

Table 1: The User CPU Time Overhead for a Single Epoch
of PEPIF with Different Block-Sizes, Compared to the
Baum-Welch Algorithm.

Method Block | User CPU Time Overhead (%)
Size | No Pruning | Using Pruning
PEPIF 20 11.4 21.0
PEPIF 100 4.9 14.0
PEPIF 1000 2.1 10.4
Baum-Welch | 18224 0.0 0.0

4.2. Comparison of Learning Curves

Fig. 2 (a) compares the learning curves (as a function of
Epoch number) of several algorithms in terms of the average
log likelihood per frame. Fig. 2 (b) shows the correspond-
ing learning curves in terms of the syllable recognition accu-
racy averaged over 2 testing speakers. The curves labeled
‘Baum-Welch’ correspond to the results obtained by the
Baum-Welch algorithm. Other curves correspond to the re-
sults obtained by PEPIF with different experimental setup.
The curves labeled ‘tau’ correspond to the results with the
following baseline setup: 1) For initial prior specification,
T-initialization is used with an initial 7-value of 1.0; 2) For
prior evolution, sequential QB is used with a block-size of
20 sentences; 3) For posterior intervention, the exponen-
tial refreshing schedule is used with initial refreshing factor
€o set to 0.01 and base b set to 1.5. The curves labeled
‘prior’ correspond to the results with the above baseline
setup excepting that prior-weight initialization is used for
initial prior specification. These two sets of experiments
are designed to compare the efficacy of the two initial prior
specification methods discussed in Section 3.1. In order
to examine the effectiveness of the posterior intervention
scheme discussed in Section 3.2, another two sets of experi-
ments are performed that start from the above two different
priors. This time, a refreshing factor of 1.0 (i.e. no refresh-
ing) is always used for each epoch. The learning curves are
labeled as ‘tauNRef’ and ‘priorNRef’ respectively.

Several observations can be made from these results:
1) The PEPIF increases the model likelihoods much faster
than does Baum-Welch (especially in the early epochs), and
attains a better likelihood after 10 epochs. These results are
also translated into test accuracies, showing that the higher-
likelihood models produced by PEPIF are actually ‘better’
models; 2) The use of a refreshing schedule has a beneficial
effect in improving model likelihoods when compared to a
‘no-refreshing’ schedule as done in [1]; 3) Prior-weight ini-
tialization appears to be a better initialization method than
T-initialization with respect to final likelihoods and accura-
cies. However, for the prior-weight initialization method,
Epoch 1 in Fig. 2 is essentially a batch-mode Baum-Welch
iteration. The likelihood increase in this epoch is thus much
smaller than that yielded by using r-initialization. After 3
epochs, the prior-weight curves surpass the r-initialization
curves. From the above results, we conclude that PEPIF
will be very efficient for the ML training of CDHMM pa-
rameters when ‘early stopping’ is used. For example, to
compare the performance of baseline PEPIF with Baum-
Welch, the likelihood of PEPIF at Epoch 2 is -54.828; this
is higher than the likelihood of Baum-Welch at Epoch 10 at

-55.064. This indicates a 5-fold speed-up in the numbers of
epochs. The accuracy curves show that this speed-up gen-
eralizes to unseen data. The syllable recognition accuracy
at Epoch 2 for PEPIF is 79.04%, whereas at Epoch 10 for
Baum-Welch, it is 79.3%. The speed-up is therefore also
maintained in the accuracy curves.

4.3. Comparison of Computational Complexity

However, in comparison with the Baum-Welch algorithm,
the PEPIF procedure introduces an overhead for each epoch.
This overhead mainly depends on the block size: the smaller
the size, the more the number of data blocks, and thus the
more updates of parameters are required in one epoch. Ta-
ble 1 shows the user CPU time overhead for a single epoch
of PEPIF with different block-sizes, compared to the Baum-
Welch algorithm. If pruning in the Forward-Backward al-
gorithm is virtually disabled [3], we observe a small over-
head of 11.4% ~ 2.1% for a block-size of 20 ~ 1000. If
the default pruning in HTKv2.1 is used, a bigger overhead
of 21.0% ~ 10.4% is observed. However, PEPIF success-
fully trains models with fewer numbers of epochs than does
Baum-Welch. Therefore, PEPIF offers the user a faster
technique for obtaining a set of models of a given likelihood
or accuracy. For the previous example of early stopping at
Epoch 2, using a block-size of 20 and keeping pruning, a
4-fold speed-up in terms of user CPU time is achieved.

5. SUMMARY

The PEPIF algorithm has been compared against the Baum-
Welch algorithm, and the effect of varying various control
parameters for the PEPIF algorithm has been investigated.
The experiments in this study show that generally PEPIF
produces a faster increase in likelihood and accuracy than
does Baum-Welch. Though PEPIF has a processing over-
head, it still offers a speed-up over Baum-Welch in the time
taken to produce models of given likelihood or accuracy.
PEPIF may also produce models of higher likelihood and
accuracy than Baum-Welch can produce even with a large
number of training epochs. This shows a good asymptotic
convergence property. It is observed that the PEPIF algo-
rithm works reliably in all of the experiments we performed
on both artificial data and real speech data. We recom-
mend to the community the routine use of this new algo-
rithm. We will report elsewhere a more theoretical analysis
of the PEPIF procedure, and more experimental results on
the sensitivity of the algorithm to different settings of the
control parameters.

REFERENCES

{1] Y. Gotoh et al., “Efficient training algorithms for
HMMs using incremental estimation,” IEEE Trans. on
SAP, Vol. 6, pp.539-548, 1998.

[2] Q. Huo and C.-H. Lee, “On-line adaptive learning of
the continuous density hidden Markov model based on
approximate recursive Bayes estimate,” IEEE Trans.
on SAP, Vol. 5, pp.161-172, 1997.

[3] S. Young et al., The HTK Book (for HTK Version 2.1),
Cambridge University, 1997.

1004

