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ABSTRACT 

A hand-written Chinese charact.er off-line recognizer based on coiitmextual inodeling of '2D images has been 

const,ruct,ed. Each charact,er is modeled Iby a collection of regions and their cont,ext,iial relations. A relaxation 

training algorit.lim of the model is now invest8igat,ed. In additmion, n mixt,ure-region training algorit,hm considering 

each pixel as belonging t,o a rnixt,iire of regions instead of any part,icnlar oiie is studied. 

1. INTRODUCTION 

C!hinese charact,ers arc complex pat.terns of strolies. 
The bit-map of a cliaract,rr image can be segmerit,ecl 

int,o a iiumber of regions each consist,iiig of eit,lier 

purely wh ik  or purely hlack pixels. il hlack region 

is a stroke or just, a segment, of i t .  An unknown char- 

act,er image is recognized I>y ident,ifying it.s regions 

to t,hat, of a model. Tlir st,rnct,iiral informatmion of 

an  image in t~erms of t,he conbext,nal relationship be- 
t,m-een it,s regions is represeii1,ecl statistically. Even 

if a pixel is linown t,o belong bo a particnlar region. 

the cellular features [l]; olmwwl a t  the pixel are 

still stochastic and different feature vect,ors can be 

observed at, clifferent. pixels of t,lie same region. 11 

regioii is not charact,erized I)y just, tlir dist,ribution 

of feat,urr vect,ors observed at, its pixels. but, hy its 

size and relationship mit81i it,$ neighbor rrgions also, 
hoth of which :UP stocliast~ic. I'pon inat~cliing an un- 

knoivn iniage t.o a character model A.  regions of t,he 
tdi1ioiVn image are inat,chetl t,o regions of A .  That, 
in t,iirn. is accomplishid Iiy identifying a region of 
X for each pixel of the onknomii image lo belong 

bo. ' P h i  avoids seginent,ing a n  unliiiown image into 

regioiis explicit,ly mid then iiiat,chiiig t,heiii as a ran- 

doiii graph [2]. This process of' regioii icl(~nt3ication 
for each pixel considers not, just, the pixel in qnes- 

t,ion. hut. it,s neighboring pixels and t81ie regions t,hey 
helong to as \celli liriice t.he ii;iiiie context,iial nioclel- 

ing. Thns. recognizing a c h a r a c k r  heconies itlent,ify- 

ing the inodel witeh the largest discriminaiit fuiict,ion 

value 011 the unknomn image. 
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2. CONTEXTUAL MODELING OF 

CHARACTERS 

11 character image is abstracted into a matrix of cel- 

lular feat,ure vectors (the pixel color and tlie nuni- 

her of st,rolies encountered along the 4 horizontal 

and vert,ical direct,ions from tlie pixel to the iniagc 
boundary) 0 x [o;,,j] with oi,j observed at pixel 

( i ,  ,j). Each oj,j is modeled as a realization of a ran- 
dom vect,or observable in pixel ( i :  , j )  which belongs 

t,o region z l , j .  V = { v i ,  ... , 7 1 7 }  is the complete set of 

ohservable featnre vectors so t,hat, ally oi,j assiiiiies 

t8he valur of one of its meinhers. z l , j  talres oiie of 

the I< qualitative values {GI ~ G I ,  . . , GI;} each of 
which is a region of t,he charact,er. Each region is 

cliaracterizecl by t,liree set8s of parameters: 

I'r(Gk) ineasiires the relative size of ii region that, as- 

sumes t,lie value Gi.. I'r(vt I G k )  determines mhat, will 

he ohservecl a t  a pixel in  such a region. Prf"~n(Gl  I G k )  

supplies the cont,extnal informat,ion hetween regioiis 
..l .,., ,j . /  and z i , j  when they assume t.he value of C:l 

ancl G e  respect,ively. tIere. i' = i + 772. j '  = .j + 
n and ( i ' , , i ' ) ~ ~ 7 j , ~  where qj , j  is t,he immPdiate P- 
neighborhood of pixel ( i ;  , j ) .  



Regions of 0 are ideiibitied by ident.ifying each 

of it,s pixels independently. Pixel ( i , . j )  should he 

icleiitifiecl t,o z l , j  in order t80 maximize the poskrior 

probability Pr(zL>j  IO). In order t,o reduce t8he coin- 
plesity of t,he problem, z ; , ~  is chosen t.o maximize 
PY( z i , j  )oi,j! on,,,). L:nder t,he assumpt,ion lha t  fra- 

tuw vectors in t,lie same neighhorhood are r~lal~ecl 

to each ot1ic.r through the regions t,hey helong to  

orily. one then approxiinat,rs t~liis poskrior proha- 

hility with: 

The sumniat,ioii is over all admissible values o€ 
which defines the region membership ol' bhe pixels 

in i.he prescribed neighborhood of pixel ( i :  . j ) .  

q:] is t,he irnion of qi , j  and ( i . , j ) .  Even with this 

simplificat,ion, analytical progress is harred in gem 

eral. because P?,(zA, j  z r 1 z , 7 )  is unavailable in closed 

form. For furt,lier siinplificat#ion; it, is assnmed t,hat, 

the iieighhors of ~ i , ~ .  viz., z i $ , j # ' s ;  are inutlially inde- 

pendent~ given zi,3 . So; 

where each k r m  within the summation on t h e  sec- 

ond line of Fc1.(3) represenk t.lie contribution of con- 

textual inforinat,ion. 'The argument, of the n ~ g m ~ a , ~ , ,  

fiinction: 

is a nremirement~ of t,he appropriat,eness of identi- 
fying oZ,] t,o region Gi. . The overall measurenient, 
of t,he simi1arit.y liet,meen the riiiltnowii image anti a 
charact.er model is t,lie discriminant funct#ion: 

2.1. Training of A Contexual Modcl 

il decision-directed (DD) method is adopted to cdi- 
mate  t,he contextual model parnmetprs. In order to 

start the training process for a character, the initial 
model parameters can he  specified according to the 
init,ial pixel ident,ificat,ions of an  arbitrarily chosen 

i.raining sample of t,he character which are ohbained 

as follows: 

Each row of the sample image as a hit, map  is de- 

composed int,o alternate whitme and hlaclr segiiient.s. 

Each segment, in t.he first, row is assigned a nnique 

region identity. For each segment in t.he ne r i  and 

subsequent. rows, if there is a segment in the \nevi- 
oils row having t,he mine color and approxiiiiately 

t-he same starting and ending columns, say, clifrering 
by no more than one pixel posit.ion: t,he same region 

identit,y will be inhmited from the segment of the 
previous row, otherwise, a new region ident8it8y will 

be created for the segment, of the new row. Pixpls of 

t,lie same st,rolte may t.herefore helong t,o more t.han 

one region and blank spaces betmeen strokes will be  

divided int,o regions also. Thus, a region map is cre- 

ated for t,he image. The training algorit.lim is as 

follows: 

Stcp 1. Given ili feature vect,ors €rom a t,raiiiiiig 

sample, hased on it.s init,ial regiou mal? cre- 

ated by  the region segmentat8ion algorit,lim de- 
scribed, one comput,es t.he init.ia1 paramekr PS- 

t,imat,es of t,he contest,nal model by going to 
Step 3 using just, this chosen training sample. 

Step 2. Based on t,he current estimate of inocl~l pa- 

rametsers, a region map for each training sani- 

ple of the charact,er is generat,ed 1vit.h pixels 

identified according to Eq , ( 3 ) .  1\11 t,raining 

samples will be utilized in Step 3 from now 
on. 

Step 3 .  The model is updated as follows: 
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where IVk deiioks the tot,al nnnrlier of pixels 
from t,he training saniple( s) assigned io  region 

Gk. aiitl pixels ( i ' . , j ' )  lie within r ~ , , ~ .  I {  . . . ) I  i s  

t,he iiiiiriher of pixels in t,he set, defined wibliin 

tsli~-% tswo bars. 

Pr( ut IGi.) for any vi not ohserved in region Gk 
should 1 x 3  assigned a small constant, t followed 
hy iiorinalizat,ion inst,rad of leaving it, at  zero 

hecause such a lack of olxervat,ioii may simply 

he due t,o tlrc finit,? size of the traiiiing sample 

set 

Step 4. H.eprat, Stcp 2 anti Stcp 3 uiit,il conver- 

gence (i.c the change in Eq.(4) over all pixels 

of all samples drops helow a predefined thresli- 

old). 

2 . 2 .  Recognition of an Unknown Image 

Ry using tlic ahove t,rainiiig niet,hod. oiic can gener- 

ate ii cont,extual model for each clraract(,r. Let, there 

be a collecl,ioiiofC'such models. il = { A l .  A x ! .  ..,A(:}. 

A discriminant8 fuiictsion for class A,. is defined as: 

wliere z".J i s  chosen to  maximize E ~ . ( < I ) .  
lriioivii iniagr 0 will be classified t,o Ad i f  

An un- 
1,3 

The trniniiig process above, and so is t,he rccognit,ion 
proems; despite i t s  success. has a flaw i i i  t,he sense 

t,liat, Eq.(:3) does iiot, produce t.he optimal region map 

of an image requind hy  t,he paramet,er reest,imation 

process because of t,he siinitnation process. i ln al- 

t,eriiat,ive algorit,hiii of a relaxation nat,ure success- 

f'iilly al)plied to speech recognitmion [5] can det8eriniiie 

ihe opt.inial region map tor ail image 114. modifying 
Stcp 2 of the almvc t,raiiiiiig algorit,liin as  follows: 

Stcp a. Get. an initial region map  for tlie image. 

This can lie achieved hy quantizing pixel i .  . j  

t,o codeword G'k according to Eq.( :lJ. 

Step b. Let, ( i , . j )  move froin the t,op left corner of 

the image to tlie bott,oin right corner along a 

row-wise raster scan. Re-idcnt,ified pixcl ( i :  j )  

to  GI; according to: 

( i ' J  ' ) E f l " , 7  

and replace t,he old ~ j , ~  wit,li G ' k .  Their repeat, 
this process of pixel re-identification following 

a path of row-wise rast8er scan tiut~ in t.he o p  

posite direction: from bot,t,om t,o t,op. Relpeat, 

again along column-wise r a s h  scans in two 

opposite directions. This equation differs from 

Eq.(4) only in the absence of the summation 

over the pixel neighborhood. Such a change i s  

int,rocluced to assure t,he derivat,ion of an opt,i- 
ma! region map. 

Stcp c. Repeat Stcp a unt.il convergence. 

Recognition of an unlrnoivn image is done hy clr- 

termining the opt,iinal region map for t,he imagP hy a 
relaxatmioil process as in training. The suitability of 

A, is measured by t.he following discriminant, fiinc- 

tion: 

( i ' , . i ' ) € % . 3  

where every :)>' is the region that pixel i , . j  is ideii- 

tified to  iii the optinial region map using A,. 

2.4. Mixtureregion Tkaiiiiiig 

Each pixel can be considered belonging to all regions 

st,ochastically instead of a particular one. The asso- 

ciated training inetliod is to  re-estimate the rnotlel 

paramet,ers so that  

is inaximized I>y first computing a region iiiist,ure 

map P T ( ~ , , : ,  = Gr,) of each training sample followcl 
by re-estimating the  model parwinet,ers as: 

DSP97 - 1101 



Herca. E,, stands for t,he summation over all sain- 

ples. Recogiiit,ioir of an unlaiown image is done as 

above except that, Eq(!)) i s  replaced by Eq(l3). 

3 .  EXPERIMENTAL RESULTS 

The contextual model wit,li t,he algorithms in Sec- 

tion 2.1 and Section 2.2 has heen implemented in 

a writ,er independent, hancl-written character off-line 
recognizer supporting a vocabulary of 4.616 Chinese 
characters, alphanumerics and puiictuation symbols, 

where t,he average recogiiit,ioii rat,(? i s  78% [3] [4]. 
To examine the chnract,erist,ics of t,lie various dis- 
criminant fiinct,ions ancl training met,hocls, 5 pairs of 

highly similar charact.ers as s h o ~ n  in Figlire 1 are 

iised as the vocabulary in t,he present st,udy. Each 

cliaract.er i s  ivrit,t,en by 200 rvrit,ers with 150 of them 

used for t,raining and t,he rest for t,esi.ing. In Tahle 
1: the performances of these algorit,linis can be see11 

when they are tested on the training clat,a t,hemselves 

(close t,est) as  ell as the t,est,ing data  (ope11 test). 

Figure I: Vocal?rrlary of highly similar characiers 

Table 1: Performances of t,he 3 algorithms 

I , I 

{ P r ( C h ) :  Pr(0t 1 Gk). allcl P7”””73(Gl I GI;)} for 
all G k  can be considered variables of fiiiictioii ga SUI?- 
ject, bo linear constraints nornralizing the probabili- 

ties. il general purpose linear constraint optiniiza- 
tion algorithm has been employed t,o maximize $2.  

The recognition results are almost, t,he same as those 
listed under g~ iii Table 1 suggesting the validitiy of 

the mixt,iire-region a.pproach for recognizer training. 

4. DISCUSSION 

From Table 1, i t  can be observed from the close test 

results t,liat relaxation training can produce a het- 

t,er fitting to  the training dat.a t,lian t,he other two 
met,hods. However, from the open test results, it i s  

obvious t.lrat the relaxation training niet~hod t,encls t,o 

over-train thp model leading to n mealrer generaliza- 
tion capability. In other words, if t,here is no short- 
age of training data ,  one can expect this method of 

cont,extual model training superior t,o t,he other two 

methods. The mixt,ure-region approach seems t,o be 

a good compromise when there are insufficient, t r a i n  

ing data  which is usually t,lie case in the real world. 

In conclusion, one can -claim t,hat, a powerful cont,ex- 

tual modeling method has been buncl for complex 
and variant, patt,ern classes like hand-mritt,en C:h- 
iiese characters. 
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